Distributed checkpoints (expert) — PyTorch Lightning 2.5.1.post0 documentation (original) (raw)

Generally, the bigger your model is, the longer it takes to save a checkpoint to disk. With distributed checkpoints (sometimes called sharded checkpoints), you can save and load the state of your training script with multiple GPUs or nodes more efficiently, avoiding memory issues.


Save a distributed checkpoint

The distributed checkpoint format can be enabled when you train with the FSDP strategy.

import lightning as L from lightning.pytorch.strategies import FSDPStrategy

1. Select the FSDP strategy and set the sharded/distributed checkpoint format

strategy = FSDPStrategy(state_dict_type="sharded")

2. Pass the strategy to the Trainer

trainer = L.Trainer(devices=2, strategy=strategy, ...)

3. Run the trainer

trainer.fit(model)

With state_dict_type="sharded", each process/GPU will save its own file into a folder at the given path. This reduces memory peaks and speeds up the saving to disk.

Full example

import lightning as L from lightning.pytorch.strategies import FSDPStrategy from lightning.pytorch.demos import LightningTransformer

model = LightningTransformer()

strategy = FSDPStrategy(state_dict_type="sharded") trainer = L.Trainer( accelerator="cuda", devices=4, strategy=strategy, max_steps=3, ) trainer.fit(model)

Check the contents of the checkpoint folder:

ls -a lightning_logs/version_0/checkpoints/epoch=0-step=3.ckpt/

epoch=0-step=3.ckpt/ ├── __0_0.distcp ├── __1_0.distcp ├── __2_0.distcp ├── __3_0.distcp ├── .metadata └── meta.pt

The .distcp files contain the tensor shards from each process/GPU. You can see that the size of these files is roughly 1/4 of the total size of the checkpoint since the script distributes the model across 4 GPUs.


Load a distributed checkpoint

You can easily load a distributed checkpoint in Trainer if your script uses FSDP.

import lightning as L from lightning.pytorch.strategies import FSDPStrategy

1. Select the FSDP strategy and set the sharded/distributed checkpoint format

strategy = FSDPStrategy(state_dict_type="sharded")

2. Pass the strategy to the Trainer

trainer = L.Trainer(devices=2, strategy=strategy, ...)

3. Set the checkpoint path to load

trainer.fit(model, ckpt_path="path/to/checkpoint")

Note that you can load the distributed checkpoint even if the world size has changed, i.e., you are running on a different number of GPUs than when you saved the checkpoint.

Full example

import lightning as L from lightning.pytorch.strategies import FSDPStrategy from lightning.pytorch.demos import LightningTransformer

model = LightningTransformer()

strategy = FSDPStrategy(state_dict_type="sharded") trainer = L.Trainer( accelerator="cuda", devices=2, strategy=strategy, max_steps=5, ) trainer.fit(model, ckpt_path="lightning_logs/version_0/checkpoints/epoch=0-step=3.ckpt")

Important

If you want to load a distributed checkpoint into a script that doesn’t use FSDP (or Trainer at all), then you will have to convert it to a single-file checkpoint first.


Convert a distributed checkpoint

It is possible to convert a distributed checkpoint to a regular, single-file checkpoint with this utility:

python -m lightning.pytorch.utilities.consolidate_checkpoint path/to/my/checkpoint

You will need to do this for example if you want to load the checkpoint into a script that doesn’t use FSDP, or need to export the checkpoint to a different format for deployment, evaluation, etc.

Note

All tensors in the checkpoint will be converted to CPU tensors, and no GPUs are required to run the conversion command. This function assumes you have enough free CPU memory to hold the entire checkpoint in memory.

Full example

Assuming you have saved a checkpoint epoch=0-step=3.ckpt using the examples above, run the following command to convert it:

cd lightning_logs/version_0/checkpoints python -m lightning.pytorch.utilities.consolidate_checkpoint epoch=0-step=3.ckpt

This saves a new file epoch=0-step=3.ckpt.consolidated next to the sharded checkpoint which you can load normally in PyTorch:

import torch

checkpoint = torch.load("epoch=0-step=3.ckpt.consolidated") print(list(checkpoint.keys())) print(checkpoint["state_dict"]["model.transformer.decoder.layers.31.norm1.weight"])