What's new in C# 12 (original) (raw)

Skip to main content

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

What's new in C# 12

In this article

C# 12 includes the following new features. You can try these features using the latest Visual Studio 2022 version or the .NET 8 SDK.

C# 12 is supported on .NET 8. For more information, see C# language versioning.

You can download the latest .NET 8 SDK from the .NET downloads page. You can also download Visual Studio 2022, which includes the .NET 8 SDK.

Note

We're interested in your feedback on these features. If you find issues with any of these new features, create a new issue in the dotnet/roslyn repository.

Primary constructors

You can now create primary constructors in any class and struct. Primary constructors are no longer restricted to record types. Primary constructor parameters are in scope for the entire body of the class. To ensure that all primary constructor parameters are definitely assigned, all explicitly declared constructors must call the primary constructor using this() syntax. Adding a primary constructor to a class prevents the compiler from declaring an implicit parameterless constructor. In a struct, the implicit parameterless constructor initializes all fields, including primary constructor parameters to the 0-bit pattern.

The compiler generates public properties for primary constructor parameters only in record types, either record class or record struct types. Nonrecord classes and structs might not always want this behavior for primary constructor parameters.

You can learn more about primary constructors in the tutorial for exploring primary constructors and in the article on instance constructors.

Collection expressions

Collection expressions introduce a new terse syntax to create common collection values. Inlining other collections into these values is possible using a spread element ..e.

Several collection-like types can be created without requiring external BCL support. These types are:

The following examples show uses of collection expressions:

// Create an array:
int[] a = [1, 2, 3, 4, 5, 6, 7, 8];

// Create a list:
List<string> b = ["one", "two", "three"];

// Create a span
Span<char> c  = ['a', 'b', 'c', 'd', 'e', 'f', 'h', 'i'];

// Create a jagged 2D array:
int[][] twoD = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];

// Create a jagged 2D array from variables:
int[] row0 = [1, 2, 3];
int[] row1 = [4, 5, 6];
int[] row2 = [7, 8, 9];
int[][] twoDFromVariables = [row0, row1, row2];

The spread element, ..e in a collection expression adds all the elements in that expression. The argument must be a collection type. The following examples show how the spread element works:

int[] row0 = [1, 2, 3];
int[] row1 = [4, 5, 6];
int[] row2 = [7, 8, 9];
int[] single = [.. row0, .. row1, .. row2];
foreach (var element in single)
{
    Console.Write($"{element}, ");
}
// output:
// 1, 2, 3, 4, 5, 6, 7, 8, 9,

The spread element evaluates each element of the enumerations expression. Each element is included in the output collection.

You can use collection expressions anywhere you need a collection of elements. They can specify the initial value for a collection or be passed as arguments to methods that take collection types. You can learn more about collection expressions in the language reference article on collection expressions or the feature specification.

ref readonly parameters

C# added in parameters as a way to pass readonly references. in parameters allow both variables and values, and can be used without any annotation on arguments.

The addition of ref readonly parameters enables more clarity for APIs that might be using ref parameters or in parameters:

To learn more about ref readonly parameters, see the article on parameter modifiers in the language reference, or the ref readonly parameters feature specification.

Default lambda parameters

You can now define default values for parameters on lambda expressions. The syntax and rules are the same as adding default values for arguments to any method or local function.

You can learn more about default parameters on lambda expressions in the article on lambda expressions.

Alias any type

You can use the using alias directive to alias any type, not just named types. That means you can create semantic aliases for tuple types, array types, pointer types, or other unsafe types. For more information, see the feature specification. For an example refactoring walkthrough, see Refactor your code using alias any type on the .NET blog.

Inline arrays

Inline arrays are used by the runtime team and other library authors to improve performance in your apps. Inline arrays enable a developer to create an array of fixed size in a struct type. A struct with an inline buffer should provide performance characteristics similar to an unsafe fixed size buffer. You likely won't declare your own inline arrays, but you use them transparently when they're exposed as System.Span or System.ReadOnlySpan objects from runtime APIs.

An inline array is declared similar to the following struct:

[System.Runtime.CompilerServices.InlineArray(10)]
public struct Buffer
{
    private int _element0;
}

You use them like any other array:

var buffer = new Buffer();
for (int i = 0; i < 10; i++)
{
    buffer[i] = i;
}

foreach (var i in buffer)
{
    Console.WriteLine(i);
}

The difference is that the compiler can take advantage of known information about an inline array. You likely consume inline arrays as you would any other array. For more information on how to declare inline arrays, see the language reference on struct types.

Experimental attribute

Types, methods, or assemblies can be marked with the System.Diagnostics.CodeAnalysis.ExperimentalAttribute to indicate an experimental feature. The compiler issues a warning if you access a method or type annotated with the ExperimentalAttribute. All types included in an assembly marked with the Experimental attribute are experimental. You can read more in the article on General attributes read by the compiler, or the feature specification.

Interceptors

Warning

Interceptors are an experimental feature, available in preview mode with C# 12. The feature may be subject to breaking changes or removal in a future release. Therefore, it is not recommended for production or released applications.

In order to use interceptors, the user project must specify the property <InterceptorsPreviewNamespaces>. This is a list of namespaces which are allowed to contain interceptors.

For example: <InterceptorsPreviewNamespaces>$(InterceptorsPreviewNamespaces);Microsoft.AspNetCore.Http.Generated;MyLibrary.Generated</InterceptorsPreviewNamespaces>

An interceptor is a method that can declaratively substitute a call to an interceptable method with a call to itself at compile time. This substitution occurs by having the interceptor declare the source locations of the calls that it intercepts. Interceptors provide a limited facility to change the semantics of existing code by adding new code to a compilation, for example in a source generator.

You use an interceptor as part of a source generator to modify, rather than add code to an existing source compilation. The source generator substitutes calls to an interceptable method with a call to the interceptor method.

If you're interested in experimenting with interceptors, you can learn more by reading the feature specification. If you use the feature, make sure to stay current with any changes in the feature specification for this experimental feature. If the feature is finalized, we'll add more guidance on this site.

See also

Collaborate with us on GitHub

The source for this content can be found on GitHub, where you can also create and review issues and pull requests. For more information, see our contributor guide.

Additional resources

In this article