LLVM: lib/Support/APFloat.cpp Source File (original) (raw)

1

2

3

4

5

6

7

8

9

10

11

12

13

23#include "llvm/Config/llvm-config.h"

28#include

29#include <limits.h>

30

31#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \

32 do { \

33 if (usesLayout(getSemantics())) \

34 return U.IEEE.METHOD_CALL; \

35 if (usesLayout(getSemantics())) \

36 return U.Double.METHOD_CALL; \

37 llvm_unreachable("Unexpected semantics"); \

38 } while (false)

39

40using namespace llvm;

41

42

43

44

45

46

47

48#define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))

49

50

51

53

54namespace llvm {

55

56

58

59

60

62

63

64

65

66

67

68

69

71

72

73

75};

76

77

78

79

80

82

83

85

86

87

88

89

90

91

93

94

95

96

97

98

100};

101

102

104

105

107

108

109

111

112

113

115

116

118

120

122

123

125

126

128};

129

149 false, false};

150

161 53 + 53, 128};

162

164 switch (S) {

205 }

207}

208

251 else

253}

254

262}

265}

273}

282}

284

287 return A.maxExponent <= B.maxExponent && A.minExponent >= B.minExponent &&

288 A.precision <= B.precision;

289}

290

296

297

298

299

300

301

302

303

304

305

306

307

312 2 +

314

317}

321}

325}

328}

331

332

334

336 ++MinBitWidth;

337 return MinBitWidth;

338}

339

341 return semantics.hasZero;

342}

343

346}

347

350}

351

354}

355

358

359 if (Src.maxExponent >= Dst.maxExponent || Src.minExponent <= Dst.minExponent)

360 return false;

361

362

363

364

365

366

367 return Dst.precision >= Src.precision;

368}

369

372}

373

377}

378

382}

383

391 }

393}

394

395

396

399}

400

401static constexpr inline unsigned int partCountForBits(unsigned int bits) {

404}

405

406

407static inline unsigned int

409{

410 return c - '0';

411}

412

413

414

415

416

417

420 bool isNegative;

421 unsigned int absExponent;

422 const unsigned int overlargeExponent = 24000;

424

425

426 if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) {

427 return 0;

428 }

429

430 isNegative = (*p == '-');

431 if (*p == '-' || *p == '+') {

432 p++;

433 if (p == end)

434 return createError("Exponent has no digits");

435 }

436

438 if (absExponent >= 10U)

439 return createError("Invalid character in exponent");

440

441 for (; p != end; ++p) {

442 unsigned int value;

443

445 if (value >= 10U)

446 return createError("Invalid character in exponent");

447

448 absExponent = absExponent * 10U + value;

449 if (absExponent >= overlargeExponent) {

450 absExponent = overlargeExponent;

451 break;

452 }

453 }

454

455 if (isNegative)

456 return -(int) absExponent;

457 else

458 return (int) absExponent;

459}

460

461

462

465 int exponentAdjustment) {

466 int unsignedExponent;

467 bool negative, overflow;

468 int exponent = 0;

469

470 if (p == end)

471 return createError("Exponent has no digits");

472

473 negative = *p == '-';

474 if (*p == '-' || *p == '+') {

475 p++;

476 if (p == end)

477 return createError("Exponent has no digits");

478 }

479

480 unsignedExponent = 0;

481 overflow = false;

482 for (; p != end; ++p) {

483 unsigned int value;

484

486 if (value >= 10U)

487 return createError("Invalid character in exponent");

488

489 unsignedExponent = unsignedExponent * 10 + value;

490 if (unsignedExponent > 32767) {

491 overflow = true;

492 break;

493 }

494 }

495

496 if (exponentAdjustment > 32767 || exponentAdjustment < -32768)

497 overflow = true;

498

499 if (!overflow) {

500 exponent = unsignedExponent;

501 if (negative)

502 exponent = -exponent;

503 exponent += exponentAdjustment;

504 if (exponent > 32767 || exponent < -32768)

505 overflow = true;

506 }

507

508 if (overflow)

509 exponent = negative ? -32768: 32767;

510

511 return exponent;

512}

513

518 *dot = end;

519 while (p != end && *p == '0')

520 p++;

521

522 if (p != end && *p == '.') {

523 *dot = p++;

524

525 if (end - begin == 1)

526 return createError("Significand has no digits");

527

528 while (p != end && *p == '0')

529 p++;

530 }

531

532 return p;

533}

534

535

536

537

538

539

540

541

542

543

544

545

546

547

553};

554

558

560 if (!PtrOrErr)

561 return PtrOrErr.takeError();

563

564 D->firstSigDigit = p;

565 D->exponent = 0;

566 D->normalizedExponent = 0;

567

568 for (; p != end; ++p) {

569 if (*p == '.') {

570 if (dot != end)

571 return createError("String contains multiple dots");

572 dot = p++;

573 if (p == end)

574 break;

575 }

577 break;

578 }

579

580 if (p != end) {

581 if (*p != 'e' && *p != 'E')

582 return createError("Invalid character in significand");

583 if (p == begin)

584 return createError("Significand has no digits");

585 if (dot != end && p - begin == 1)

586 return createError("Significand has no digits");

587

588

590 if (!ExpOrErr)

591 return ExpOrErr.takeError();

592 D->exponent = *ExpOrErr;

593

594

595 if (dot == end)

596 dot = p;

597 }

598

599

600 if (p != D->firstSigDigit) {

601

602 if (p != begin) {

603 do

604 do

605 p--;

606 while (p != begin && *p == '0');

607 while (p != begin && *p == '.');

608 }

609

610

612 D->normalizedExponent = (D->exponent +

614 - (dot > D->firstSigDigit && dot < p)));

615 }

616

617 D->lastSigDigit = p;

619}

620

621

622

623

626 unsigned int digitValue) {

627 unsigned int hexDigit;

628

629

630

631 if (digitValue > 8)

633 else if (digitValue < 8 && digitValue > 0)

635

636

637 while (p != end && (*p == '0' || *p == '.'))

638 p++;

639

640 if (p == end)

641 return createError("Invalid trailing hexadecimal fraction!");

642

643 hexDigit = hexDigitValue(*p);

644

645

646

647 if (hexDigit == UINT_MAX)

649 else

651}

652

653

654

657 unsigned int partCount,

658 unsigned int bits)

659{

660 unsigned int lsb;

661

663

664

665 if (bits <= lsb)

667 if (bits == lsb + 1)

672

674}

675

676

679{

681

683

685

686 return lost_fraction;

687}

688

689

693{

699 }

700

701 return moreSignificant;

702}

703

704

705

706

707

708

709

710

711static unsigned int

712HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)

713{

714 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));

715

716 if (HUerr1 + HUerr2 == 0)

717 return inexactMultiply * 2;

718 else

719 return inexactMultiply + 2 * (HUerr1 + HUerr2);

720}

721

722

723

724

727 bool isNearest) {

728 unsigned int count, partBits;

730

732

733 bits--;

736

738

739 if (isNearest)

741 else

742 boundary = 0;

743

744 if (count == 0) {

745 if (part - boundary <= boundary - part)

746 return part - boundary;

747 else

748 return boundary - part;

749 }

750

751 if (part == boundary) {

753 if (parts[count])

755

756 return parts[0];

757 } else if (part == boundary - 1) {

759 if (~parts[count])

761

762 return -parts[0];

763 }

764

766}

767

768

769

770static unsigned int

772 static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 };

774 pow5s[0] = 78125 * 5;

775

776 unsigned int partsCount = 1;

778 unsigned int result;

780

781 p1 = dst;

782 p2 = scratch;

783

784 *p1 = firstEightPowers[power & 7];

785 power >>= 3;

786

787 result = 1;

788 pow5 = pow5s;

789

790 for (unsigned int n = 0; power; power >>= 1, n++) {

791

792 if (n != 0) {

794 partsCount, partsCount);

795 partsCount *= 2;

796 if (pow5[partsCount - 1] == 0)

797 partsCount--;

798 }

799

800 if (power & 1) {

802

804 result += partsCount;

805 if (p2[result - 1] == 0)

806 result--;

807

808

809

810 tmp = p1;

811 p1 = p2;

812 p2 = tmp;

813 }

814

815 pow5 += partsCount;

816 }

817

818 if (p1 != dst)

820

821 return result;

822}

823

824

825

830static const char NaNL[] = "nan";

831static const char NaNU[] = "NAN";

832

833

834

835

836static unsigned int

838 const char *hexDigitChars)

839{

840 unsigned int result = count;

841

843

845 while (count--) {

846 dst[count] = hexDigitChars[part & 0xf];

847 part >>= 4;

848 }

849

850 return result;

851}

852

853

854static char *

856{

857 char buff[40], *p;

858

859 p = buff;

860 do

861 *p++ = '0' + n % 10;

862 while (n /= 10);

863

864 do

865 *dst++ = *--p;

866 while (p != buff);

867

868 return dst;

869}

870

871

872static char *

874{

876 *dst++ = '-';

878 } else

880

881 return dst;

882}

883

885

886void IEEEFloat::initialize(const fltSemantics *ourSemantics) {

887 unsigned int count;

888

889 semantics = ourSemantics;

890 count = partCount();

893}

894

895void IEEEFloat::freeSignificand() {

897 delete [] significand.parts;

898}

899

900void IEEEFloat::assign(const IEEEFloat &rhs) {

901 assert(semantics == rhs.semantics);

902

903 sign = rhs.sign;

904 category = rhs.category;

905 exponent = rhs.exponent;

907 copySignificand(rhs);

908}

909

910void IEEEFloat::copySignificand(const IEEEFloat &rhs) {

912 assert(rhs.partCount() >= partCount());

913

914 APInt::tcAssign(significandParts(), rhs.significandParts(),

915 partCount());

916}

917

918

919

920

923 llvm_unreachable("This floating point format does not support NaN");

924

927 "This floating point format does not support signed values");

928

929 category = fcNaN;

930 sign = Negative;

931 exponent = exponentNaN();

932

933 integerPart *significand = significandParts();

934 unsigned numParts = partCount();

935

936 APInt fill_storage;

938

939

940 SNaN = false;

942 sign = true;

944 } else {

946 }

947 fill = &fill_storage;

948 }

949

950

951 if (!fill || fill->getNumWords() < numParts)

953 if (fill) {

955 std::min(fill->getNumWords(), numParts));

956

957

958 unsigned bitsToPreserve = semantics->precision - 1;

959 unsigned part = bitsToPreserve / 64;

960 bitsToPreserve %= 64;

961 significand[part] &= ((1ULL << bitsToPreserve) - 1);

962 for (part++; part != numParts; ++part)

963 significand[part] = 0;

964 }

965

966 unsigned QNaNBit =

968

969 if (SNaN) {

970

972

973

974

975

979

980

981 } else {

982

984 }

985

986

987

988

991}

992

994 if (this != &rhs) {

995 if (semantics != rhs.semantics) {

996 freeSignificand();

997 initialize(rhs.semantics);

998 }

999 assign(rhs);

1000 }

1001

1002 return *this;

1003}

1004

1006 freeSignificand();

1007

1008 semantics = rhs.semantics;

1009 significand = rhs.significand;

1010 exponent = rhs.exponent;

1011 category = rhs.category;

1012 sign = rhs.sign;

1013

1015 return *this;

1016}

1017

1021 semantics->precision - 1) == 0);

1022}

1023

1025

1026

1027

1029 significandMSB() == 0;

1030}

1031

1034 isSignificandAllZerosExceptMSB();

1035}

1036

1037unsigned int IEEEFloat::getNumHighBits() const {

1040

1041

1042

1043

1044 const unsigned int NumHighBits = (semantics->precision > 1)

1045 ? (Bits - semantics->precision + 1)

1046 : (Bits - semantics->precision);

1047 return NumHighBits;

1048}

1049

1050bool IEEEFloat::isSignificandAllOnes() const {

1051

1052

1053 const integerPart *Parts = significandParts();

1055 for (unsigned i = 0; i < PartCount - 1; i++)

1056 if (~Parts[i])

1057 return false;

1058

1059

1060 const unsigned NumHighBits = getNumHighBits();

1061 assert(NumHighBits <= integerPartWidth && NumHighBits > 0 &&

1062 "Can not have more high bits to fill than integerPartWidth");

1065 if ((semantics->precision <= 1) || (~(Parts[PartCount - 1] | HighBitFill)))

1066 return false;

1067

1068 return true;

1069}

1070

1071bool IEEEFloat::isSignificandAllOnesExceptLSB() const {

1072

1073

1074 const integerPart *Parts = significandParts();

1075

1076 if (Parts[0] & 1)

1077 return false;

1078

1080 for (unsigned i = 0; i < PartCount - 1; i++) {

1081 if (~Parts[i] & ~unsigned{!i})

1082 return false;

1083 }

1084

1085

1086 const unsigned NumHighBits = getNumHighBits();

1087 assert(NumHighBits <= integerPartWidth && NumHighBits > 0 &&

1088 "Can not have more high bits to fill than integerPartWidth");

1089 const integerPart HighBitFill = ~integerPart(0)

1091 if (~(Parts[PartCount - 1] | HighBitFill | 0x1))

1092 return false;

1093

1094 return true;

1095}

1096

1097bool IEEEFloat::isSignificandAllZeros() const {

1098

1099

1100 const integerPart *Parts = significandParts();

1102

1103 for (unsigned i = 0; i < PartCount - 1; i++)

1104 if (Parts[i])

1105 return false;

1106

1107

1108 const unsigned NumHighBits = getNumHighBits();

1110 "clear than integerPartWidth");

1111 const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;

1112

1113 if ((semantics->precision > 1) && (Parts[PartCount - 1] & HighBitMask))

1114 return false;

1115

1116 return true;

1117}

1118

1119bool IEEEFloat::isSignificandAllZerosExceptMSB() const {

1120 const integerPart *Parts = significandParts();

1122

1123 for (unsigned i = 0; i < PartCount - 1; i++) {

1124 if (Parts[i])

1125 return false;

1126 }

1127

1128 const unsigned NumHighBits = getNumHighBits();

1131 return ((semantics->precision <= 1) || (Parts[PartCount - 1] == MSBMask));

1132}

1133

1138

1139

1140

1142 ? isSignificandAllOnesExceptLSB()

1143 : IsMaxExp;

1144 } else {

1145

1146

1147 return IsMaxExp && isSignificandAllOnes();

1148 }

1149}

1150

1152

1153 if (isFinite()) return false;

1157}

1158

1160 if (this == &rhs)

1161 return true;

1162 if (semantics != rhs.semantics ||

1163 category != rhs.category ||

1164 sign != rhs.sign)

1165 return false;

1167 return true;

1168

1170 return false;

1171

1172 return std::equal(significandParts(), significandParts() + partCount(),

1173 rhs.significandParts());

1174}

1175

1177 initialize(&ourSemantics);

1178 sign = 0;

1180 zeroSignificand();

1181 exponent = ourSemantics.precision - 1;

1182 significandParts()[0] = value;

1184}

1185

1187 initialize(&ourSemantics);

1188

1189

1190

1191

1192

1193

1195}

1196

1197

1198

1201

1203 initialize(rhs.semantics);

1204 assign(rhs);

1205}

1206

1208 *this = std::move(rhs);

1209}

1210

1212

1213unsigned int IEEEFloat::partCount() const {

1215}

1216

1218 return const_cast<IEEEFloat *>(this)->significandParts();

1219}

1220

1222 if (partCount() > 1)

1223 return significand.parts;

1224 else

1225 return &significand.part;

1226}

1227

1228void IEEEFloat::zeroSignificand() {

1229 APInt::tcSet(significandParts(), 0, partCount());

1230}

1231

1232

1233void IEEEFloat::incrementSignificand() {

1235

1237

1238

1240 (void)carry;

1241}

1242

1243

1246

1247 parts = significandParts();

1248

1249 assert(semantics == rhs.semantics);

1250 assert(exponent == rhs.exponent);

1251

1252 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());

1253}

1254

1255

1256

1260

1261 parts = significandParts();

1262

1263 assert(semantics == rhs.semantics);

1264 assert(exponent == rhs.exponent);

1265

1267 partCount());

1268}

1269

1270

1271

1272

1273lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs,

1274 IEEEFloat addend,

1275 bool ignoreAddend) {

1276 unsigned int omsb;

1277 unsigned int partsCount, newPartsCount, precision;

1283

1284 assert(semantics == rhs.semantics);

1285

1286 precision = semantics->precision;

1287

1288

1289

1291

1292 if (newPartsCount > 4)

1293 fullSignificand = new integerPart[newPartsCount];

1294 else

1295 fullSignificand = scratch;

1296

1297 lhsSignificand = significandParts();

1298 partsCount = partCount();

1299

1301 rhs.significandParts(), partsCount, partsCount);

1302

1304 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;

1305 exponent += rhs.exponent;

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317 exponent += 2;

1318

1319 if (!ignoreAddend && addend.isNonZero()) {

1320

1321

1322

1323 Significand savedSignificand = significand;

1324 const fltSemantics *savedSemantics = semantics;

1327 unsigned int extendedPrecision;

1328

1329

1330 extendedPrecision = 2 * precision + 1;

1331 if (omsb != extendedPrecision - 1) {

1332 assert(extendedPrecision > omsb);

1334 (extendedPrecision - 1) - omsb);

1335 exponent -= (extendedPrecision - 1) - omsb;

1336 }

1337

1338

1339 extendedSemantics = *semantics;

1340 extendedSemantics.precision = extendedPrecision;

1341

1342 if (newPartsCount == 1)

1343 significand.part = fullSignificand[0];

1344 else

1345 significand.parts = fullSignificand;

1346 semantics = &extendedSemantics;

1347

1348

1349

1350

1351 IEEEFloat extendedAddend(addend);

1355 (void)status;

1356

1357

1358

1359

1360 lost_fraction = extendedAddend.shiftSignificandRight(1);

1362 "Lost precision while shifting addend for fused-multiply-add.");

1363

1364 lost_fraction = addOrSubtractSignificand(extendedAddend, false);

1365

1366

1367 if (newPartsCount == 1)

1368 fullSignificand[0] = significand.part;

1369 significand = savedSignificand;

1370 semantics = savedSemantics;

1371

1372 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;

1373 }

1374

1375

1376

1377

1378

1379 exponent -= precision + 1;

1380

1381

1382

1383

1384

1385

1386

1387

1388 if (omsb > precision) {

1389 unsigned int bits, significantParts;

1391

1392 bits = omsb - precision;

1394 lf = shiftRight(fullSignificand, significantParts, bits);

1396 exponent += bits;

1397 }

1398

1399 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);

1400

1401 if (newPartsCount > 4)

1402 delete [] fullSignificand;

1403

1404 return lost_fraction;

1405}

1406

1407lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) {

1408

1409

1410

1411

1412

1413 return multiplySignificand(rhs, IEEEFloat(*semantics), !semantics->hasZero);

1414}

1415

1416

1417lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) {

1418 unsigned int bit, i, partsCount;

1420 integerPart *lhsSignificand, *dividend, *divisor;

1423

1424 assert(semantics == rhs.semantics);

1425

1426 lhsSignificand = significandParts();

1427 rhsSignificand = rhs.significandParts();

1428 partsCount = partCount();

1429

1430 if (partsCount > 2)

1431 dividend = new integerPart[partsCount * 2];

1432 else

1433 dividend = scratch;

1434

1435 divisor = dividend + partsCount;

1436

1437

1438 for (i = 0; i < partsCount; i++) {

1439 dividend[i] = lhsSignificand[i];

1440 divisor[i] = rhsSignificand[i];

1441 lhsSignificand[i] = 0;

1442 }

1443

1444 exponent -= rhs.exponent;

1445

1446 unsigned int precision = semantics->precision;

1447

1448

1449 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;

1450 if (bit) {

1451 exponent += bit;

1453 }

1454

1455

1456 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;

1457 if (bit) {

1458 exponent -= bit;

1460 }

1461

1462

1463

1464

1466 exponent--;

1469 }

1470

1471

1472 for (bit = precision; bit; bit -= 1) {

1476 }

1477

1479 }

1480

1481

1483

1484 if (cmp > 0)

1486 else if (cmp == 0)

1490 else

1492

1493 if (partsCount > 2)

1494 delete [] dividend;

1495

1496 return lost_fraction;

1497}

1498

1499unsigned int IEEEFloat::significandMSB() const {

1500 return APInt::tcMSB(significandParts(), partCount());

1501}

1502

1503unsigned int IEEEFloat::significandLSB() const {

1504 return APInt::tcLSB(significandParts(), partCount());

1505}

1506

1507

1508lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) {

1509

1511

1512 exponent += bits;

1513

1514 return shiftRight(significandParts(), partCount(), bits);

1515}

1516

1517

1518void IEEEFloat::shiftSignificandLeft(unsigned int bits) {

1519 assert(bits < semantics->precision ||

1520 (semantics->precision == 1 && bits <= 1));

1521

1522 if (bits) {

1523 unsigned int partsCount = partCount();

1524

1526 exponent -= bits;

1527

1529 }

1530}

1531

1534

1535 assert(semantics == rhs.semantics);

1538

1539 compare = exponent - rhs.exponent;

1540

1541

1542

1545 partCount());

1546

1551 else

1553}

1554

1555

1556

1558 unsigned bits) {

1559 unsigned i = 0;

1563 }

1564

1565 if (bits)

1567

1568 while (i < parts)

1569 dst[i++] = 0;

1570}

1571

1572

1573

1576

1583 else

1586 }

1587 }

1588

1589

1597

1599}

1600

1601

1602

1603

1604

1605

1606bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode,

1608 unsigned int bit) const {

1609

1611

1612

1614

1615 switch (rounding_mode) {

1618

1621 return true;

1622

1623

1626

1627 return false;

1628

1630 return false;

1631

1633 return !sign;

1634

1636 return sign;

1637

1638 default:

1639 break;

1640 }

1642}

1643

1646 unsigned int omsb;

1647 int exponentChange;

1648

1650 return opOK;

1651

1652

1653 omsb = significandMSB() + 1;

1654

1655 if (omsb) {

1656

1657

1658

1659 exponentChange = omsb - semantics->precision;

1660

1661

1662

1663 if (exponent + exponentChange > semantics->maxExponent)

1664 return handleOverflow(rounding_mode);

1665

1666

1667

1668 if (exponent + exponentChange < semantics->minExponent)

1669 exponentChange = semantics->minExponent - exponent;

1670

1671

1672 if (exponentChange < 0) {

1674

1675 shiftSignificandLeft(-exponentChange);

1676

1677 return opOK;

1678 }

1679

1680 if (exponentChange > 0) {

1682

1683

1684 lf = shiftSignificandRight(exponentChange);

1685

1687

1688

1689 if (omsb > (unsigned) exponentChange)

1690 omsb -= exponentChange;

1691 else

1692 omsb = 0;

1693 }

1694 }

1695

1696

1697

1700 exponent == semantics->maxExponent && isSignificandAllOnes())

1701 return handleOverflow(rounding_mode);

1702

1703

1704

1705

1706

1707

1709

1710 if (omsb == 0) {

1713 sign = false;

1714 if (!semantics->hasZero)

1716 }

1717

1718 return opOK;

1719 }

1720

1721

1722 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {

1723 if (omsb == 0)

1725

1726 incrementSignificand();

1727 omsb = significandMSB() + 1;

1728

1729

1730 if (omsb == (unsigned) semantics->precision + 1) {

1731

1732

1733

1735

1736

1737

1738

1740

1741 shiftSignificandRight(1);

1742

1744 }

1745

1746

1747

1750 exponent == semantics->maxExponent && isSignificandAllOnes())

1751 return handleOverflow(rounding_mode);

1752 }

1753

1754

1755

1756 if (omsb == semantics->precision)

1758

1759

1760 assert(omsb < semantics->precision);

1761

1762

1763 if (omsb == 0) {

1766 sign = false;

1767

1768

1769

1770 if (!semantics->hasZero)

1772 }

1773

1774

1776}

1777

1778APFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs,

1779 bool subtract) {

1781 default:

1783

1787 assign(rhs);

1788 [[fallthrough]];

1796 }

1798

1802 return opOK;

1803

1808 return opOK;

1809

1811 assign(rhs);

1813 return opOK;

1814

1816

1817 return opOK;

1818

1820

1821

1822 if (((sign ^ rhs.sign)!=0) != subtract) {

1825 }

1826

1827 return opOK;

1828

1831 }

1832}

1833

1834

1835lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs,

1836 bool subtract) {

1839 int bits;

1840

1841

1842

1843 subtract ^= static_cast<bool>(sign ^ rhs.sign);

1844

1845

1846 bits = exponent - rhs.exponent;

1847

1848

1852 "This floating point format does not support signed values");

1853

1855

1856 if (bits == 0)

1858 else if (bits > 0) {

1859 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);

1860 shiftSignificandLeft(1);

1861 } else {

1862 lost_fraction = shiftSignificandRight(-bits - 1);

1863 temp_rhs.shiftSignificandLeft(1);

1864 }

1865

1866

1868 carry = temp_rhs.subtractSignificand

1870 copySignificand(temp_rhs);

1871 sign = !sign;

1872 } else {

1873 carry = subtractSignificand

1875 }

1876

1877

1878

1883

1884

1885

1887 (void)carry;

1888 } else {

1889 if (bits > 0) {

1891

1892 lost_fraction = temp_rhs.shiftSignificandRight(bits);

1893 carry = addSignificand(temp_rhs);

1894 } else {

1895 lost_fraction = shiftSignificandRight(-bits);

1896 carry = addSignificand(rhs);

1897 }

1898

1899

1901 (void)carry;

1902 }

1903

1904 return lost_fraction;

1905}

1906

1907APFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) {

1909 default:

1911

1915 assign(rhs);

1916 sign = false;

1917 [[fallthrough]];

1922 sign ^= rhs.sign;

1926 }

1928

1933 return opOK;

1934

1939 return opOK;

1940

1945

1947 return opOK;

1948 }

1949}

1950

1951APFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) {

1953 default:

1955

1959 assign(rhs);

1960 sign = false;

1961 [[fallthrough]];

1966 sign ^= rhs.sign;

1970 }

1972

1977 return opOK;

1978

1981 return opOK;

1982

1986 else

1989

1994

1996 return opOK;

1997 }

1998}

1999

2002 default:

2004

2008 assign(rhs);

2009 [[fallthrough]];

2017 }

2019

2023 return opOK;

2024

2032

2034 return opOK;

2035 }

2036}

2037

2038APFloat::opStatus IEEEFloat::remainderSpecials(const IEEEFloat &rhs) {

2040 default:

2042

2046 assign(rhs);

2047 [[fallthrough]];

2055 }

2057

2061 return opOK;

2062

2070

2072 return opDivByZero;

2073 }

2074}

2075

2076

2078

2079

2082 return;

2083

2084 sign = !sign;

2085}

2086

2087

2090 bool subtract) {

2092

2093 fs = addOrSubtractSpecials(rhs, subtract);

2094

2095

2098

2099 lost_fraction = addOrSubtractSignificand(rhs, subtract);

2100 fs = normalize(rounding_mode, lost_fraction);

2101

2102

2104 }

2105

2106

2107

2108

2109 if (category == fcZero) {

2110 if (rhs.category != fcZero || (sign == rhs.sign) == subtract)

2112

2114 sign = false;

2115 }

2116

2117 return fs;

2118}

2119

2120

2123 return addOrSubtract(rhs, rounding_mode, false);

2124}

2125

2126

2129 return addOrSubtract(rhs, rounding_mode, true);

2130}

2131

2132

2136

2137 sign ^= rhs.sign;

2138 fs = multiplySpecials(rhs);

2139

2141 sign = false;

2143 lostFraction lost_fraction = multiplySignificand(rhs);

2144 fs = normalize(rounding_mode, lost_fraction);

2147 }

2148

2149 return fs;

2150}

2151

2152

2156

2157 sign ^= rhs.sign;

2158 fs = divideSpecials(rhs);

2159

2161 sign = false;

2163 lostFraction lost_fraction = divideSignificand(rhs);

2164 fs = normalize(rounding_mode, lost_fraction);

2167 }

2168

2169 return fs;

2170}

2171

2172

2175 unsigned int origSign = sign;

2176

2177

2178 fs = remainderSpecials(rhs);

2180 return fs;

2181

2183

2184

2185

2186

2187

2190 fs = mod(P2);

2192 }

2193

2194

2196 P.sign = false;

2197 sign = false;

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233 bool losesInfo;

2234 fltSemantics extendedSemantics = *semantics;

2237 extendedSemantics.precision += 2;

2238

2245

2246

2247

2250

2254

2255

2256

2257

2262

2267 }

2268 }

2269

2271 sign = origSign;

2273

2274 sign = false;

2275 }

2276

2277 else

2278 sign ^= origSign;

2279 return fs;

2280}

2281

2282

2285 fs = modSpecials(rhs);

2286 unsigned int origSign = sign;

2287

2290 int Exp = ilogb(*this) - ilogb(rhs);

2292

2293

2296 V.sign = sign;

2297

2299

2300

2301

2302

2303

2304

2305

2306

2307 if (!semantics->hasZero && this->isSmallest())

2308 break;

2309

2311 }

2313 sign = origSign;

2315 sign = false;

2316 }

2317 return fs;

2318}

2319

2320

2325

2326

2327 sign ^= multiplicand.sign;

2328

2329

2330

2335

2336 lost_fraction = multiplySignificand(multiplicand, addend);

2337 fs = normalize(rounding_mode, lost_fraction);

2340

2341

2342

2343

2344 if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign) {

2347 sign = false;

2348 }

2349 } else {

2350 fs = multiplySpecials(multiplicand);

2351

2352

2353

2354

2355

2356

2357

2358

2359 if (fs == opOK)

2360 fs = addOrSubtract(addend, rounding_mode, false);

2361 }

2362

2363 return fs;

2364}

2365

2366

2369

2371

2372

2373

2374

2375

2376

2377

2378 return opOK;

2379

2382

2383

2384

2385

2387

2388

2389

2390

2391

2393 } else {

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403 return opOK;

2404 }

2405 }

2406

2408

2409

2410

2411

2412 return opOK;

2413 }

2414

2415

2416

2417

2419 return opOK;

2420

2421

2422

2423

2424

2425

2426

2428 1);

2430 IEEEFloat MagicConstant(*semantics);

2434 MagicConstant.sign = sign;

2435

2436

2437

2439

2440 fs = add(MagicConstant, rounding_mode);

2441

2442

2443

2444 subtract(MagicConstant, rounding_mode);

2445

2446

2449

2450 return fs;

2451}

2452

2453

2456

2457 assert(semantics == rhs.semantics);

2458

2460 default:

2462

2471

2475 if (sign)

2477 else

2479

2483 if (rhs.sign)

2485 else

2487

2489 if (sign == rhs.sign)

2491 else if (sign)

2493 else

2495

2498

2500 break;

2501 }

2502

2503

2504 if (sign != rhs.sign) {

2505 if (sign)

2507 else

2509 } else {

2510

2512

2513 if (sign) {

2518 }

2519 }

2520

2521 return result;

2522}

2523

2524

2525

2526

2527

2528

2529

2530

2533 bool *losesInfo) {

2535 unsigned int newPartCount, oldPartCount;

2537 int shift;

2538 const fltSemantics &fromSemantics = *semantics;

2540

2543 oldPartCount = partCount();

2545

2546 bool X86SpecialNan = false;

2549 (!(*significandParts() & 0x8000000000000000ULL) ||

2550 !(*significandParts() & 0x4000000000000000ULL))) {

2551

2552

2553 X86SpecialNan = true;

2554 }

2555

2556

2557

2558

2559

2560

2561

2562

2564 int omsb = significandMSB() + 1;

2565 int exponentChange = omsb - fromSemantics.precision;

2566 if (exponent + exponentChange < toSemantics.minExponent)

2567 exponentChange = toSemantics.minExponent - exponent;

2568 if (exponentChange < shift)

2569 exponentChange = shift;

2570 if (exponentChange < 0) {

2571 shift -= exponentChange;

2572 exponent += exponentChange;

2573 } else if (omsb <= -shift) {

2574 exponentChange = omsb + shift - 1;

2575 shift -= exponentChange;

2576 exponent += exponentChange;

2577 }

2578 }

2579

2580

2585

2586

2587 if (newPartCount > oldPartCount) {

2588

2590 newParts = new integerPart[newPartCount];

2593 APInt::tcAssign(newParts, significandParts(), oldPartCount);

2594 freeSignificand();

2595 significand.parts = newParts;

2596 } else if (newPartCount == 1 && oldPartCount != 1) {

2597

2600 newPart = significandParts()[0];

2601 freeSignificand();

2602 significand.part = newPart;

2603 }

2604

2605

2606 semantics = &toSemantics;

2607

2608

2609

2612

2614 fs = normalize(rounding_mode, lostFraction);

2615 *losesInfo = (fs != opOK);

2616 } else if (category == fcNaN) {

2618 *losesInfo =

2622 }

2623

2624

2625

2629

2631

2632

2633

2636

2637

2638

2639

2640 if (is_signaling) {

2643 } else {

2645 }

2646 } else if (category == fcInfinity &&

2649 *losesInfo = true;

2651 } else if (category == fcZero &&

2653

2654 *losesInfo =

2657

2658 sign = false;

2659 } else {

2660 *losesInfo = false;

2662 }

2663

2666 return fs;

2667}

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2681 roundingMode rounding_mode, bool *isExact) const {

2684 unsigned int dstPartsCount, truncatedBits;

2685

2686 *isExact = false;

2687

2688

2691

2693 assert(dstPartsCount <= parts.size() && "Integer too big");

2694

2695 if (category == fcZero) {

2697

2698 *isExact = !sign;

2699 return opOK;

2700 }

2701

2702 src = significandParts();

2703

2704

2705

2706 if (exponent < 0) {

2707

2709

2710

2711 truncatedBits = semantics->precision -1U - exponent;

2712 } else {

2713

2714

2715 unsigned int bits = exponent + 1U;

2716

2717

2718 if (bits > width)

2720

2721 if (bits < semantics->precision) {

2722

2723 truncatedBits = semantics->precision - bits;

2725 } else {

2726

2728 0);

2731 truncatedBits = 0;

2732 }

2733 }

2734

2735

2736

2737 if (truncatedBits) {

2739 truncatedBits);

2741 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {

2744 }

2745 } else {

2747 }

2748

2749

2750 unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1;

2751

2752 if (sign) {

2754

2755 if (omsb != 0)

2757 } else {

2758

2759

2760

2761 if (omsb == width &&

2764

2765

2766 if (omsb > width)

2768 }

2769

2771 } else {

2772 if (omsb >= width + isSigned)

2774 }

2775

2777 *isExact = true;

2778 return opOK;

2779 } else

2781}

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2794 unsigned int width, bool isSigned,

2795 roundingMode rounding_mode, bool *isExact) const {

2797

2798 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,

2799 isExact);

2800

2802 unsigned int bits, dstPartsCount;

2803

2805 assert(dstPartsCount <= parts.size() && "Integer too big");

2806

2807 if (category == fcNaN)

2808 bits = 0;

2809 else if (sign)

2811 else

2813

2817 }

2818

2819 return fs;

2820}

2821

2822

2823

2824

2827 unsigned int omsb, precision, dstCount;

2830

2833 dst = significandParts();

2834 dstCount = partCount();

2835 precision = semantics->precision;

2836

2837

2838

2839 if (precision <= omsb) {

2840 exponent = omsb - 1;

2842 omsb - precision);

2843 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);

2844 } else {

2845 exponent = precision - 1;

2848 }

2849

2850 return normalize(rounding_mode, lost_fraction);

2851}

2852

2855 unsigned int partCount = Val.getNumWords();

2856 APInt api = Val;

2857

2858 sign = false;

2860 sign = true;

2861 api = -api;

2862 }

2863

2864 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);

2865}

2866

2867

2868

2869

2872 unsigned int srcCount, bool isSigned,

2875

2879

2880

2881 sign = true;

2885 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);

2886 delete [] copy;

2887 } else {

2888 sign = false;

2889 status = convertFromUnsignedParts(src, srcCount, rounding_mode);

2890 }

2891

2892 return status;

2893}

2894

2895

2898 unsigned int width, bool isSigned,

2902

2903 sign = false;

2905 sign = true;

2906 api = -api;

2907 }

2908

2909 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);

2910}

2911

2913IEEEFloat::convertFromHexadecimalString(StringRef s,

2916

2918 zeroSignificand();

2919 exponent = 0;

2920

2921 integerPart *significand = significandParts();

2922 unsigned partsCount = partCount();

2924 bool computedTrailingFraction = false;

2925

2926

2931 if (!PtrOrErr)

2932 return PtrOrErr.takeError();

2935

2936 while (p != end) {

2938

2939 if (*p == '.') {

2940 if (dot != end)

2941 return createError("String contains multiple dots");

2942 dot = p++;

2943 continue;

2944 }

2945

2946 hex_value = hexDigitValue(*p);

2947 if (hex_value == UINT_MAX)

2948 break;

2949

2950 p++;

2951

2952

2953 if (bitPos) {

2954 bitPos -= 4;

2957 } else if (!computedTrailingFraction) {

2959 if (!FractOrErr)

2960 return FractOrErr.takeError();

2961 lost_fraction = *FractOrErr;

2962 computedTrailingFraction = true;

2963 }

2964 }

2965

2966

2967 if (p == end)

2968 return createError("Hex strings require an exponent");

2969 if (*p != 'p' && *p != 'P')

2970 return createError("Invalid character in significand");

2971 if (p == begin)

2972 return createError("Significand has no digits");

2973 if (dot != end && p - begin == 1)

2974 return createError("Significand has no digits");

2975

2976

2977 if (p != firstSignificantDigit) {

2978 int expAdjustment;

2979

2980

2981 if (dot == end)

2983

2984

2985

2986 expAdjustment = static_cast<int>(dot - firstSignificantDigit);

2987 if (expAdjustment < 0)

2988 expAdjustment++;

2989 expAdjustment = expAdjustment * 4 - 1;

2990

2991

2992

2993 expAdjustment += semantics->precision;

2995

2996

2997 auto ExpOrErr = totalExponent(p + 1, end, expAdjustment);

2998 if (!ExpOrErr)

2999 return ExpOrErr.takeError();

3000 exponent = *ExpOrErr;

3001 }

3002

3003 return normalize(rounding_mode, lost_fraction);

3004}

3005

3007IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts,

3008 unsigned sigPartCount, int exp,

3010 unsigned int parts, pow5PartCount;

3011 fltSemantics calcSemantics = { 32767, -32767, 0, 0 };

3013 bool isNearest;

3014

3017

3019

3020

3021 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);

3022

3023 for (;; parts *= 2) {

3024 opStatus sigStatus, powStatus;

3025 unsigned int excessPrecision, truncatedBits;

3026

3029 truncatedBits = excessPrecision;

3030

3032 decSig.makeZero(sign);

3034

3035 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,

3037 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,

3039

3040 decSig.exponent += exp;

3041

3044 unsigned int powHUerr;

3045

3046 if (exp >= 0) {

3047

3048 calcLostFraction = decSig.multiplySignificand(pow5);

3049 powHUerr = powStatus != opOK;

3050 } else {

3051 calcLostFraction = decSig.divideSignificand(pow5);

3052

3053 if (decSig.exponent < semantics->minExponent) {

3054 excessPrecision += (semantics->minExponent - decSig.exponent);

3055 truncatedBits = excessPrecision;

3056 if (excessPrecision > calcSemantics.precision)

3057 excessPrecision = calcSemantics.precision;

3058 }

3059

3060 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;

3061 }

3062

3063

3064

3066 (decSig.significandParts(), calcSemantics.precision - 1) == 1);

3067

3069 powHUerr);

3070 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),

3071 excessPrecision, isNearest);

3072

3073

3074 if (HUdistance >= HUerr) {

3075 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),

3076 calcSemantics.precision - excessPrecision,

3077 excessPrecision);

3078

3079

3080

3081 exponent = (decSig.exponent + semantics->precision

3082 - (calcSemantics.precision - excessPrecision));

3084 decSig.partCount(),

3085 truncatedBits);

3086 return normalize(rounding_mode, calcLostFraction);

3087 }

3088 }

3089}

3090

3095

3096

3099 return std::move(Err);

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125 if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {

3129 sign = false;

3130 if (!semantics->hasZero)

3132

3133

3134

3135 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {

3136 fs = handleOverflow(rounding_mode);

3137

3138

3139

3140

3141

3142 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||

3143 (D.normalizedExponent + 1) * 28738 <=

3145

3147 zeroSignificand();

3149

3150

3151 } else if ((D.normalizedExponent - 1) * 42039

3153

3154 fs = handleOverflow(rounding_mode);

3155 } else {

3157 unsigned int partCount;

3158

3159

3160

3161

3162

3163 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;

3165 decSignificand = new integerPart[partCount + 1];

3166 partCount = 0;

3167

3168

3169

3170

3171

3172 do {

3174

3175 val = 0;

3176 multiplier = 1;

3177

3178 do {

3179 if (*p == '.') {

3180 p++;

3181 if (p == str.end()) {

3182 break;

3183 }

3184 }

3186 if (decValue >= 10U) {

3187 delete[] decSignificand;

3188 return createError("Invalid character in significand");

3189 }

3190 multiplier *= 10;

3191 val = val * 10 + decValue;

3192

3193

3194 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);

3195

3196

3198 partCount, partCount + 1, false);

3199

3200

3201

3202 if (decSignificand[partCount])

3203 partCount++;

3204 } while (p <= D.lastSigDigit);

3205

3207 fs = roundSignificandWithExponent(decSignificand, partCount,

3208 D.exponent, rounding_mode);

3209

3210 delete [] decSignificand;

3211 }

3212

3213 return fs;

3214}

3215

3216bool IEEEFloat::convertFromStringSpecials(StringRef str) {

3217 const size_t MIN_NAME_SIZE = 3;

3218

3219 if (str.size() < MIN_NAME_SIZE)

3220 return false;

3221

3222 if (str == "inf" || str == "INFINITY" || str == "+Inf") {

3224 return true;

3225 }

3226

3227 bool IsNegative = str.front() == '-';

3228 if (IsNegative) {

3230 if (str.size() < MIN_NAME_SIZE)

3231 return false;

3232

3233 if (str == "inf" || str == "INFINITY" || str == "Inf") {

3235 return true;

3236 }

3237 }

3238

3239

3240 bool IsSignaling = str.front() == 's' || str.front() == 'S';

3241 if (IsSignaling) {

3243 if (str.size() < MIN_NAME_SIZE)

3244 return false;

3245 }

3246

3249

3250

3251 if (str.empty()) {

3252 makeNaN(IsSignaling, IsNegative);

3253 return true;

3254 }

3255

3256

3257 if (str.front() == '(') {

3258

3259 if (str.size() <= 2 || str.back() != ')')

3260 return false;

3261

3262 str = str.slice(1, str.size() - 1);

3263 }

3264

3265

3266 unsigned Radix = 10;

3267 if (str[0] == '0') {

3268 if (str.size() > 1 && tolower(str[1]) == 'x') {

3270 Radix = 16;

3271 } else

3272 Radix = 8;

3273 }

3274

3275

3278 makeNaN(IsSignaling, IsNegative, &Payload);

3279 return true;

3280 }

3281 }

3282

3283 return false;

3284}

3285

3288 if (str.empty())

3289 return createError("Invalid string length");

3290

3291

3292 if (convertFromStringSpecials(str))

3293 return opOK;

3294

3295

3297 size_t slen = str.size();

3298 sign = *p == '-' ? 1 : 0;

3301 "This floating point format does not support signed values");

3302

3303 if (*p == '-' || *p == '+') {

3304 p++;

3305 slen--;

3306 if (!slen)

3307 return createError("String has no digits");

3308 }

3309

3310 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {

3311 if (slen == 2)

3313 return convertFromHexadecimalString(StringRef(p + 2, slen - 2),

3314 rounding_mode);

3315 }

3316

3317 return convertFromDecimalString(StringRef(p, slen), rounding_mode);

3318}

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3345 bool upperCase,

3347 char *p;

3348

3349 p = dst;

3350 if (sign)

3351 *dst++ = '-';

3352

3353 switch (category) {

3357 break;

3358

3360 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);

3361 dst += sizeof NaNU - 1;

3362 break;

3363

3365 *dst++ = '0';

3366 *dst++ = upperCase ? 'X': 'x';

3367 *dst++ = '0';

3368 if (hexDigits > 1) {

3369 *dst++ = '.';

3370 memset (dst, '0', hexDigits - 1);

3371 dst += hexDigits - 1;

3372 }

3373 *dst++ = upperCase ? 'P': 'p';

3374 *dst++ = '0';

3375 break;

3376

3378 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);

3379 break;

3380 }

3381

3382 *dst = 0;

3383

3384 return static_cast<unsigned int>(dst - p);

3385}

3386

3387

3388

3389

3390

3391char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,

3392 bool upperCase,

3394 unsigned int count, valueBits, shift, partsCount, outputDigits;

3395 const char *hexDigitChars;

3397 char *p;

3398 bool roundUp;

3399

3400 *dst++ = '0';

3401 *dst++ = upperCase ? 'X': 'x';

3402

3403 roundUp = false;

3405

3406 significand = significandParts();

3407 partsCount = partCount();

3408

3409

3410

3411 valueBits = semantics->precision + 3;

3413

3414

3415

3416 outputDigits = (valueBits - significandLSB () + 3) / 4;

3417

3418

3419

3420

3421 if (hexDigits) {

3422 if (hexDigits < outputDigits) {

3423

3424

3425 unsigned int bits;

3427

3428 bits = valueBits - hexDigits * 4;

3430 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);

3431 }

3432 outputDigits = hexDigits;

3433 }

3434

3435

3436

3437

3438 p = ++dst;

3439

3441

3442 while (outputDigits && count) {

3444

3445

3446 if (--count == partsCount)

3447 part = 0;

3448 else

3449 part = significand[count] << shift;

3450

3451 if (count && shift)

3453

3454

3456

3457 if (curDigits > outputDigits)

3458 curDigits = outputDigits;

3459 dst += partAsHex (dst, part, curDigits, hexDigitChars);

3460 outputDigits -= curDigits;

3461 }

3462

3463 if (roundUp) {

3464 char *q = dst;

3465

3466

3467 do {

3468 q--;

3469 *q = hexDigitChars[hexDigitValue (*q) + 1];

3470 } while (*q == '0');

3472 } else {

3473

3474 memset (dst, '0', outputDigits);

3475 dst += outputDigits;

3476 }

3477

3478

3479

3480

3481 p[-1] = p[0];

3482 if (dst -1 == p)

3483 dst--;

3484 else

3485 p[0] = '.';

3486

3487

3488 *dst++ = upperCase ? 'P': 'p';

3489

3491}

3492

3496

3499

3500

3502 Arg.semantics->precision, Arg.exponent,

3504 Arg.significandParts(),

3505 Arg.significandParts() + Arg.partCount()));

3506}

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const {

3519 assert(partCount()==2);

3520

3521 uint64_t myexponent, mysignificand;

3522

3524 myexponent = exponent+16383;

3525 mysignificand = significandParts()[0];

3526 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))

3527 myexponent = 0;

3528 } else if (category==fcZero) {

3529 myexponent = 0;

3530 mysignificand = 0;

3532 myexponent = 0x7fff;

3533 mysignificand = 0x8000000000000000ULL;

3534 } else {

3535 assert(category == fcNaN && "Unknown category");

3536 myexponent = 0x7fff;

3537 mysignificand = significandParts()[0];

3538 }

3539

3541 words[0] = mysignificand;

3542 words[1] = ((uint64_t)(sign & 1) << 15) |

3543 (myexponent & 0x7fffLL);

3544 return APInt(80, words);

3545}

3546

3547APInt IEEEFloat::convertPPCDoubleDoubleLegacyAPFloatToAPInt() const {

3549 assert(partCount()==2);

3550

3553 bool losesInfo;

3554

3555

3556

3557

3558

3559

3560

3561 fltSemantics extendedSemantics = *semantics;

3564 fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);

3566 (void)fs;

3567

3571 (void)fs;

3572 words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();

3573

3574

3575

3576

3577

3578 if (u.isFiniteNonZero() && losesInfo) {

3581 (void)fs;

3582

3587 (void)fs;

3588 words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();

3589 } else {

3590 words[1] = 0;

3591 }

3592

3593 return APInt(128, words);

3594}

3595

3596template <const fltSemantics &S>

3597APInt IEEEFloat::convertIEEEFloatToAPInt() const {

3598 assert(semantics == &S);

3599 const int bias =

3600 (semantics == &semFloat8E8M0FNU) ? -S.minExponent : -(S.minExponent - 1);

3601 constexpr unsigned int trailing_significand_bits = S.precision - 1;

3602 constexpr int integer_bit_part = trailing_significand_bits / integerPartWidth;

3605 constexpr uint64_t significand_mask = integer_bit - 1;

3606 constexpr unsigned int exponent_bits =

3607 trailing_significand_bits ? (S.sizeInBits - 1 - trailing_significand_bits)

3608 : S.sizeInBits;

3609 static_assert(exponent_bits < 64);

3610 constexpr uint64_t exponent_mask = (uint64_t{1} << exponent_bits) - 1;

3611

3614 mysignificand;

3615

3617 myexponent = exponent + bias;

3618 std::copy_n(significandParts(), mysignificand.size(),

3619 mysignificand.begin());

3620 if (myexponent == 1 &&

3621 !(significandParts()[integer_bit_part] & integer_bit))

3622 myexponent = 0;

3623 } else if (category == fcZero) {

3624 if (!S.hasZero)

3626 myexponent = ::exponentZero(S) + bias;

3627 mysignificand.fill(0);

3628 } else if (category == fcInfinity) {

3632 myexponent = ::exponentInf(S) + bias;

3633 mysignificand.fill(0);

3634 } else {

3635 assert(category == fcNaN && "Unknown category!");

3638 myexponent = ::exponentNaN(S) + bias;

3639 std::copy_n(significandParts(), mysignificand.size(),

3640 mysignificand.begin());

3641 }

3642 std::array<uint64_t, (S.sizeInBits + 63) / 64> words;

3643 auto words_iter =

3644 std::copy_n(mysignificand.begin(), mysignificand.size(), words.begin());

3645 if constexpr (significand_mask != 0 || trailing_significand_bits == 0) {

3646

3647 words[mysignificand.size() - 1] &= significand_mask;

3648 }

3649 std::fill(words_iter, words.end(), uint64_t{0});

3650 constexpr size_t last_word = words.size() - 1;

3652 << ((S.sizeInBits - 1) % 64);

3653 words[last_word] |= shifted_sign;

3654 uint64_t shifted_exponent = (myexponent & exponent_mask)

3655 << (trailing_significand_bits % 64);

3656 words[last_word] |= shifted_exponent;

3657 if constexpr (last_word == 0) {

3658 return APInt(S.sizeInBits, words[0]);

3659 }

3660 return APInt(S.sizeInBits, words);

3661}

3662

3663APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const {

3664 assert(partCount() == 2);

3665 return convertIEEEFloatToAPInt();

3666}

3667

3668APInt IEEEFloat::convertDoubleAPFloatToAPInt() const {

3669 assert(partCount()==1);

3670 return convertIEEEFloatToAPInt();

3671}

3672

3673APInt IEEEFloat::convertFloatAPFloatToAPInt() const {

3674 assert(partCount()==1);

3675 return convertIEEEFloatToAPInt();

3676}

3677

3678APInt IEEEFloat::convertBFloatAPFloatToAPInt() const {

3679 assert(partCount() == 1);

3680 return convertIEEEFloatToAPInt();

3681}

3682

3683APInt IEEEFloat::convertHalfAPFloatToAPInt() const {

3684 assert(partCount()==1);

3685 return convertIEEEFloatToAPInt();

3686}

3687

3688APInt IEEEFloat::convertFloat8E5M2APFloatToAPInt() const {

3689 assert(partCount() == 1);

3690 return convertIEEEFloatToAPInt();

3691}

3692

3693APInt IEEEFloat::convertFloat8E5M2FNUZAPFloatToAPInt() const {

3694 assert(partCount() == 1);

3695 return convertIEEEFloatToAPInt();

3696}

3697

3698APInt IEEEFloat::convertFloat8E4M3APFloatToAPInt() const {

3699 assert(partCount() == 1);

3700 return convertIEEEFloatToAPInt();

3701}

3702

3703APInt IEEEFloat::convertFloat8E4M3FNAPFloatToAPInt() const {

3704 assert(partCount() == 1);

3705 return convertIEEEFloatToAPInt();

3706}

3707

3708APInt IEEEFloat::convertFloat8E4M3FNUZAPFloatToAPInt() const {

3709 assert(partCount() == 1);

3710 return convertIEEEFloatToAPInt();

3711}

3712

3713APInt IEEEFloat::convertFloat8E4M3B11FNUZAPFloatToAPInt() const {

3714 assert(partCount() == 1);

3715 return convertIEEEFloatToAPInt();

3716}

3717

3718APInt IEEEFloat::convertFloat8E3M4APFloatToAPInt() const {

3719 assert(partCount() == 1);

3720 return convertIEEEFloatToAPInt();

3721}

3722

3723APInt IEEEFloat::convertFloatTF32APFloatToAPInt() const {

3724 assert(partCount() == 1);

3725 return convertIEEEFloatToAPInt();

3726}

3727

3728APInt IEEEFloat::convertFloat8E8M0FNUAPFloatToAPInt() const {

3729 assert(partCount() == 1);

3730 return convertIEEEFloatToAPInt();

3731}

3732

3733APInt IEEEFloat::convertFloat6E3M2FNAPFloatToAPInt() const {

3734 assert(partCount() == 1);

3735 return convertIEEEFloatToAPInt();

3736}

3737

3738APInt IEEEFloat::convertFloat6E2M3FNAPFloatToAPInt() const {

3739 assert(partCount() == 1);

3740 return convertIEEEFloatToAPInt();

3741}

3742

3743APInt IEEEFloat::convertFloat4E2M1FNAPFloatToAPInt() const {

3744 assert(partCount() == 1);

3745 return convertIEEEFloatToAPInt();

3746}

3747

3748

3749

3750

3751

3754 return convertHalfAPFloatToAPInt();

3755

3757 return convertBFloatAPFloatToAPInt();

3758

3760 return convertFloatAPFloatToAPInt();

3761

3763 return convertDoubleAPFloatToAPInt();

3764

3766 return convertQuadrupleAPFloatToAPInt();

3767

3769 return convertPPCDoubleDoubleLegacyAPFloatToAPInt();

3770

3772 return convertFloat8E5M2APFloatToAPInt();

3773

3775 return convertFloat8E5M2FNUZAPFloatToAPInt();

3776

3778 return convertFloat8E4M3APFloatToAPInt();

3779

3781 return convertFloat8E4M3FNAPFloatToAPInt();

3782

3784 return convertFloat8E4M3FNUZAPFloatToAPInt();

3785

3787 return convertFloat8E4M3B11FNUZAPFloatToAPInt();

3788

3790 return convertFloat8E3M4APFloatToAPInt();

3791

3793 return convertFloatTF32APFloatToAPInt();

3794

3796 return convertFloat8E8M0FNUAPFloatToAPInt();

3797

3799 return convertFloat6E3M2FNAPFloatToAPInt();

3800

3802 return convertFloat6E2M3FNAPFloatToAPInt();

3803

3805 return convertFloat4E2M1FNAPFloatToAPInt();

3806

3808 "unknown format!");

3809 return convertF80LongDoubleAPFloatToAPInt();

3810}

3811

3814 "Float semantics are not IEEEsingle");

3817}

3818

3821 "Float semantics are not IEEEdouble");

3824}

3825

3826#ifdef HAS_IEE754_FLOAT128

3827float128 IEEEFloat::convertToQuad() const {

3829 "Float semantics are not IEEEquads");

3831 return api.bitsToQuad();

3832}

3833#endif

3834

3835

3836

3837

3838

3839

3840

3841

3842void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) {

3845 uint64_t myexponent = (i2 & 0x7fff);

3846 uint64_t mysignificand = i1;

3847 uint8_t myintegerbit = mysignificand >> 63;

3848

3850 assert(partCount()==2);

3851

3852 sign = static_cast<unsigned int>(i2>>15);

3853 if (myexponent == 0 && mysignificand == 0) {

3855 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {

3857 } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) ||

3858 (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) {

3859 category = fcNaN;

3860 exponent = exponentNaN();

3861 significandParts()[0] = mysignificand;

3862 significandParts()[1] = 0;

3863 } else {

3865 exponent = myexponent - 16383;

3866 significandParts()[0] = mysignificand;

3867 significandParts()[1] = 0;

3868 if (myexponent==0)

3869 exponent = -16382;

3870 }

3871}

3872

3873void IEEEFloat::initFromPPCDoubleDoubleLegacyAPInt(const APInt &api) {

3877 bool losesInfo;

3878

3879

3880 initFromDoubleAPInt(APInt(64, i1));

3883 (void)fs;

3884

3885

3890 (void)fs;

3891

3893 }

3894}

3895

3896

3897

3898

3899

3900

3901void IEEEFloat::initFromFloat8E8M0FNUAPInt(const APInt &api) {

3902 const uint64_t exponent_mask = 0xff;

3904 uint64_t myexponent = (val & exponent_mask);

3905

3907 assert(partCount() == 1);

3908

3909

3910 sign = 0;

3911

3912

3913

3914

3916 significandParts()[0] = mysignificand;

3917

3918

3919

3920 if (val == exponent_mask) {

3921 category = fcNaN;

3922 exponent = exponentNaN();

3923 return;

3924 }

3925

3927 exponent = myexponent - 127;

3928}

3929template <const fltSemantics &S>

3930void IEEEFloat::initFromIEEEAPInt(const APInt &api) {

3934 constexpr uint64_t significand_mask = integer_bit - 1;

3935 constexpr unsigned int trailing_significand_bits = S.precision - 1;

3936 constexpr unsigned int stored_significand_parts =

3938 constexpr unsigned int exponent_bits =

3939 S.sizeInBits - 1 - trailing_significand_bits;

3940 static_assert(exponent_bits < 64);

3941 constexpr uint64_t exponent_mask = (uint64_t{1} << exponent_bits) - 1;

3942 constexpr int bias = -(S.minExponent - 1);

3943

3944

3945

3946 std::array<integerPart, stored_significand_parts> mysignificand;

3947 std::copy_n(api.getRawData(), mysignificand.size(), mysignificand.begin());

3948 if constexpr (significand_mask != 0) {

3949 mysignificand[mysignificand.size() - 1] &= significand_mask;

3950 }

3951

3952

3953

3956 (last_word >> (trailing_significand_bits % 64)) & exponent_mask;

3957

3958 initialize(&S);

3959 assert(partCount() == mysignificand.size());

3960

3961 sign = static_cast<unsigned int>(last_word >> ((S.sizeInBits - 1) % 64));

3962

3963 bool all_zero_significand =

3965

3966 bool is_zero = myexponent == 0 && all_zero_significand;

3967

3969 if (myexponent - bias == ::exponentInf(S) && all_zero_significand) {

3971 return;

3972 }

3973 }

3974

3975 bool is_nan = false;

3976

3978 is_nan = myexponent - bias == ::exponentNaN(S) && !all_zero_significand;

3980 bool all_ones_significand =

3981 std::all_of(mysignificand.begin(), mysignificand.end() - 1,

3982 [](integerPart bits) { return bits == ~integerPart{0}; }) &&

3983 (!significand_mask ||

3984 mysignificand[mysignificand.size() - 1] == significand_mask);

3985 is_nan = myexponent - bias == ::exponentNaN(S) && all_ones_significand;

3988 }

3989

3991 category = fcNaN;

3993 std::copy_n(mysignificand.begin(), mysignificand.size(),

3994 significandParts());

3995 return;

3996 }

3997

3999 makeZero(sign);

4000 return;

4001 }

4002

4004 exponent = myexponent - bias;

4005 std::copy_n(mysignificand.begin(), mysignificand.size(), significandParts());

4006 if (myexponent == 0)

4007 exponent = S.minExponent;

4008 else

4009 significandParts()[mysignificand.size()-1] |= integer_bit;

4010}

4011

4012void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) {

4013 initFromIEEEAPInt(api);

4014}

4015

4016void IEEEFloat::initFromDoubleAPInt(const APInt &api) {

4017 initFromIEEEAPInt(api);

4018}

4019

4020void IEEEFloat::initFromFloatAPInt(const APInt &api) {

4021 initFromIEEEAPInt(api);

4022}

4023

4024void IEEEFloat::initFromBFloatAPInt(const APInt &api) {

4025 initFromIEEEAPInt(api);

4026}

4027

4028void IEEEFloat::initFromHalfAPInt(const APInt &api) {

4029 initFromIEEEAPInt(api);

4030}

4031

4032void IEEEFloat::initFromFloat8E5M2APInt(const APInt &api) {

4033 initFromIEEEAPInt(api);

4034}

4035

4036void IEEEFloat::initFromFloat8E5M2FNUZAPInt(const APInt &api) {

4037 initFromIEEEAPInt(api);

4038}

4039

4040void IEEEFloat::initFromFloat8E4M3APInt(const APInt &api) {

4041 initFromIEEEAPInt(api);

4042}

4043

4044void IEEEFloat::initFromFloat8E4M3FNAPInt(const APInt &api) {

4045 initFromIEEEAPInt(api);

4046}

4047

4048void IEEEFloat::initFromFloat8E4M3FNUZAPInt(const APInt &api) {

4049 initFromIEEEAPInt(api);

4050}

4051

4052void IEEEFloat::initFromFloat8E4M3B11FNUZAPInt(const APInt &api) {

4053 initFromIEEEAPInt(api);

4054}

4055

4056void IEEEFloat::initFromFloat8E3M4APInt(const APInt &api) {

4057 initFromIEEEAPInt(api);

4058}

4059

4060void IEEEFloat::initFromFloatTF32APInt(const APInt &api) {

4061 initFromIEEEAPInt(api);

4062}

4063

4064void IEEEFloat::initFromFloat6E3M2FNAPInt(const APInt &api) {

4065 initFromIEEEAPInt(api);

4066}

4067

4068void IEEEFloat::initFromFloat6E2M3FNAPInt(const APInt &api) {

4069 initFromIEEEAPInt(api);

4070}

4071

4072void IEEEFloat::initFromFloat4E2M1FNAPInt(const APInt &api) {

4073 initFromIEEEAPInt(api);

4074}

4075

4076

4077void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) {

4080 return initFromHalfAPInt(api);

4082 return initFromBFloatAPInt(api);

4084 return initFromFloatAPInt(api);

4086 return initFromDoubleAPInt(api);

4088 return initFromF80LongDoubleAPInt(api);

4090 return initFromQuadrupleAPInt(api);

4092 return initFromPPCDoubleDoubleLegacyAPInt(api);

4094 return initFromFloat8E5M2APInt(api);

4096 return initFromFloat8E5M2FNUZAPInt(api);

4098 return initFromFloat8E4M3APInt(api);

4100 return initFromFloat8E4M3FNAPInt(api);

4102 return initFromFloat8E4M3FNUZAPInt(api);

4104 return initFromFloat8E4M3B11FNUZAPInt(api);

4106 return initFromFloat8E3M4APInt(api);

4108 return initFromFloatTF32APInt(api);

4110 return initFromFloat8E8M0FNUAPInt(api);

4112 return initFromFloat6E3M2FNAPInt(api);

4114 return initFromFloat6E2M3FNAPInt(api);

4116 return initFromFloat4E2M1FNAPInt(api);

4117

4119}

4120

4121

4122

4123void IEEEFloat::makeLargest(bool Negative) {

4124 if (Negative && !semantics->hasSignedRepr)

4126 "This floating point format does not support signed values");

4127

4128

4129

4130

4132 sign = Negative;

4133 exponent = semantics->maxExponent;

4134

4135

4136 integerPart *significand = significandParts();

4137 unsigned PartCount = partCount();

4138 memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));

4139

4140

4141

4142 const unsigned NumUnusedHighBits =

4143 PartCount*integerPartWidth - semantics->precision;

4144 significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth)

4145 ? (~integerPart(0) >> NumUnusedHighBits)

4146 : 0;

4149 (semantics->precision > 1))

4151}

4152

4153

4154

4155void IEEEFloat::makeSmallest(bool Negative) {

4156 if (Negative && !semantics->hasSignedRepr)

4158 "This floating point format does not support signed values");

4159

4160

4161

4162

4164 sign = Negative;

4165 exponent = semantics->minExponent;

4166 APInt::tcSet(significandParts(), 1, partCount());

4167}

4168

4169void IEEEFloat::makeSmallestNormalized(bool Negative) {

4170 if (Negative && !semantics->hasSignedRepr)

4172 "This floating point format does not support signed values");

4173

4174

4175

4176

4177

4179 zeroSignificand();

4180 sign = Negative;

4181 exponent = semantics->minExponent;

4182 APInt::tcSetBit(significandParts(), semantics->precision - 1);

4183}

4184

4186 initFromAPInt(&Sem, API);

4187}

4188

4189IEEEFloat::IEEEFloat(float f) {

4191}

4192

4193IEEEFloat::IEEEFloat(double d) {

4195}

4196

4197namespace {

4199 Buffer.append(Str.begin(), Str.end());

4200 }

4201

4202

4203

4204 void AdjustToPrecision(APInt &significand,

4205 int &exp, unsigned FormatPrecision) {

4207

4208

4209 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;

4210

4211 if (bits <= bitsRequired) return;

4212

4213 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;

4214 if (!tensRemovable) return;

4215

4216 exp += tensRemovable;

4217

4220 while (true) {

4221 if (tensRemovable & 1)

4222 divisor *= powten;

4223 tensRemovable >>= 1;

4224 if (!tensRemovable) break;

4225 powten *= powten;

4226 }

4227

4228 significand = significand.udiv(divisor);

4229

4230

4232 }

4233

4234

4236 int &exp, unsigned FormatPrecision) {

4237 unsigned N = buffer.size();

4238 if (N <= FormatPrecision) return;

4239

4240

4241 unsigned FirstSignificant = N - FormatPrecision;

4242

4243

4244

4245

4246

4247

4248 if (buffer[FirstSignificant - 1] < '5') {

4249 while (FirstSignificant < N && buffer[FirstSignificant] == '0')

4250 FirstSignificant++;

4251

4252 exp += FirstSignificant;

4253 buffer.erase(&buffer[0], &buffer[FirstSignificant]);

4254 return;

4255 }

4256

4257

4258

4259 for (unsigned I = FirstSignificant; I != N; ++I) {

4260 if (buffer[I] == '9') {

4261 FirstSignificant++;

4262 } else {

4263 buffer[I]++;

4264 break;

4265 }

4266 }

4267

4268

4269 if (FirstSignificant == N) {

4270 exp += FirstSignificant;

4273 return;

4274 }

4275

4276 exp += FirstSignificant;

4277 buffer.erase(&buffer[0], &buffer[FirstSignificant]);

4278 }

4279

4281 APInt significand, unsigned FormatPrecision,

4282 unsigned FormatMaxPadding, bool TruncateZero) {

4283 const int semanticsPrecision = significand.getBitWidth();

4284

4286 Str.push_back('-');

4287

4288

4289

4290 if (!FormatPrecision) {

4291

4292

4293

4294

4295

4296

4297

4298 FormatPrecision = 2 + semanticsPrecision * 59 / 196;

4299 }

4300

4301

4302 int trailingZeros = significand.countr_zero();

4303 exp += trailingZeros;

4305

4306

4307 if (exp == 0) {

4308

4309 } else if (exp > 0) {

4310

4311 significand = significand.zext(semanticsPrecision + exp);

4312 significand <<= exp;

4313 exp = 0;

4314 } else {

4315 int texp = -exp;

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326 unsigned precision = semanticsPrecision + (137 * texp + 136) / 59;

4327

4328

4329

4330 significand = significand.zext(precision);

4331 APInt five_to_the_i(precision, 5);

4332 while (true) {

4333 if (texp & 1)

4334 significand *= five_to_the_i;

4335

4336 texp >>= 1;

4337 if (!texp)

4338 break;

4339 five_to_the_i *= five_to_the_i;

4340 }

4341 }

4342

4343 AdjustToPrecision(significand, exp, FormatPrecision);

4344

4346

4347

4348 unsigned precision = significand.getBitWidth();

4349 if (precision < 4) {

4350

4351 precision = 4;

4352 significand = significand.zext(precision);

4353 }

4354 APInt ten(precision, 10);

4355 APInt digit(precision, 0);

4356

4357 bool inTrail = true;

4358 while (significand != 0) {

4359

4360

4361 APInt::udivrem(significand, ten, significand, digit);

4362

4363 unsigned d = digit.getZExtValue();

4364

4365

4366 if (inTrail && !d)

4367 exp++;

4368 else {

4369 buffer.push_back((char) ('0' + d));

4370 inTrail = false;

4371 }

4372 }

4373

4374 assert(!buffer.empty() && "no characters in buffer!");

4375

4376

4377

4378 AdjustToPrecision(buffer, exp, FormatPrecision);

4379

4380 unsigned NDigits = buffer.size();

4381

4382

4383 bool FormatScientific;

4384 if (!FormatMaxPadding)

4385 FormatScientific = true;

4386 else {

4387 if (exp >= 0) {

4388

4389

4390

4391 FormatScientific = ((unsigned) exp > FormatMaxPadding ||

4392 NDigits + (unsigned) exp > FormatPrecision);

4393 } else {

4394

4395 int MSD = exp + (int) (NDigits - 1);

4396 if (MSD >= 0) {

4397

4398 FormatScientific = false;

4399 } else {

4400

4401

4402 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;

4403 }

4404 }

4405 }

4406

4407

4408 if (FormatScientific) {

4409 exp += (NDigits - 1);

4410

4411 Str.push_back(buffer[NDigits-1]);

4412 Str.push_back('.');

4413 if (NDigits == 1 && TruncateZero)

4414 Str.push_back('0');

4415 else

4416 for (unsigned I = 1; I != NDigits; ++I)

4417 Str.push_back(buffer[NDigits-1-I]);

4418

4419 if (!TruncateZero && FormatPrecision > NDigits - 1)

4420 Str.append(FormatPrecision - NDigits + 1, '0');

4421

4422 Str.push_back(TruncateZero ? 'E' : 'e');

4423

4424 Str.push_back(exp >= 0 ? '+' : '-');

4425 if (exp < 0)

4426 exp = -exp;

4428 do {

4429 expbuf.push_back((char) ('0' + (exp % 10)));

4430 exp /= 10;

4431 } while (exp);

4432

4433 if (!TruncateZero && expbuf.size() < 2)

4435 for (unsigned I = 0, E = expbuf.size(); I != E; ++I)

4436 Str.push_back(expbuf[E-1-I]);

4437 return;

4438 }

4439

4440

4441 if (exp >= 0) {

4442 for (unsigned I = 0; I != NDigits; ++I)

4443 Str.push_back(buffer[NDigits-1-I]);

4444 for (unsigned I = 0; I != (unsigned) exp; ++I)

4445 Str.push_back('0');

4446 return;

4447 }

4448

4449

4450

4451

4452 int NWholeDigits = exp + (int) NDigits;

4453

4454 unsigned I = 0;

4455 if (NWholeDigits > 0) {

4456 for (; I != (unsigned) NWholeDigits; ++I)

4457 Str.push_back(buffer[NDigits-I-1]);

4458 Str.push_back('.');

4459 } else {

4460 unsigned NZeros = 1 + (unsigned) -NWholeDigits;

4461

4462 Str.push_back('0');

4463 Str.push_back('.');

4464 for (unsigned Z = 1; Z != NZeros; ++Z)

4465 Str.push_back('0');

4466 }

4467

4468 for (; I != NDigits; ++I)

4469 Str.push_back(buffer[NDigits-I-1]);

4470

4471 }

4472}

4473

4475 unsigned FormatMaxPadding, bool TruncateZero) const {

4476 switch (category) {

4477 case fcInfinity:

4478 if (isNegative())

4479 return append(Str, "-Inf");

4480 else

4481 return append(Str, "+Inf");

4482

4483 case fcNaN: return append(Str, "NaN");

4484

4486 if (isNegative())

4487 Str.push_back('-');

4488

4489 if (!FormatMaxPadding) {

4490 if (TruncateZero)

4491 append(Str, "0.0E+0");

4492 else {

4493 append(Str, "0.0");

4494 if (FormatPrecision > 1)

4495 Str.append(FormatPrecision - 1, '0');

4496 append(Str, "e+00");

4497 }

4498 } else

4499 Str.push_back('0');

4500 return;

4501

4503 break;

4504 }

4505

4506

4507 int exp = exponent - ((int) semantics->precision - 1);

4508 APInt significand(

4509 semantics->precision,

4511

4512 toStringImpl(Str, isNegative(), exp, significand, FormatPrecision,

4513 FormatMaxPadding, TruncateZero);

4514

4515}

4516

4517bool IEEEFloat::getExactInverse(APFloat *inv) const {

4518

4519 if (!isFiniteNonZero())

4520 return false;

4521

4522

4523

4524 if (significandLSB() != semantics->precision - 1)

4525 return false;

4526

4527

4528 IEEEFloat reciprocal(*semantics, 1ULL);

4529 if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)

4530 return false;

4531

4532

4533

4535 return false;

4536

4538 reciprocal.significandLSB() == reciprocal.semantics->precision - 1);

4539

4540 if (inv)

4541 *inv = APFloat(reciprocal, *semantics);

4542

4543 return true;

4544}

4545

4546int IEEEFloat::getExactLog2Abs() const {

4548 return INT_MIN;

4549

4550 const integerPart *Parts = significandParts();

4551 const int PartCount = partCountForBits(semantics->precision);

4552

4553 int PopCount = 0;

4554 for (int i = 0; i < PartCount; ++i) {

4556 if (PopCount > 1)

4557 return INT_MIN;

4558 }

4559

4560 if (exponent != semantics->minExponent)

4561 return exponent;

4562

4563 int CountrParts = 0;

4564 for (int i = 0; i < PartCount;

4566 if (Parts[i] != 0) {

4567 return exponent - semantics->precision + CountrParts +

4569 }

4570 }

4571

4573}

4574

4575bool IEEEFloat::isSignaling() const {

4576 if (!isNaN())

4577 return false;

4580 return false;

4581

4582

4583

4584 return APInt::tcExtractBit(significandParts(), semantics->precision - 2);

4585}

4586

4587

4588

4589

4590

4592

4593 if (nextDown)

4594 changeSign();

4595

4596

4598

4599

4600 switch (category) {

4601 case fcInfinity:

4602

4603 if (!isNegative())

4604 break;

4605

4606 makeLargest(true);

4607 break;

4608 case fcNaN:

4609

4610

4611

4612 if (isSignaling()) {

4613 result = opInvalidOp;

4614

4615 makeNaN(false, isNegative(), nullptr);

4616 }

4617 break;

4619

4620 makeSmallest(false);

4621 break;

4623

4624 if (isSmallest() && isNegative()) {

4625 APInt::tcSet(significandParts(), 0, partCount());

4627 exponent = 0;

4629 sign = false;

4630 if (!semantics->hasZero)

4631 makeSmallestNormalized(false);

4632 break;

4633 }

4634

4635 if (isLargest() && !isNegative()) {

4637

4638 makeNaN();

4639 break;

4640 } else if (semantics->nonFiniteBehavior ==

4642

4643 break;

4644 } else {

4645

4646 APInt::tcSet(significandParts(), 0, partCount());

4647 category = fcInfinity;

4648 exponent = semantics->maxExponent + 1;

4649 break;

4650 }

4651 }

4652

4653

4654 if (isNegative()) {

4655

4656

4657

4658

4659

4660

4661

4662 bool WillCrossBinadeBoundary =

4663 exponent != semantics->minExponent && isSignificandAllZeros();

4664

4665

4666

4667

4668

4669

4670

4671

4672

4673

4674

4675

4676

4677

4678 integerPart *Parts = significandParts();

4680

4681 if (WillCrossBinadeBoundary) {

4682

4683

4684

4686 exponent--;

4687 }

4688 } else {

4689

4690

4691

4692

4693

4694

4695

4696

4697

4698

4700 (!isDenormal() && isSignificandAllOnes());

4701

4702 if (WillCrossBinadeBoundary) {

4703 integerPart *Parts = significandParts();

4706 assert(exponent != semantics->maxExponent &&

4707 "We can not increment an exponent beyond the maxExponent allowed"

4708 " by the given floating point semantics.");

4709 exponent++;

4710 } else {

4711 incrementSignificand();

4712 }

4713 }

4714 break;

4715 }

4716

4717

4718 if (nextDown)

4719 changeSign();

4720

4721 return result;

4722}

4723

4725 return ::exponentNaN(*semantics);

4726}

4727

4729 return ::exponentInf(*semantics);

4730}

4731

4733 return ::exponentZero(*semantics);

4734}

4735

4736void IEEEFloat::makeInf(bool Negative) {

4738 llvm_unreachable("This floating point format does not support Inf");

4739

4741

4742 makeNaN(false, Negative);

4743 return;

4744 }

4745 category = fcInfinity;

4746 sign = Negative;

4748 APInt::tcSet(significandParts(), 0, partCount());

4749}

4750

4751void IEEEFloat::makeZero(bool Negative) {

4752 if (!semantics->hasZero)

4753 llvm_unreachable("This floating point format does not support Zero");

4754

4756 sign = Negative;

4758

4759 sign = false;

4760 }

4762 APInt::tcSet(significandParts(), 0, partCount());

4763}

4764

4765void IEEEFloat::makeQuiet() {

4768 APInt::tcSetBit(significandParts(), semantics->precision - 2);

4769}

4770

4772 if (Arg.isNaN())

4779 return Arg.exponent;

4780

4783

4784 Normalized.exponent += SignificandBits;

4786 return Normalized.exponent - SignificandBits;

4787}

4788

4790 auto MaxExp = X.getSemantics().maxExponent;

4791 auto MinExp = X.getSemantics().minExponent;

4792

4793

4794

4795

4796

4797

4798

4799 int SignificandBits = X.getSemantics().precision - 1;

4800 int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1;

4801

4802

4803 X.exponent += std::clamp(Exp, -MaxIncrement - 1, MaxIncrement);

4805 if (X.isNaN())

4806 X.makeQuiet();

4807 return X;

4808}

4809

4811 Exp = ilogb(Val);

4812

4813

4816 Quiet.makeQuiet();

4818 }

4819

4821 return Val;

4822

4823

4824

4826 return scalbn(Val, -Exp, RM);

4827}

4828

4830 : Semantics(&S),

4833}

4834

4836 : Semantics(&S),

4840}

4841

4846}

4847

4849 : Semantics(&S),

4854}

4855

4858 : Semantics(&S),

4859 Floats(new APFloat[2]{std::move(First), std::move(Second)}) {

4863}

4864

4866 : Semantics(RHS.Semantics),

4869 : nullptr) {

4871}

4872

4874 : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) {

4877}

4878

4880 if (Semantics == RHS.Semantics && RHS.Floats) {

4881 Floats[0] = RHS.Floats[0];

4882 Floats[1] = RHS.Floats[1];

4883 } else if (this != &RHS) {

4886 }

4887 return *this;

4888}

4889

4890

4891

4892

4901 Floats[0] = std::move(z);

4902 Floats[1].makeZero( false);

4904 }

4906 auto AComparedToC = a.compareAbsoluteValue(c);

4907 z = cc;

4910

4913 } else {

4914

4917 }

4919 Floats[0] = std::move(z);

4920 Floats[1].makeZero( false);

4922 }

4923 Floats[0] = z;

4927

4928 Floats[1] = a;

4929 Status |= Floats[1].subtract(z, RM);

4930 Status |= Floats[1].add(c, RM);

4931 Status |= Floats[1].add(zz, RM);

4932 } else {

4933

4934 Floats[1] = c;

4935 Status |= Floats[1].subtract(z, RM);

4936 Status |= Floats[1].add(a, RM);

4937 Status |= Floats[1].add(zz, RM);

4938 }

4939 } else {

4940

4942 Status |= q.subtract(z, RM);

4943

4944

4945

4946 auto zz = q;

4949 Status |= q.subtract(a, RM);

4950 q.changeSign();

4955 Floats[0] = std::move(z);

4956 Floats[1].makeZero( false);

4957 return opOK;

4958 }

4959 Floats[0] = z;

4960 Status |= Floats[0].add(zz, RM);

4961 if (!Floats[0].isFinite()) {

4962 Floats[1].makeZero( false);

4964 }

4965 Floats[1] = std::move(z);

4966 Status |= Floats[1].subtract(Floats[0], RM);

4967 Status |= Floats[1].add(zz, RM);

4968 }

4970}

4971

4972APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS,

4973 const DoubleAPFloat &RHS,

4974 DoubleAPFloat &Out,

4976 if (LHS.getCategory() == fcNaN) {

4977 Out = LHS;

4978 return opOK;

4979 }

4980 if (RHS.getCategory() == fcNaN) {

4981 Out = RHS;

4982 return opOK;

4983 }

4984 if (LHS.getCategory() == fcZero) {

4985 Out = RHS;

4986 return opOK;

4987 }

4988 if (RHS.getCategory() == fcZero) {

4989 Out = LHS;

4990 return opOK;

4991 }

4993 LHS.isNegative() != RHS.isNegative()) {

4994 Out.makeNaN(false, Out.isNegative(), nullptr);

4996 }

4998 Out = LHS;

4999 return opOK;

5000 }

5002 Out = RHS;

5003 return opOK;

5004 }

5006

5008 CC(RHS.Floats[1]);

5015 return Out.addImpl(A, AA, C, CC, RM);

5016}

5017

5020 return addWithSpecial(*this, RHS, *this, RM);

5021}

5022

5026 auto Ret = add(RHS, RM);

5028 return Ret;

5029}

5030

5033 const auto &LHS = *this;

5034 auto &Out = *this;

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5049

5050 if (LHS.getCategory() == fcNaN) {

5051 Out = LHS;

5052 return opOK;

5053 }

5054 if (RHS.getCategory() == fcNaN) {

5055 Out = RHS;

5056 return opOK;

5057 }

5060 Out.makeNaN(false, false, nullptr);

5061 return opOK;

5062 }

5064 Out = LHS;

5065 return opOK;

5066 }

5068 Out = RHS;

5069 return opOK;

5070 }

5072 "Special cases not handled exhaustively");

5073

5075 APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1];

5076

5078 Status |= T.multiply(C, RM);

5079 if (T.isFiniteNonZero()) {

5080 Floats[0] = T;

5081 Floats[1].makeZero( false);

5083 }

5084

5085

5087 T.changeSign();

5089 T.changeSign();

5090 {

5091

5093 Status |= V.multiply(D, RM);

5094

5096 Status |= W.multiply(C, RM);

5097 Status |= V.add(W, RM);

5098

5100 }

5101

5103 Status |= U.add(Tau, RM);

5104

5105 Floats[0] = U;

5106 if (!U.isFinite()) {

5107 Floats[1].makeZero( false);

5108 } else {

5109

5110 Status |= T.subtract(U, RM);

5111 Status |= T.add(Tau, RM);

5112 Floats[1] = T;

5113 }

5115}

5116

5121 auto Ret =

5124 return Ret;

5125}

5126

5130 auto Ret =

5133 return Ret;

5134}

5135

5141 return Ret;

5142}

5143

5154 return Ret;

5155}

5156

5162 return Ret;

5163}

5164

5166 Floats[0].changeSign();

5167 Floats[1].changeSign();

5168}

5169

5172 auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]);

5174 return Result;

5175 Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]);

5177 auto Against = Floats[0].isNegative() ^ Floats[1].isNegative();

5178 auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative();

5179 if (Against && !RHSAgainst)

5181 if (!Against && RHSAgainst)

5183 if (!Against && !RHSAgainst)

5184 return Result;

5185 if (Against && RHSAgainst)

5187 }

5188 return Result;

5189}

5190

5192 return Floats[0].getCategory();

5193}

5194

5196

5198 Floats[0].makeInf(Neg);

5199 Floats[1].makeZero( false);

5200}

5201

5203 Floats[0].makeZero(Neg);

5204 Floats[1].makeZero( false);

5205}

5206

5211 if (Neg)

5213}

5214

5217 Floats[0].makeSmallest(Neg);

5218 Floats[1].makeZero( false);

5219}

5220

5224 if (Neg)

5225 Floats[0].changeSign();

5226 Floats[1].makeZero( false);

5227}

5228

5230 Floats[0].makeNaN(SNaN, Neg, fill);

5231 Floats[1].makeZero( false);

5232}

5233

5235 auto Result = Floats[0].compare(RHS.Floats[0]);

5236

5238 return Floats[1].compare(RHS.Floats[1]);

5239 return Result;

5240}

5241

5243 return Floats[0].bitwiseIsEqual(RHS.Floats[0]) &&

5244 Floats[1].bitwiseIsEqual(RHS.Floats[1]);

5245}

5246

5248 if (Arg.Floats)

5251}

5252

5256 Floats[0].bitcastToAPInt().getRawData()[0],

5257 Floats[1].bitcastToAPInt().getRawData()[0],

5258 };

5260}

5261

5268 return Ret;

5269}

5270

5274 auto Ret = Tmp.next(nextDown);

5276 return Ret;

5277}

5278

5281 unsigned int Width, bool IsSigned,

5286}

5287

5289 bool IsSigned,

5295 return Ret;

5296}

5297

5300 unsigned int InputSize,

5306 return Ret;

5307}

5308

5311 unsigned int InputSize,

5317 return Ret;

5318}

5319

5321 unsigned int HexDigits,

5322 bool UpperCase,

5327}

5328

5331 (Floats[0].isDenormal() || Floats[1].isDenormal() ||

5332

5333 Floats[0] != Floats[0] + Floats[1]);

5334}

5335

5338 return false;

5342}

5343

5346 return false;

5347

5351}

5352

5355 return false;

5359}

5360

5363 return Floats[0].isInteger() && Floats[1].isInteger();

5364}

5365

5367 unsigned FormatPrecision,

5368 unsigned FormatMaxPadding,

5369 bool TruncateZero) const {

5372 .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero);

5373}

5374

5378 if (!inv)

5383 return Ret;

5384}

5385

5387

5388 return INT_MIN;

5389}

5390

5392

5393 return INT_MIN;

5394}

5395

5400 scalbn(Arg.Floats[1], Exp, RM));

5401}

5402

5407 APFloat Second = Arg.Floats[1];

5409 Second = scalbn(Second, -Exp, RM);

5411}

5412

5413}

5414

5415APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) {

5416 if (usesLayout(Semantics)) {

5417 new (&IEEE) IEEEFloat(std::move(F));

5418 return;

5419 }

5420 if (usesLayout(Semantics)) {

5423 DoubleAPFloat(Semantics, APFloat(std::move(F), S),

5425 return;

5426 }

5428}

5429

5433}

5434

5436 if (APFloat::usesLayoutdetail::IEEEFloat(Arg.getSemantics()))

5438 if (APFloat::usesLayoutdetail::DoubleAPFloat(Arg.getSemantics()))

5441}

5442

5446 assert(StatusOrErr && "Invalid floating point representation");

5448}

5449

5459 assert(isNaN() && "Other class of FP constant");

5461}

5462

5466 *losesInfo = false;

5467 return opOK;

5468 }

5469 if (usesLayout(getSemantics()) &&

5470 usesLayout(ToSemantics))

5471 return U.IEEE.convert(ToSemantics, RM, losesInfo);

5472 if (usesLayout(getSemantics()) &&

5473 usesLayout(ToSemantics)) {

5476 *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt());

5477 return Ret;

5478 }

5479 if (usesLayout(getSemantics()) &&

5480 usesLayout(ToSemantics)) {

5481 auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo);

5482 *this = APFloat(std::move(getIEEE()), ToSemantics);

5483 return Ret;

5484 }

5486}

5487

5490}

5491

5495 OS << Buffer;

5496}

5497

5498#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

5501 dbgs() << '\n';

5502}

5503#endif

5504

5507}

5508

5509

5510

5511

5512

5515 bool *isExact) const {

5516 unsigned bitWidth = result.getBitWidth();

5519 rounding_mode, isExact);

5520

5521 result = APInt(bitWidth, parts);

5522 return status;

5523}

5524

5529 "Float semantics is not representable by IEEEdouble");

5531 bool LosesInfo;

5533 assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision");

5534 (void)St;

5536}

5537

5538#ifdef HAS_IEE754_FLOAT128

5539float128 APFloat::convertToQuad() const {

5541 return getIEEE().convertToQuad();

5543 "Float semantics is not representable by IEEEquad");

5545 bool LosesInfo;

5547 assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision");

5548 (void)St;

5549 return Temp.getIEEE().convertToQuad();

5550}

5551#endif

5552

5557 "Float semantics is not representable by IEEEsingle");

5559 bool LosesInfo;

5561 assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision");

5562 (void)St;

5564}

5565

5566}

5567

5568#undef APFLOAT_DISPATCH_ON_SEMANTICS

#define PackCategoriesIntoKey(_lhs, _rhs)

A macro used to combine two fcCategory enums into one key which can be used in a switch statement to ...

This file declares a class to represent arbitrary precision floating point values and provide a varie...

#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)

This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...

static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")

static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")

static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")

#define LLVM_DUMP_METHOD

Mark debug helper function definitions like dump() that should not be stripped from debug builds.

static bool isNeg(Value *V)

Returns true if the operation is a negation of V, and it works for both integers and floats.

Looks at all the uses of the given value Returns the Liveness deduced from the uses of this value Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses If the result is MaybeLiveUses might be modified but its content should be ignored(since it might not be complete). DeadArgumentEliminationPass

Given that RA is a live value

static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")

static bool isSigned(unsigned int Opcode)

Utilities for dealing with flags related to floating point properties and mode controls.

This file defines a hash set that can be used to remove duplication of nodes in a graph.

static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)

assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())

void Profile(FoldingSetNodeID &NID) const

Used to insert APFloat objects, or objects that contain APFloat objects, into FoldingSets.

opStatus divide(const APFloat &RHS, roundingMode RM)

bool getExactInverse(APFloat *inv) const

opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)

double convertToDouble() const

Converts this APFloat to host double value.

void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const

opStatus add(const APFloat &RHS, roundingMode RM)

static APFloat getAllOnesValue(const fltSemantics &Semantics)

Returns a float which is bitcasted from an all one value int.

const fltSemantics & getSemantics() const

opStatus convertFromSignExtendedInteger(const integerPart *Input, unsigned int InputSize, bool IsSigned, roundingMode RM)

opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)

unsigned int convertToHexString(char *DST, unsigned int HexDigits, bool UpperCase, roundingMode RM) const

float convertToFloat() const

Converts this APFloat to host float value.

opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)

opStatus remainder(const APFloat &RHS)

APInt bitcastToAPInt() const

opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const

opStatus next(bool nextDown)

FPClassTest classify() const

Return the FPClassTest which will return true for the value.

opStatus mod(const APFloat &RHS)

Expected< opStatus > convertFromString(StringRef, roundingMode)

void print(raw_ostream &) const

opStatus roundToIntegral(roundingMode RM)

static bool hasSignificand(const fltSemantics &Sem)

Returns true if the given semantics has actual significand.

opStatus convertFromZeroExtendedInteger(const integerPart *Input, unsigned int InputSize, bool IsSigned, roundingMode RM)

Class for arbitrary precision integers.

APInt udiv(const APInt &RHS) const

Unsigned division operation.

static void tcSetBit(WordType *, unsigned bit)

Set the given bit of a bignum. Zero-based.

static APInt getAllOnes(unsigned numBits)

Return an APInt of a specified width with all bits set.

static void tcSet(WordType *, WordType, unsigned)

Sets the least significant part of a bignum to the input value, and zeroes out higher parts.

static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)

Dual division/remainder interface.

static int tcExtractBit(const WordType *, unsigned bit)

Extract the given bit of a bignum; returns 0 or 1. Zero-based.

APInt zext(unsigned width) const

Zero extend to a new width.

static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned)

DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.

static void tcExtract(WordType *, unsigned dstCount, const WordType *, unsigned srcBits, unsigned srcLSB)

Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to DST, of dstCOUNT parts,...

unsigned getActiveBits() const

Compute the number of active bits in the value.

APInt trunc(unsigned width) const

Truncate to new width.

static int tcCompare(const WordType *, const WordType *, unsigned)

Comparison (unsigned) of two bignums.

static APInt floatToBits(float V)

Converts a float to APInt bits.

static void tcAssign(WordType *, const WordType *, unsigned)

Assign one bignum to another.

unsigned getBitWidth() const

Return the number of bits in the APInt.

static void tcShiftRight(WordType *, unsigned Words, unsigned Count)

Shift a bignum right Count bits.

static void tcFullMultiply(WordType *, const WordType *, const WordType *, unsigned, unsigned)

DST = LHS * RHS, where DST has width the sum of the widths of the operands.

unsigned getNumWords() const

Get the number of words.

bool isNegative() const

Determine sign of this APInt.

static void tcClearBit(WordType *, unsigned bit)

Clear the given bit of a bignum. Zero-based.

static WordType tcDecrement(WordType *dst, unsigned parts)

Decrement a bignum in-place. Return the borrow flag.

unsigned countr_zero() const

Count the number of trailing zero bits.

static unsigned tcLSB(const WordType *, unsigned n)

Returns the bit number of the least or most significant set bit of a number.

static void tcShiftLeft(WordType *, unsigned Words, unsigned Count)

Shift a bignum left Count bits.

static bool tcIsZero(const WordType *, unsigned)

Returns true if a bignum is zero, false otherwise.

static unsigned tcMSB(const WordType *parts, unsigned n)

Returns the bit number of the most significant set bit of a number.

float bitsToFloat() const

Converts APInt bits to a float.

static int tcMultiplyPart(WordType *dst, const WordType *src, WordType multiplier, WordType carry, unsigned srcParts, unsigned dstParts, bool add)

DST += SRC * MULTIPLIER + PART if add is true DST = SRC * MULTIPLIER + PART if add is false.

static constexpr unsigned APINT_BITS_PER_WORD

Bits in a word.

static WordType tcSubtract(WordType *, const WordType *, WordType carry, unsigned)

DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.

static void tcNegate(WordType *, unsigned)

Negate a bignum in-place.

static APInt doubleToBits(double V)

Converts a double to APInt bits.

static WordType tcIncrement(WordType *dst, unsigned parts)

Increment a bignum in-place. Return the carry flag.

double bitsToDouble() const

Converts APInt bits to a double.

const uint64_t * getRawData() const

This function returns a pointer to the internal storage of the APInt.

static APInt getZero(unsigned numBits)

Get the '0' value for the specified bit-width.

void lshrInPlace(unsigned ShiftAmt)

Logical right-shift this APInt by ShiftAmt in place.

An arbitrary precision integer that knows its signedness.

ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...

size_t size() const

size - Get the array size.

Lightweight error class with error context and mandatory checking.

static ErrorSuccess success()

Create a success value.

Tagged union holding either a T or a Error.

FoldingSetNodeID - This class is used to gather all the unique data bits of a node.

MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...

This class consists of common code factored out of the SmallVector class to reduce code duplication b...

iterator erase(const_iterator CI)

void append(ItTy in_start, ItTy in_end)

Add the specified range to the end of the SmallVector.

void push_back(const T &Elt)

This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.

StringRef - Represent a constant reference to a string, i.e.

bool getAsInteger(unsigned Radix, T &Result) const

Parse the current string as an integer of the specified radix.

bool starts_with(StringRef Prefix) const

Check if this string starts with the given Prefix.

constexpr bool empty() const

empty - Check if the string is empty.

StringRef drop_front(size_t N=1) const

Return a StringRef equal to 'this' but with the first N elements dropped.

char back() const

back - Get the last character in the string.

StringRef slice(size_t Start, size_t End) const

Return a reference to the substring from [Start, End).

constexpr size_t size() const

size - Get the string size.

char front() const

front - Get the first character in the string.

Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...

void makeSmallestNormalized(bool Neg)

DoubleAPFloat & operator=(const DoubleAPFloat &RHS)

LLVM_READONLY int getExactLog2() const

opStatus remainder(const DoubleAPFloat &RHS)

opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM)

fltCategory getCategory() const

bool bitwiseIsEqual(const DoubleAPFloat &RHS) const

LLVM_READONLY int getExactLog2Abs() const

opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)

opStatus convertFromZeroExtendedInteger(const integerPart *Input, unsigned int InputSize, bool IsSigned, roundingMode RM)

APInt bitcastToAPInt() const

bool getExactInverse(APFloat *inv) const

Expected< opStatus > convertFromString(StringRef, roundingMode)

opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM)

cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const

opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const

void makeSmallest(bool Neg)

opStatus next(bool nextDown)

opStatus divide(const DoubleAPFloat &RHS, roundingMode RM)

bool isSmallestNormalized() const

opStatus mod(const DoubleAPFloat &RHS)

DoubleAPFloat(const fltSemantics &S)

void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision, unsigned FormatMaxPadding, bool TruncateZero=true) const

void makeLargest(bool Neg)

cmpResult compare(const DoubleAPFloat &RHS) const

opStatus roundToIntegral(roundingMode RM)

opStatus convertFromSignExtendedInteger(const integerPart *Input, unsigned int InputSize, bool IsSigned, roundingMode RM)

opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, const DoubleAPFloat &Addend, roundingMode RM)

unsigned int convertToHexString(char *DST, unsigned int HexDigits, bool UpperCase, roundingMode RM) const

opStatus add(const DoubleAPFloat &RHS, roundingMode RM)

void makeNaN(bool SNaN, bool Neg, const APInt *fill)

unsigned int convertToHexString(char *dst, unsigned int hexDigits, bool upperCase, roundingMode) const

Write out a hexadecimal representation of the floating point value to DST, which must be of sufficien...

cmpResult compareAbsoluteValue(const IEEEFloat &) const

opStatus mod(const IEEEFloat &)

C fmod, or llvm frem.

fltCategory getCategory() const

opStatus convertFromAPInt(const APInt &, bool, roundingMode)

bool isFiniteNonZero() const

bool needsCleanup() const

Returns whether this instance allocated memory.

APInt bitcastToAPInt() const

cmpResult compare(const IEEEFloat &) const

IEEE comparison with another floating point number (NaNs compare unordered, 0==-0).

bool isNegative() const

IEEE-754R isSignMinus: Returns true if and only if the current value is negative.

opStatus divide(const IEEEFloat &, roundingMode)

bool isNaN() const

Returns true if and only if the float is a quiet or signaling NaN.

opStatus remainder(const IEEEFloat &)

IEEE remainder.

double convertToDouble() const

opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, bool, roundingMode)

float convertToFloat() const

opStatus subtract(const IEEEFloat &, roundingMode)

void makeInf(bool Neg=false)

opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, bool, roundingMode)

bool isSmallestNormalized() const

Returns true if this is the smallest (by magnitude) normalized finite number in the given semantics.

bool isLargest() const

Returns true if and only if the number has the largest possible finite magnitude in the current seman...

opStatus add(const IEEEFloat &, roundingMode)

bool isFinite() const

Returns true if and only if the current value is zero, subnormal, or normal.

Expected< opStatus > convertFromString(StringRef, roundingMode)

void makeNaN(bool SNaN=false, bool Neg=false, const APInt *fill=nullptr)

friend int ilogb(const IEEEFloat &Arg)

Returns the exponent of the internal representation of the APFloat.

opStatus multiply(const IEEEFloat &, roundingMode)

opStatus roundToIntegral(roundingMode)

IEEEFloat & operator=(const IEEEFloat &)

friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode)

Returns: X * 2^Exp for integral exponents.

bool bitwiseIsEqual(const IEEEFloat &) const

Bitwise comparison for equality (QNaNs compare equal, 0!=-0).

void makeSmallestNormalized(bool Negative=false)

Returns the smallest (by magnitude) normalized finite number in the given semantics.

bool isInteger() const

Returns true if and only if the number is an exact integer.

IEEEFloat(const fltSemantics &)

opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode)

bool isInfinity() const

IEEE-754R isInfinite(): Returns true if and only if the float is infinity.

const fltSemantics & getSemantics() const

bool isZero() const

Returns true if and only if the float is plus or minus zero.

bool isSignaling() const

Returns true if and only if the float is a signaling NaN.

void makeZero(bool Neg=false)

opStatus convert(const fltSemantics &, roundingMode, bool *)

IEEEFloat::convert - convert a value of one floating point type to another.

bool isDenormal() const

IEEE-754R isSubnormal(): Returns true if and only if the float is a denormal.

opStatus convertToInteger(MutableArrayRef< integerPart >, unsigned int, bool, roundingMode, bool *) const

bool isSmallest() const

Returns true if and only if the number has the smallest possible non-zero magnitude in the current se...

An opaque object representing a hash code.

This class implements an extremely fast bulk output stream that can only output to a stream.

#define llvm_unreachable(msg)

Marks that the current location is not supposed to be reachable.

@ C

The default llvm calling convention, compatible with C.

static constexpr opStatus opInexact

APFloatBase::roundingMode roundingMode

static constexpr fltCategory fcNaN

static constexpr opStatus opDivByZero

static constexpr opStatus opOverflow

static constexpr cmpResult cmpLessThan

static void tcSetLeastSignificantBits(APInt::WordType *dst, unsigned parts, unsigned bits)

APFloatBase::opStatus opStatus

static constexpr roundingMode rmTowardPositive

static constexpr uninitializedTag uninitialized

static constexpr fltCategory fcZero

static constexpr opStatus opOK

static constexpr cmpResult cmpGreaterThan

static constexpr unsigned integerPartWidth

APFloatBase::ExponentType ExponentType

hash_code hash_value(const IEEEFloat &Arg)

static constexpr fltCategory fcNormal

static constexpr opStatus opInvalidOp

IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode)

IEEEFloat frexp(const IEEEFloat &Val, int &Exp, roundingMode RM)

APFloatBase::integerPart integerPart

static constexpr cmpResult cmpUnordered

static constexpr roundingMode rmTowardNegative

static constexpr fltCategory fcInfinity

static constexpr roundingMode rmNearestTiesToAway

static constexpr roundingMode rmTowardZero

static constexpr opStatus opUnderflow

static constexpr roundingMode rmNearestTiesToEven

int ilogb(const IEEEFloat &Arg)

static constexpr cmpResult cmpEqual

std::error_code status(const Twine &path, file_status &result, bool follow=true)

Get file status as if by POSIX stat().

This is an optimization pass for GlobalISel generic memory operations.

static unsigned int partAsHex(char *dst, APFloatBase::integerPart part, unsigned int count, const char *hexDigitChars)

static constexpr fltSemantics semBogus

static const char infinityL[]

bool all_of(R &&range, UnaryPredicate P)

Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.

hash_code hash_value(const FixedPointSemantics &Val)

int popcount(T Value) noexcept

Count the number of set bits in a value.

static constexpr unsigned int partCountForBits(unsigned int bits)

static constexpr fltSemantics semFloat8E8M0FNU

static unsigned int HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)

static unsigned int powerOf5(APFloatBase::integerPart *dst, unsigned int power)

static constexpr fltSemantics semFloat6E2M3FN

static constexpr APFloatBase::ExponentType exponentZero(const fltSemantics &semantics)

static Expected< int > totalExponent(StringRef::iterator p, StringRef::iterator end, int exponentAdjustment)

std::error_code inconvertibleErrorCode()

The value returned by this function can be returned from convertToErrorCode for Error values where no...

static constexpr fltSemantics semIEEEquad

const unsigned int maxPowerOfFiveExponent

static constexpr fltSemantics semFloat6E3M2FN

static char * writeUnsignedDecimal(char *dst, unsigned int n)

static constexpr fltSemantics semFloat8E4M3FNUZ

const unsigned int maxPrecision

static constexpr fltSemantics semIEEEdouble

APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)

Equivalent of C standard library function.

int countr_zero(T Val)

Count number of 0's from the least significant bit to the most stopping at the first 1.

static constexpr fltSemantics semFloat8E4M3FN

static const char infinityU[]

lostFraction

Enum that represents what fraction of the LSB truncated bits of an fp number represent.

static constexpr fltSemantics semPPCDoubleDouble

static Error interpretDecimal(StringRef::iterator begin, StringRef::iterator end, decimalInfo *D)

static constexpr fltSemantics semFloat8E5M2FNUZ

bool isFinite(const Loop *L)

Return true if this loop can be assumed to run for a finite number of iterations.

FPClassTest

Floating-point class tests, supported by 'is_fpclass' intrinsic.

const unsigned int maxPowerOfFiveParts

static constexpr fltSemantics semIEEEsingle

APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)

static constexpr fltSemantics semFloat4E2M1FN

raw_ostream & dbgs()

dbgs() - This returns a reference to a raw_ostream for debugging messages.

static constexpr APFloatBase::ExponentType exponentNaN(const fltSemantics &semantics)

static Error createError(const Twine &Err)

static constexpr fltSemantics semIEEEhalf

static constexpr fltSemantics semPPCDoubleDoubleLegacy

static lostFraction shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits)

static constexpr fltSemantics semFloat8E5M2

@ First

Helpers to iterate all locations in the MemoryEffectsBase class.

static const char hexDigitsUpper[]

const unsigned int maxExponent

static unsigned int decDigitValue(unsigned int c)

static constexpr fltSemantics semFloat8E4M3B11FNUZ

auto count(R &&Range, const E &Element)

Wrapper function around std::count to count the number of times an element Element occurs in the give...

static lostFraction combineLostFractions(lostFraction moreSignificant, lostFraction lessSignificant)

static Expected< StringRef::iterator > skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, StringRef::iterator *dot)

RoundingMode

Rounding mode.

OutputIt copy(R &&Range, OutputIt Out)

static constexpr fltSemantics semX87DoubleExtended

OutputIt move(R &&Range, OutputIt Out)

Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.

static constexpr fltSemantics semFloatTF32

static constexpr APFloatBase::ExponentType exponentInf(const fltSemantics &semantics)

static lostFraction lostFractionThroughTruncation(const APFloatBase::integerPart *parts, unsigned int partCount, unsigned int bits)

static APFloatBase::integerPart ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits, bool isNearest)

static char * writeSignedDecimal(char *dst, int value)

hash_code hash_combine(const Ts &...args)

Combine values into a single hash_code.

static constexpr fltSemantics semBFloat

static Expected< lostFraction > trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, unsigned int digitValue)

void consumeError(Error Err)

Consume a Error without doing anything.

static constexpr fltSemantics semFloat8E3M4

static Expected< int > readExponent(StringRef::iterator begin, StringRef::iterator end)

hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)

Compute a hash_code for a sequence of values.

static constexpr fltSemantics semFloat8E4M3

constexpr uint64_t NextPowerOf2(uint64_t A)

Returns the next power of two (in 64-bits) that is strictly greater than A.

static const char hexDigitsLower[]

Implement std::hash so that hash_code can be used in STL containers.

static const llvm::fltSemantics & EnumToSemantics(Semantics S)

static const fltSemantics & IEEEsingle() LLVM_READNONE

static bool semanticsHasInf(const fltSemantics &)

static const fltSemantics & Float6E3M2FN() LLVM_READNONE

static constexpr roundingMode rmNearestTiesToAway

cmpResult

IEEE-754R 5.11: Floating Point Comparison Relations.

static const fltSemantics & PPCDoubleDoubleLegacy() LLVM_READNONE

static constexpr roundingMode rmTowardNegative

static ExponentType semanticsMinExponent(const fltSemantics &)

static constexpr roundingMode rmNearestTiesToEven

static unsigned int semanticsSizeInBits(const fltSemantics &)

static bool semanticsHasSignedRepr(const fltSemantics &)

static const fltSemantics & Float8E4M3() LLVM_READNONE

static unsigned getSizeInBits(const fltSemantics &Sem)

Returns the size of the floating point number (in bits) in the given semantics.

static const fltSemantics & Float8E4M3FN() LLVM_READNONE

static const fltSemantics & PPCDoubleDouble() LLVM_READNONE

static constexpr roundingMode rmTowardZero

static const fltSemantics & x87DoubleExtended() LLVM_READNONE

uninitializedTag

Convenience enum used to construct an uninitialized APFloat.

static const fltSemantics & IEEEquad() LLVM_READNONE

static const fltSemantics & Float4E2M1FN() LLVM_READNONE

static const fltSemantics & Float8E8M0FNU() LLVM_READNONE

static const fltSemantics & Float8E4M3B11FNUZ() LLVM_READNONE

static const fltSemantics & Bogus() LLVM_READNONE

A Pseudo fltsemantic used to construct APFloats that cannot conflict with anything real.

static ExponentType semanticsMaxExponent(const fltSemantics &)

static unsigned int semanticsPrecision(const fltSemantics &)

static const fltSemantics & IEEEdouble() LLVM_READNONE

static bool semanticsHasNaN(const fltSemantics &)

static const fltSemantics & Float8E5M2() LLVM_READNONE

static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem)

static constexpr unsigned integerPartWidth

static const fltSemantics & IEEEhalf() LLVM_READNONE

APInt::WordType integerPart

static constexpr roundingMode rmTowardPositive

static bool semanticsHasZero(const fltSemantics &)

static bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)

static const fltSemantics & Float8E4M3FNUZ() LLVM_READNONE

static const fltSemantics & BFloat() LLVM_READNONE

static const fltSemantics & FloatTF32() LLVM_READNONE

static bool isRepresentableBy(const fltSemantics &A, const fltSemantics &B)

static const fltSemantics & Float8E5M2FNUZ() LLVM_READNONE

static const fltSemantics & Float6E2M3FN() LLVM_READNONE

fltCategory

Category of internally-represented number.

@ S_PPCDoubleDoubleLegacy

static const fltSemantics & Float8E3M4() LLVM_READNONE

opStatus

IEEE-754R 7: Default exception handling.

int32_t ExponentType

A signed type to represent a floating point numbers unbiased exponent.

static unsigned int semanticsIntSizeInBits(const fltSemantics &, bool)

const char * lastSigDigit

const char * firstSigDigit

APFloatBase::ExponentType maxExponent

fltNonfiniteBehavior nonFiniteBehavior

APFloatBase::ExponentType minExponent

fltNanEncoding nanEncoding