Custom Layers - MATLAB & Simulink (original) (raw)

Define custom layers for deep learning

For most tasks, you can use built-in layers. If there is not a built-in layer that you need for your task, then you can define your own custom layer. You can define custom layers with learnable and state parameters. After defining a custom layer, you can check that the layer is valid, GPU compatible, and outputs correctly defined gradients. For a list of supported layers, see List of Deep Learning Layers.

Apps

Deep Network Designer Design and visualize deep learning networks

Functions

expand all

functionLayer Function layer (Since R2021b)
checkLayer Check validity of custom or function layer
setLearnRateFactor Set learn rate factor of layer learnable parameter
setL2Factor Set L2 regularization factor of layer learnable parameter
getLearnRateFactor Get learn rate factor of layer learnable parameter
getL2Factor Get L2 regularization factor of layer learnable parameter
networkDataLayout Deep learning network data layout for learnable parameter initialization (Since R2022b)
dlnetwork Deep learning neural network
findPlaceholderLayers Find placeholder layers in network architecture imported from Keras orONNX
replaceLayer Replace layer in neural network
PlaceholderLayer Layer replacing an unsupported Keras or ONNX layer

Topics

Custom Layers Overview

Define Custom Layers

Network Composition and Nested Layers

Convert Convolutional Network to Spiking Neural Network

Convert Convolutional Network to Spiking Neural Network

Convert a conventional convolutional neural network (CNN) to a spiking neural network (SNN).

Train Bayesian Neural Network

Train Bayesian Neural Network

Train a Bayesian neural network (BNN) for image regression using Bayes by Backpropagation.

Train Variational Autoencoder (VAE) to Generate Images

Train Variational Autoencoder (VAE) to Generate Images

Train a deep learning variational autoencoder (VAE) to generate images.