Preprocess Volumes for Deep Learning - MATLAB & Simulink (original) (raw)

Read Volumetric Data

Supported file formats for volumetric image data include MAT-files, Digital Imaging and Communications in Medicine (DICOM) files, and Neuroimaging Informatics Technology Initiative (NIfTI) files.

Read volumetric image data into an ImageDatastore. Read volumetric pixel label data into a PixelLabelDatastore (Computer Vision Toolbox). For more information, see Datastores for Deep Learning.

The table shows typical usages of imageDatastore andpixelLabelDatastore for each of the supported file formats. When you create the datastore, specify the FileExtensions name-value argument as the file extensions of your data. Specify the ReadFcn property as a function handle that reads data of the file format. Thefilepath argument specifies the path to the files or folder containing image data. For pixel label images, the additionalclassNames and pixelLabelID arguments specify the mapping of voxel label values to class names.

Image File Format Create Image Datastore or Pixel Label Datastore
MAT volds = imageDatastore(filepath, ... "FileExtensions",".mat","ReadFcn",@(x) fcn(x)); pxds = pixelLabelDatastore(filepath,classNames,pixelLabelID, ... "FileExtensions",".mat","ReadFcn",@(x) fcn(x));fcn is a custom function that reads data from a MAT file. For example, this code defines a function called matRead that loads volume data from the first variable of a MAT file. Save the function in a file called matRead.m.function data = matRead(filename) inp = load(filename); f = fields(inp); data = inp.(f{1}); end
DICOM volume in single file volds = imageDatastore(filepath, ... "FileExtensions",".dcm","ReadFcn",@(x) dicomread(x)); pxds = pixelLabelDatastore(filepath,classNames,pixelLabelID, ... "FileExtensions",".dcm","ReadFcn",@(x) dicomread(x)); For more information about reading DICOM files, seedicomread (Image Processing Toolbox).
DICOM volume in multiple files Follow these steps. For an example, see Create Image Datastore Containing Single and Multi-File DICOM Series (Image Processing Toolbox). Aggregate the files into a single study by using thedicomCollection (Image Processing Toolbox) function.Read the DICOM data in the study by using thedicomreadVolume (Image Processing Toolbox) function.Write each volume as a MAT file.Create the ImageDatastore orPixelLabelDatastore from the collection of MAT files by following the procedure for MAT files.
NIfTI volds = imageDatastore(filepath, ... "FileExtensions",".nii","ReadFcn",@(x) niftiread(x)); pxds = pixelLabelDatastore(filepath,classNames,pixelLabelID, ... "FileExtensions",".nii","ReadFcn",@(x) niftiread(x));For more information about reading NIfTI files, see niftiread (Image Processing Toolbox).

Pair Image and Label Data

To associate volumetric image and label data for semantic segmentation, or two volumetric image datastores for regression, use a randomPatchExtractionDatastore (Image Processing Toolbox). A random patch extraction datastore extracts corresponding randomly-positioned patches from two datastores. Patching is a common technique to prevent running out of memory when training with arbitrarily large volumes. Specify a patch size that matches the input size of the network and, for memory efficiency, is smaller than the full size of the volume, such as 64-by-64-by-64 voxels.

You can also use the combine function to associate two datastores. However, associating two datastores using arandomPatchExtractionDatastore has some benefits over combine.

Preprocess Volumetric Data

Deep learning frequently requires the data to be preprocessed and augmented. For example, you may want to normalize image intensities, enhance image contrast, or add randomized affine transformations to prevent overfitting.

To preprocess volumetric data, use the transform function. transform creates an altered form of a datastore, called an underlying datastore, by transforming the data read by the underlying datastore according to the set of operations you define in a custom function. Image Processing Toolbox™ provides several functions that accept volumetric input. For a full list of functions, see 3-D Volumetric Image Processing (Image Processing Toolbox). You can also preprocess volumetric images using functions in MATLAB® that work on multidimensional arrays.

The custom transformation function must accept data in the format returned by theread function of the underlying datastore.

Underlying Datastore Format of Input to Custom Transformation Function
ImageDatastore The input to the custom transformation function depends on the ReadSize property. When ReadSize is 1, the transformation function must accept an integer array. The size of the array is consistent with the type of images in theImageDatastore. For example, a grayscale image has size_m_-by-n, a truecolor image has size_m_-by-_n_-by-3, and a multispectral image with c channels has size_m_-by-_n_-by-c.When ReadSize is greater than 1, the transformation function must accept a cell array of image data corresponding to each image in the batch.For more information, see the read function of ImageDatastore.
PixelLabelDatastore The input to the custom transformation function depends on the ReadSize property. When ReadSize is 1, the transformation function must accept a categorical matrix.When ReadSize is greater than 1, the transformation function must accept a cell array of categorical matrices.For more information, see the read (Computer Vision Toolbox) function ofPixelLabelDatastore.
RandomPatchExtractionDatastore The input to the custom transformation function must be a table with two columns.For more information, see the read (Image Processing Toolbox) function ofRandomPatchExtractionDatastore.

The transform function must return data that matches the input size of the network. The transform function does not support one-to-many observation mappings.

To apply random affine transformations to volumetric data inRandomPatchExtractionDatastore, you must use thetransform function. The DataAugmentation property of this datastore does not support volumetric data.

Examples

Transform Batch of Volumetric Data in Image Datastore

This example shows how to transform volumetric data in an image datastore using a sample image preprocessing pipeline.

Specify a set of volumetric images saved at MAT files.

filepath = fullfile(matlabroot,"toolbox","images","imdata","mristack.mat"); files = [filepath; filepath; filepath];

Create an image datastore that stores multiple volumetric images. Specify that the ReadSize of the datastore is greater than 1. Specify a custom read function, matRead. This function is defined in the Supporting Functions section of this example.

volDS = imageDatastore(files,FileExtensions=".mat", ... ReadSize=3,ReadFcn=@(x) matRead(x));

Specify the input size of the network.

Preprocess the volumetric images in volDS using the custom preprocessing pipeline defined in the preprocessVolumetricIMDS supporting function.

dsTrain = transform(volDS,@(x) preprocessVolumetricIMDS(x,inputSize));

Read a batch of data.

minibatch = read(dsTrain)

minibatch=3×1 cell array {128×128×21 uint8} {128×128×21 uint8} {128×128×21 uint8}

Supporting Functions

The matRead function loads volume data from the first variable of a MAT file.

function data = matRead(filename) inp = load(filename); f = fields(inp); data = inp.(f{1}); end

The preprocessVolumetricIMDS function performs the desired transformations of data read from an underlying image datastore. Because the read size of the image datastore is greater than 1, the function must accept a cell array of image data. The function loops through each read image and transforms the data according to this preprocessing pipeline:

function batchOut = preprocessVolumetricIMDS(batchIn,inputSize)

numRows = size(batchIn,1); batchOut = cell(numRows,1);

for idx = 1:numRows

% Perform randomized 90 degree rotation about the z-axis
imRotated = imrotate3(batchIn{idx,1},90*(randi(4)-1),[0 0 1]);

% Resize the volume to the size expected by the network
imResized = imresize(imRotated,inputSize);

% Add zero-mean Gaussian noise with a normalized variance of 0.01
imNoisy = imnoise(imResized,"gaussian",0.01);

% Return the preprocessed data
batchOut(idx) = {imNoisy};

end end

Transform Volumetric Data in Random Patch Extraction Datastore

This example shows how to transform pairs of volumetric data in a random patch extraction datastore using a sample image preprocessing pipeline.

Specify two sets of volumetric images saved at MAT files. Each set contains five volumetric images.

dir = fullfile(matlabroot,"toolbox","images","imdata","BrainMRILabeled"); filesVol1 = fullfile(dir,"images"); filesVol2 = fullfile(dir,"labels");

Store each set of volumetric images in an image datastore. Specify a custom read function, matRead. This function is defined in the Supporting Functions section of this example. Use the default ReadSize of 1.

vol1DS = imageDatastore(filesVol1,FileExtensions=".mat",ReadFcn=@(x) matRead(x)); vol2DS = imageDatastore(filesVol2,FileExtensions=".mat",ReadFcn=@(x) matRead(x));

Specify the input size of the network.

Create a random patch extraction datastore that extracts corresponding patches from the two datastores. Select three patches per image.

patchVolDS = randomPatchExtractionDatastore(vol1DS,vol2DS,inputSize,PatchesPerImage=3);

Preprocess the volumetric images in patchVolDS using the custom preprocessing pipeline defined in the preprocessVolumetricPatchDS supporting function.

dsTrain = transform(patchVolDS,@(x) preprocessVolumetricPatchDS(x));

Read a batch of data.

minibatch = read(dsTrain)

minibatch=15×2 table InputImage ResponseImage
____________________ ___________________

{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}
{128×128×155 uint16}    {128×128×155 uint8}

Supporting Functions

The matRead function loads volume data from the first variable of a MAT file.

function data = matRead(filename) inp = load(filename); f = fields(inp); data = inp.(f{1}); end

The preprocessVolumetricPatchDS function performs the desired transformations of data read from the underlying random patch extraction datastore. The function must accept a table. The function transforms the data according to this preprocessing pipeline:

function batchOut = preprocessVolumetricPatchDS(batchIn)

numRows = size(batchIn,1); batchOut = batchIn;

% 5 augmentations: nil,rot90,fliplr,flipud,rot90(fliplr) augType = {@(x) x,@rot90,@fliplr,@flipud,@(x) rot90(fliplr(x))};

for idx = 1:numRows

img = batchIn{idx,1}{1};
resp = batchIn{idx,2}{1};

rndIdx = randi(5,1);
imgAug = augType{rndIdx}(img);
respAug = augType{rndIdx}(resp);

batchOut(idx,:) = {imgAug,respAug};

end end

See Also

trainnet | trainingOptions | dlnetwork | imageDatastore | pixelLabelDatastore (Computer Vision Toolbox) | randomPatchExtractionDatastore (Image Processing Toolbox) | transform

Topics