INT8 Recipe Tuning API (Prototype) — Intel® Extension for PyTorch* 2.7.0+cpu documentation (original) (raw)
This new API ipex.quantization.autotune
supports INT8 recipe tuning by using Intel® Neural Compressor as the backend in Intel® Extension for PyTorch*. In general, we provid default recipe in Intel® Extension for PyTorch*, and we still recommend users to try out the default recipe first without bothering tuning. If the default recipe doesn’t bring about desired accuracy, users can use this API to tune for a more advanced receipe.
Users need to provide a fp32 model and some parameters required for tuning. The API will return a prepared model with tuned qconfig loaded.
Usage Example
- Static Quantization Please refer to static_quant example.
import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor
import intel_extension_for_pytorch as ipex
######################################################################## # noqa F401
Reference for training portion:
https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
Download training data from open datasets.
training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor(), )
Download test data from open datasets.
test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor(), ) batch_size = 64
Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size) test_dataloader = DataLoader(test_data, batch_size=1)
for X, y in test_dataloader: print(f"Shape of X [N, C, H, W]: {X.shape}") print(f"Shape of y: {y.shape} {y.dtype}") break
Define model
class NeuralNetwork(nn.Module): def init(self): super().init() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28 * 28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10), )
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork() loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) model.train() for batch, (X, y) in enumerate(dataloader):
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
model, optimizer = ipex.optimize(model, optimizer=optimizer)
epochs = 5 for t in range(epochs): print(f"Epoch {t+1}\n-------------------------------") train(train_dataloader, model, loss_fn, optimizer) print("Done!")
################################ QUANTIZE ############################## # noqa F401 model.eval()
def evaluate(dataloader, model): size = len(dataloader.dataset) model.eval() accuracy = 0 with torch.no_grad(): for X, y in dataloader: # X, y = X.to('cpu'), y.to('cpu') pred = model(X) accuracy += (pred.argmax(1) == y).type(torch.float).sum().item() accuracy /= size return accuracy
######################## recipe tuning with INC ######################## # noqa F401 def eval(prepared_model): accu = evaluate(test_dataloader, prepared_model) return float(accu)
tuned_model = ipex.quantization.autotune( model, test_dataloader, eval_func=eval, sampling_sizes=[100], accuracy_criterion={"relative": 0.01}, tuning_time=0, ) ######################################################################## # noqa F401
run tuned model
data = torch.randn(1, 1, 28, 28) convert_model = ipex.quantization.convert(tuned_model) with torch.no_grad(): traced_model = torch.jit.trace(convert_model, data) traced_model = torch.jit.freeze(traced_model) traced_model(data)
save tuned qconfig file
tuned_model.save_qconf_summary(qconf_summary="tuned_conf.json")
print("Execution finished")