LLVM: include/llvm/CodeGen/BasicTTIImpl.h Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
17#define LLVM_CODEGEN_BASICTTIIMPL_H
18
54#include
55#include
56#include
57#include
58#include
59#include
60
61namespace llvm {
62
69
71
72
73
74
75
76
77
78
79
80
81template
83private:
86
87
88 const T *thisT() const { return static_cast<const T *>(this); }
89
90
91
96
97
98 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
99 CostKind, 0, nullptr, nullptr);
100
101 for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
102 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
103 CostKind, i, nullptr, nullptr);
104 }
106 }
107
108
109
114
115
116
117
118
119
120
121 for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
122 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
123 CostKind, i, nullptr, nullptr);
124 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
125 CostKind, i, nullptr, nullptr);
126 }
128 }
129
130
131
134 int Index,
136 assert(VTy && SubVTy &&
137 "Can only extract subvectors from vectors");
140 (Index + NumSubElts) <=
142 "SK_ExtractSubvector index out of range");
143
145
146
147
148 for (int i = 0; i != NumSubElts; ++i) {
150 thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
151 CostKind, i + Index, nullptr, nullptr);
152 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy,
153 CostKind, i, nullptr, nullptr);
154 }
156 }
157
158
159
162 int Index,
164 assert(VTy && SubVTy &&
165 "Can only insert subvectors into vectors");
168 (Index + NumSubElts) <=
170 "SK_InsertSubvector index out of range");
171
173
174
175
176 for (int i = 0; i != NumSubElts; ++i) {
177 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy,
178 CostKind, i, nullptr, nullptr);
180 thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, CostKind,
181 i + Index, nullptr, nullptr);
182 }
184 }
185
186
188 return static_cast<const T *>(this)->getST();
189 }
190
191
193 return static_cast<const T *>(this)->getTLI();
194 }
195
197 switch (M) {
208 }
210 }
211
212 InstructionCost getCommonMaskedMemoryOpCost(unsigned Opcode, Type *DataTy,
214 bool VariableMask,
215 bool IsGatherScatter,
218
221
223 unsigned VF = VT->getNumElements();
224
225
226
227
228
233 false, true, CostKind)
234 : 0;
235
236
238 VF * thisT()->getMemoryOpCost(Opcode, VT->getElementType(), Alignment,
240
241
244 Opcode == Instruction::Store, CostKind);
245
247 if (VariableMask) {
248
249
250
251
252
253
254 ConditionalCost =
257 false, true, CostKind) +
258 VF * (thisT()->getCFInstrCost(Instruction::Br, CostKind) +
259 thisT()->getCFInstrCost(Instruction::PHI, CostKind));
260 }
261
262 return AddrExtractCost + MemoryOpCost + PackingCost + ConditionalCost;
263 }
264
265
266
267
268
269
270 static bool isSplatMask(ArrayRef Mask, unsigned NumSrcElts, int &Index) {
271
272 bool IsCompared = false;
276 return P.index() != Mask.size() - 1 || IsCompared;
277 if (static_cast<unsigned>(P.value()) >= NumSrcElts * 2)
278 return false;
280 SplatIdx = P.value();
281 return P.index() != Mask.size() - 1;
282 }
283 IsCompared = true;
284 return SplatIdx == P.value();
285 })) {
286 Index = SplatIdx;
287 return true;
288 }
289 return false;
290 }
291
292
293
294
295
296
297
298
299
300
301
302
303 std::optional getMultipleResultIntrinsicVectorLibCallCost(
305 std::optional CallRetElementIndex = {}) const {
307
308 auto const *LibInfo = ICA.getLibInfo();
311 return std::nullopt;
312
314 EVT VT = getTLI()->getValueType(DL, Ty);
315
316 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
317
318 switch (ICA.getID()) {
319 case Intrinsic::modf:
321 break;
322 case Intrinsic::sincospi:
324 break;
325 case Intrinsic::sincos:
327 break;
328 default:
329 return std::nullopt;
330 }
331
332
333 RTLIB::LibcallImpl LibcallImpl = getTLI()->getLibcallImpl(LC);
334 if (LibcallImpl == RTLIB::Unsupported)
335 return std::nullopt;
336
338
339
342
347 VecTy, {}, CostKind, 0, nullptr, {});
348 }
349
350
351
353 if (Idx == CallRetElementIndex)
354 continue;
355 Cost += thisT()->getMemoryOpCost(
356 Instruction::Load, VectorTy,
358 }
360 }
361
362
363
371 continue;
373 }
374 return FilteredTys;
375 }
376
377protected:
381
383
384public:
385
386
389 unsigned *Fast) const override {
391 return getTLI()->allowsMisalignedMemoryAccesses(
393 }
394
396 const Function *Callee) const override {
397 const TargetMachine &TM = getTLI()->getTargetMachine();
398
403
404
405
406 return (CallerBits & CalleeBits) == CalleeBits;
407 }
408
412
414
416
420
424
429
434
436 return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS);
437 }
438
440 return getTLI()->getTargetMachine().getAssumedAddrSpace(V);
441 }
442
444 return getTLI()->getTargetMachine().Options.ThreadModel ==
446 }
447
448 std::pair<const Value *, unsigned>
450 return getTLI()->getTargetMachine().getPredicatedAddrSpace(V);
451 }
452
454 Value *NewV) const override {
455 return nullptr;
456 }
457
459 return getTLI()->isLegalAddImmediate(imm);
460 }
461
463 return getTLI()->isLegalAddScalableImmediate(Imm);
464 }
465
467 return getTLI()->isLegalICmpImmediate(imm);
468 }
469
471 bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
473 int64_t ScalableOffset = 0) const override {
478 AM.Scale = Scale;
480 return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
481 }
482
484 return getTLI()->getPreferredLargeGEPBaseOffset(MinOffset, MaxOffset);
485 }
486
488 Type *ScalarValTy) const override {
489 auto &&IsSupportedByTarget = [this, ScalarMemTy, ScalarValTy](unsigned VF) {
491 EVT VT = getTLI()->getValueType(DL, SrcTy);
492 if (getTLI()->isOperationLegal(ISD::STORE, VT) ||
493 getTLI()->isOperationCustom(ISD::STORE, VT))
494 return true;
495
496 EVT ValVT =
498 EVT LegalizedVT =
499 getTLI()->getTypeToTransformTo(ScalarMemTy->getContext(), VT);
500 return getTLI()->isTruncStoreLegal(LegalizedVT, ValVT);
501 };
502 while (VF > 2 && IsSupportedByTarget(VF))
503 VF /= 2;
504 return VF;
505 }
506
508 EVT VT = getTLI()->getValueType(DL, Ty, true);
509 return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
510 }
511
513 EVT VT = getTLI()->getValueType(DL, Ty, true);
514 return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
515 }
516
521
525
529
533
536 int64_t Scale,
537 unsigned AddrSpace) const override {
542 AM.Scale = Scale;
545 return 0;
547 }
548
550 return getTLI()->isTruncateFree(Ty1, Ty2);
551 }
552
554 return getTLI()->isProfitableToHoist(I);
555 }
556
557 bool useAA() const override { return getST()->useAA(); }
558
560 EVT VT = getTLI()->getValueType(DL, Ty, true);
561 return getTLI()->isTypeLegal(VT);
562 }
563
565 EVT ETy = getTLI()->getValueType(DL, Ty);
566 return getTLI()->getNumRegisters(Ty->getContext(), ETy);
567 }
568
574
578
579
580
581
582
583
584
585 unsigned N = SI.getNumCases();
588
589 JumpTableSize = 0;
590 bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
591
592
593 if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
594 return N;
595
596 APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
597 APInt MinCaseVal = MaxCaseVal;
598 for (auto CI : SI.cases()) {
599 const APInt &CaseVal = CI.getCaseValue()->getValue();
600 if (CaseVal.sgt(MaxCaseVal))
601 MaxCaseVal = CaseVal;
602 if (CaseVal.slt(MinCaseVal))
603 MinCaseVal = CaseVal;
604 }
605
606
607 if (N <= DL.getIndexSizeInBits(0u)) {
609 for (auto I : SI.cases()) {
610 const BasicBlock *BB = I.getCaseSuccessor();
611 ++DestMap[BB];
612 }
613
615 return 1;
616 }
617
618
619 if (IsJTAllowed) {
620 if (N < 2 || N < TLI->getMinimumJumpTableEntries())
621 return N;
623 (MaxCaseVal - MinCaseVal)
624 .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
625
627 JumpTableSize = Range;
628 return 1;
629 }
630 }
631 return N;
632 }
633
639
641 const TargetMachine &TM = getTLI()->getTargetMachine();
642
644 return false;
645
646
647
648
651 return false;
652
655 return false;
656
657
658
660 return false;
661
662 return true;
663 }
664
671
673
683
685 const Function &Fn) const override {
687 default:
688 break;
689 case Instruction::SDiv:
690 case Instruction::SRem:
691 case Instruction::UDiv:
692 case Instruction::URem: {
694 return false;
695 EVT VT = getTLI()->getValueType(DL, Inst.getType());
696 return !getTLI()->isIntDivCheap(VT, Fn.getAttributes());
697 }
698 };
699
700 return false;
701 }
702
708 const AllocaInst *AI) const override {
709 return 0;
710 }
711
713
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740 unsigned MaxOps;
744 else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
745 MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
746 else
747 return;
748
749
755 continue;
756 }
757
758 if (ORE) {
759 ORE->emit([&]() {
761 L->getHeader())
762 << "advising against unrolling the loop because it "
763 "contains a "
765 });
766 }
767 return;
768 }
769 }
770 }
771
772
773
776
777
780
781
782
784 }
785
793
799
803
807
812
813 std::optional<Instruction *>
817
818 std::optional<Value *>
821 bool &KnownBitsComputed) const override {
823 KnownBitsComputed);
824 }
825
828 APInt &UndefElts2, APInt &UndefElts3,
830 SimplifyAndSetOp) const override {
832 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
833 SimplifyAndSetOp);
834 }
835
836 std::optional
838 return std::optional(
839 getST()->getCacheSize(static_cast<unsigned>(Level)));
840 }
841
842 std::optional
844 std::optional TargetResult =
845 getST()->getCacheAssociativity(static_cast<unsigned>(Level));
846
847 if (TargetResult)
848 return TargetResult;
849
851 }
852
854 return getST()->getCacheLineSize();
855 }
856
858 return getST()->getPrefetchDistance();
859 }
860
862 unsigned NumStridedMemAccesses,
863 unsigned NumPrefetches,
864 bool HasCall) const override {
865 return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
866 NumPrefetches, HasCall);
867 }
868
870 return getST()->getMaxPrefetchIterationsAhead();
871 }
872
874 return getST()->enableWritePrefetching();
875 }
876
878 return getST()->shouldPrefetchAddressSpace(AS);
879 }
880
881
882
883
884
885
890
891 std::optional getMaxVScale() const override { return std::nullopt; }
893 return std::nullopt;
894 }
896
897
898
899
901 VectorType *InTy, const APInt &DemandedElts, bool Insert, bool Extract,
904
905
909
911 (VL.empty() || VL.size() == Ty->getNumElements()) &&
912 "Vector size mismatch");
913
915
916 for (int i = 0, e = Ty->getNumElements(); i < e; ++i) {
917 if (!DemandedElts[i])
918 continue;
919 if (Insert) {
920 Value *InsertedVal = VL.empty() ? nullptr : VL[i];
921 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty,
922 CostKind, i, nullptr, InsertedVal);
923 }
924 if (Extract)
925 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
926 CostKind, i, nullptr, nullptr);
927 }
928
930 }
931
935
936 bool
938 unsigned ScalarOpdIdx) const override {
939 return false;
940 }
941
943 int OpdIdx) const override {
944 return OpdIdx == -1;
945 }
946
947 bool
949 int RetIdx) const override {
950 return RetIdx == 0;
951 }
952
953
955 bool Extract,
960
962 return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
964 }
965
966
967
968
972 for (Type *Ty : Tys) {
973
974 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() &&
975 !Ty->isPtrOrPtrVectorTy())
976 continue;
977
981 }
982
984 }
985
986
987
988
989
995 RetTy, true, false, CostKind);
996 if (!Args.empty())
998 filterConstantAndDuplicatedOperands(Args, Tys), CostKind);
999 else
1000
1001
1003 true, CostKind);
1004
1005 return Cost;
1006 }
1007
1008
1011 EVT MTy = getTLI()->getValueType(DL, Ty);
1012
1014
1015
1016
1017 while (true) {
1019
1021
1022
1025 }
1026
1029
1033
1034
1035 if (MTy == LK.second)
1037
1038
1039 MTy = LK.second;
1040 }
1041 }
1042
1044
1050 const Instruction *CxtI = nullptr) const override {
1051
1052 const TargetLoweringBase *TLI = getTLI();
1053 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1054 assert(ISD && "Invalid opcode");
1055
1056
1059 Opd1Info, Opd2Info,
1060 Args, CxtI);
1061
1063
1065
1066
1068
1069 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
1070
1071
1072 return LT.first * OpCost;
1073 }
1074
1075 if (!TLI->isOperationExpand(ISD, LT.second)) {
1076
1077
1078 return LT.first * 2 * OpCost;
1079 }
1080
1081
1082
1083
1085 bool IsSigned = ISD == ISD::SREM;
1087 LT.second) ||
1089 LT.second)) {
1090 unsigned DivOpc = IsSigned ? Instruction::SDiv : Instruction::UDiv;
1091 InstructionCost DivCost = thisT()->getArithmeticInstrCost(
1092 DivOpc, Ty, CostKind, Opd1Info, Opd2Info);
1094 thisT()->getArithmeticInstrCost(Instruction::Mul, Ty, CostKind);
1096 thisT()->getArithmeticInstrCost(Instruction::Sub, Ty, CostKind);
1097 return DivCost + MulCost + SubCost;
1098 }
1099 }
1100
1101
1104
1105
1106
1107
1111 Args, CxtI);
1112
1113
1117 }
1118
1119
1120 return OpCost;
1121 }
1122
1127 if (Mask.empty())
1128 return Kind;
1129 int NumDstElts = Mask.size();
1130 int NumSrcElts = SrcTy->getElementCount().getKnownMinValue();
1131 switch (Kind) {
1137 if (isSplatMask(Mask, NumSrcElts, Index))
1140 (Index + NumDstElts) <= NumSrcElts) {
1143 }
1144 break;
1145 }
1147 if (all_of(Mask, [NumSrcElts](int M) { return M < NumSrcElts; }))
1149 Index, SubTy);
1150 int NumSubElts;
1152 Mask, NumSrcElts, NumSubElts, Index)) {
1153 if (Index + NumSubElts > NumSrcElts)
1154 return Kind;
1157 }
1164 break;
1165 }
1173 break;
1174 }
1175 return Kind;
1176 }
1177
1182 const Instruction *CxtI = nullptr) const override {
1186 return getBroadcastShuffleOverhead(FVT, CostKind);
1195 return getPermuteShuffleOverhead(FVT, CostKind);
1198 return getExtractSubvectorOverhead(SrcTy, CostKind, Index,
1201 return getInsertSubvectorOverhead(DstTy, CostKind, Index,
1203 }
1205 }
1206
1210 const Instruction *I = nullptr) const override {
1212 return 0;
1213
1216 assert(ISD && "Invalid opcode");
1219
1220 TypeSize SrcSize = SrcLT.second.getSizeInBits();
1221 TypeSize DstSize = DstLT.second.getSizeInBits();
1222 bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy();
1223 bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy();
1224
1225 switch (Opcode) {
1226 default:
1227 break;
1228 case Instruction::Trunc:
1229
1230 if (TLI->isTruncateFree(SrcLT.second, DstLT.second))
1231 return 0;
1232 [[fallthrough]];
1233 case Instruction::BitCast:
1234
1235
1236 if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst &&
1237 SrcSize == DstSize)
1238 return 0;
1239 break;
1240 case Instruction::FPExt:
1241 if (I && getTLI()->isExtFree(I))
1242 return 0;
1243 break;
1244 case Instruction::ZExt:
1245 if (TLI->isZExtFree(SrcLT.second, DstLT.second))
1246 return 0;
1247 [[fallthrough]];
1248 case Instruction::SExt:
1249 if (I && getTLI()->isExtFree(I))
1250 return 0;
1251
1252
1253
1257 unsigned LType =
1259 if (DstLT.first == SrcLT.first &&
1261 return 0;
1262 }
1263 break;
1264 case Instruction::AddrSpaceCast:
1266 Dst->getPointerAddressSpace()))
1267 return 0;
1268 break;
1269 }
1270
1273
1274
1275 if (SrcLT.first == DstLT.first &&
1277 return SrcLT.first;
1278
1279
1280 if (!SrcVTy && !DstVTy) {
1281
1282
1284 return 1;
1285
1286
1287 return 4;
1288 }
1289
1290
1291 if (DstVTy && SrcVTy) {
1292
1293 if (SrcLT.first == DstLT.first && SrcSize == DstSize) {
1294
1295
1296 if (Opcode == Instruction::ZExt)
1297 return SrcLT.first;
1298
1299
1300 if (Opcode == Instruction::SExt)
1301 return SrcLT.first * 2;
1302
1303
1304
1305
1307 return SrcLT.first * 1;
1308 }
1309
1310
1311
1312
1313
1314 bool SplitSrc =
1317 bool SplitDst =
1320 if ((SplitSrc || SplitDst) && SrcVTy->getElementCount().isKnownEven() &&
1321 DstVTy->getElementCount().isKnownEven()) {
1324 const T *TTI = thisT();
1325
1327 (!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0;
1328 return SplitCost +
1329 (2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH,
1331 }
1332
1333
1336
1337
1338
1341 Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind, I);
1342
1343
1344
1348 }
1349
1350
1351
1352
1353
1354 if (Opcode == Instruction::BitCast) {
1355
1358 : 0) +
1360 false, CostKind)
1361 : 0);
1362 }
1363
1365 }
1366
1369 unsigned Index,
1371 return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1372 CostKind, Index, nullptr, nullptr) +
1373 thisT()->getCastInstrCost(Opcode, Dst, VecTy->getElementType(),
1375 }
1376
1379 const Instruction *I = nullptr) const override {
1381 }
1382
1388 const Instruction *I = nullptr) const override {
1389 const TargetLoweringBase *TLI = getTLI();
1390 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1391 assert(ISD && "Invalid opcode");
1392
1393 if (getTLI()->getValueType(DL, ValTy, true) == MVT::Other)
1395 Op1Info, Op2Info, I);
1396
1397
1399 assert(CondTy && "CondTy must exist");
1402 }
1404
1405 if (!(ValTy->isVectorTy() && .second.isVector()) &&
1406 !TLI->isOperationExpand(ISD, LT.second)) {
1407
1408
1409 return LT.first * 1;
1410 }
1411
1412
1413
1414
1418
1421 Opcode, ValVTy->getScalarType(), CondTy->getScalarType(), VecPred,
1423
1424
1425
1427 false, CostKind) +
1429 }
1430
1431
1432 return 1;
1433 }
1434
1437 unsigned Index, const Value *Op0,
1438 const Value *Op1) const override {
1440 }
1441
1442
1443
1444
1445
1448 unsigned Index, Value *Scalar,
1449 ArrayRef<std::tuple<Value *, User *, int>>
1450 ScalarUserAndIdx) const override {
1451 return thisT()->getVectorInstrCost(Opcode, Val, CostKind, Index, nullptr,
1452 nullptr);
1453 }
1454
1457 unsigned Index) const override {
1458 Value *Op0 = nullptr;
1459 Value *Op1 = nullptr;
1461 Op0 = IE->getOperand(0);
1462 Op1 = IE->getOperand(1);
1463 }
1464 return thisT()->getVectorInstrCost(I.getOpcode(), Val, CostKind, Index, Op0,
1465 Op1);
1466 }
1467
1471 unsigned Index) const override {
1472 unsigned NewIndex = -1;
1475 "Unexpected index from end of vector");
1476 NewIndex = FVTy->getNumElements() - 1 - Index;
1477 }
1478 return thisT()->getVectorInstrCost(Opcode, Val, CostKind, NewIndex, nullptr,
1479 nullptr);
1480 }
1481
1484 const APInt &DemandedDstElts,
1486 assert(DemandedDstElts.getBitWidth() == (unsigned)VF * ReplicationFactor &&
1487 "Unexpected size of DemandedDstElts.");
1488
1490
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1505 Cost += thisT()->getScalarizationOverhead(SrcVT, DemandedSrcElts,
1506 false,
1507 true, CostKind);
1508 Cost += thisT()->getScalarizationOverhead(ReplicatedVT, DemandedDstElts,
1509 true,
1510 false, CostKind);
1511
1512 return Cost;
1513 }
1514
1519 const Instruction *I = nullptr) const override {
1520 assert(!Src->isVoidTy() && "Invalid type");
1521
1522 if (getTLI()->getValueType(DL, Src, true) == MVT::Other)
1523 return 4;
1525
1526
1529 return Cost;
1530
1533
1534
1535
1537 LT.second.getSizeInBits())) {
1538
1539
1540
1543 if (Opcode == Instruction::Store)
1545 else
1547
1549
1550
1553 Opcode == Instruction::Store, CostKind);
1554 }
1555 }
1556
1557 return Cost;
1558 }
1559
1563 bool UseMaskForCond = false, bool UseMaskForGaps = false) const override {
1564
1565
1568
1570
1571 unsigned NumElts = VT->getNumElements();
1572 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1573
1574 unsigned NumSubElts = NumElts / Factor;
1576
1577
1579 if (UseMaskForCond || UseMaskForGaps) {
1580 unsigned IID = Opcode == Instruction::Load ? Intrinsic::masked_load
1581 : Intrinsic::masked_store;
1582 Cost = thisT()->getMemIntrinsicInstrCost(
1585 } else
1586 Cost = thisT()->getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace,
1588
1589
1590
1592 unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy);
1593 unsigned VecTyLTSize = VecTyLT.getStoreSize();
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609 if (Cost.isValid() && VecTySize > VecTyLTSize) {
1610
1611
1612 unsigned NumLegalInsts = divideCeil(VecTySize, VecTyLTSize);
1613
1614
1615
1616 unsigned NumEltsPerLegalInst = divideCeil(NumElts, NumLegalInsts);
1617
1618
1619 BitVector UsedInsts(NumLegalInsts, false);
1620 for (unsigned Index : Indices)
1621 for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
1622 UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
1623
1624
1625
1627 }
1628
1629
1631 "Interleaved memory op has too many members");
1632
1635
1637 for (unsigned Index : Indices) {
1638 assert(Index < Factor && "Invalid index for interleaved memory op");
1639 for (unsigned Elm = 0; Elm < NumSubElts; Elm++)
1640 DemandedLoadStoreElts.setBit(Index + Elm * Factor);
1641 }
1642
1643 if (Opcode == Instruction::Load) {
1644
1645
1646
1647
1648
1649
1650
1651
1652 InstructionCost InsSubCost = thisT()->getScalarizationOverhead(
1653 SubVT, DemandedAllSubElts,
1654 true, false, CostKind);
1655 Cost += Indices.size() * InsSubCost;
1656 Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
1657 false,
1658 true, CostKind);
1659 } else {
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673 InstructionCost ExtSubCost = thisT()->getScalarizationOverhead(
1674 SubVT, DemandedAllSubElts,
1675 false, true, CostKind);
1676 Cost += ExtSubCost * Indices.size();
1677 Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
1678 true,
1679 false, CostKind);
1680 }
1681
1682 if (!UseMaskForCond)
1683 return Cost;
1684
1686
1687 Cost += thisT()->getReplicationShuffleCost(
1688 I8Type, Factor, NumSubElts,
1689 UseMaskForGaps ? DemandedLoadStoreElts : DemandedAllResultElts,
1691
1692
1693
1694
1695
1696
1697 if (UseMaskForGaps) {
1699 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT,
1701 }
1702
1703 return Cost;
1704 }
1705
1706
1710
1712 return 0;
1713
1714
1718
1719
1720
1721
1722
1723
1725 std::optional FOp =
1727 if (FOp) {
1728 if (ICA.getID() == Intrinsic::vp_load) {
1729 Align Alignment;
1731 Alignment = VPI->getPointerAlignment().valueOrOne();
1732 unsigned AS = 0;
1735 AS = PtrTy->getAddressSpace();
1736 return thisT()->getMemoryOpCost(*FOp, ICA.getReturnType(), Alignment,
1738 }
1739 if (ICA.getID() == Intrinsic::vp_store) {
1740 Align Alignment;
1742 Alignment = VPI->getPointerAlignment().valueOrOne();
1743 unsigned AS = 0;
1746 AS = PtrTy->getAddressSpace();
1747 return thisT()->getMemoryOpCost(*FOp, ICA.getArgTypes()[0], Alignment,
1749 }
1751 ICA.getID() == Intrinsic::vp_fneg) {
1752 return thisT()->getArithmeticInstrCost(*FOp, ICA.getReturnType(),
1754 }
1756 return thisT()->getCastInstrCost(
1759 }
1761
1765 return thisT()->getCmpSelInstrCost(*FOp, ICA.getArgTypes()[0],
1767 UI->getPredicate(), CostKind);
1768 }
1769 }
1770 }
1771 if (ICA.getID() == Intrinsic::vp_load_ff) {
1774 Align Alignment;
1776 Alignment = VPI->getPointerAlignment().valueOrOne();
1777 return thisT()->getMemIntrinsicInstrCost(
1780 }
1781 if (ICA.getID() == Intrinsic::vp_scatter) {
1788 }
1789 Align Alignment;
1791 Alignment = VPI->getPointerAlignment().valueOrOne();
1793 return thisT()->getMemIntrinsicInstrCost(
1796 VarMask, Alignment, nullptr),
1798 }
1799 if (ICA.getID() == Intrinsic::vp_gather) {
1806 }
1807 Align Alignment;
1809 Alignment = VPI->getPointerAlignment().valueOrOne();
1811 return thisT()->getMemIntrinsicInstrCost(
1814 VarMask, Alignment, nullptr),
1816 }
1817
1818 if (ICA.getID() == Intrinsic::vp_select ||
1819 ICA.getID() == Intrinsic::vp_merge) {
1824 }
1828 }
1829
1830 std::optionalIntrinsic::ID FID =
1832
1833
1834 if (ICA.getID() == Intrinsic::experimental_vp_reverse)
1835 FID = Intrinsic::vector_reverse;
1836
1837 if (FID) {
1838
1839
1841 "Expected VPIntrinsic to have Mask and Vector Length args and "
1842 "types");
1843
1848
1849
1850
1851
1853 *FID != Intrinsic::vector_reduce_fadd &&
1854 *FID != Intrinsic::vector_reduce_fmul) {
1858 }
1859
1862 return thisT()->getIntrinsicInstrCost(NewICA, CostKind);
1863 }
1864 }
1865
1868
1870
1873
1877 switch (IID) {
1878 default:
1879 break;
1880
1881 case Intrinsic::powi:
1883 bool ShouldOptForSize = I->getParent()->getParent()->hasOptSize();
1884 if (getTLI()->isBeneficialToExpandPowI(RHSC->getSExtValue(),
1885 ShouldOptForSize)) {
1886
1887
1889 unsigned ActiveBits = Exponent.getActiveBits();
1890 unsigned PopCount = Exponent.popcount();
1892 thisT()->getArithmeticInstrCost(
1893 Instruction::FMul, RetTy, CostKind);
1894 if (RHSC->isNegative())
1895 Cost += thisT()->getArithmeticInstrCost(Instruction::FDiv, RetTy,
1897 return Cost;
1898 }
1899 }
1900 break;
1901 case Intrinsic::cttz:
1902
1903 if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCttz(RetTy))
1905 break;
1906
1907 case Intrinsic::ctlz:
1908
1909 if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCtlz(RetTy))
1911 break;
1912
1913 case Intrinsic::memcpy:
1914 return thisT()->getMemcpyCost(ICA.getInst());
1915
1916 case Intrinsic::masked_scatter: {
1917 const Value *Mask = Args[2];
1919 Align Alignment = I->getParamAlign(1).valueOrOne();
1920 return thisT()->getMemIntrinsicInstrCost(
1923 Alignment, I),
1925 }
1926 case Intrinsic::masked_gather: {
1927 const Value *Mask = Args[1];
1929 Align Alignment = I->getParamAlign(0).valueOrOne();
1930 return thisT()->getMemIntrinsicInstrCost(
1932 VarMask, Alignment, I),
1934 }
1935 case Intrinsic::masked_compressstore: {
1937 const Value *Mask = Args[2];
1938 Align Alignment = I->getParamAlign(1).valueOrOne();
1939 return thisT()->getMemIntrinsicInstrCost(
1941 Alignment, I),
1943 }
1944 case Intrinsic::masked_expandload: {
1945 const Value *Mask = Args[1];
1946 Align Alignment = I->getParamAlign(0).valueOrOne();
1947 return thisT()->getMemIntrinsicInstrCost(
1949 Alignment, I),
1951 }
1952 case Intrinsic::experimental_vp_strided_store: {
1954 const Value *Ptr = Args[1];
1955 const Value *Mask = Args[3];
1956 const Value *EVL = Args[4];
1959 Align Alignment =
1960 I->getParamAlign(1).value_or(thisT()->DL.getABITypeAlign(EltTy));
1961 return thisT()->getMemIntrinsicInstrCost(
1963 Alignment, I),
1965 }
1966 case Intrinsic::experimental_vp_strided_load: {
1967 const Value *Ptr = Args[0];
1968 const Value *Mask = Args[2];
1969 const Value *EVL = Args[3];
1972 Align Alignment =
1973 I->getParamAlign(0).value_or(thisT()->DL.getABITypeAlign(EltTy));
1974 return thisT()->getMemIntrinsicInstrCost(
1977 }
1978 case Intrinsic::stepvector: {
1981
1983 }
1984 case Intrinsic::vector_extract: {
1985
1986
1994 }
1995 case Intrinsic::vector_insert: {
1996
1997
2001 return thisT()->getShuffleCost(
2005 }
2006 case Intrinsic::vector_splice: {
2011 }
2012 case Intrinsic::vector_reduce_add:
2013 case Intrinsic::vector_reduce_mul:
2014 case Intrinsic::vector_reduce_and:
2015 case Intrinsic::vector_reduce_or:
2016 case Intrinsic::vector_reduce_xor:
2017 case Intrinsic::vector_reduce_smax:
2018 case Intrinsic::vector_reduce_smin:
2019 case Intrinsic::vector_reduce_fmax:
2020 case Intrinsic::vector_reduce_fmin:
2021 case Intrinsic::vector_reduce_fmaximum:
2022 case Intrinsic::vector_reduce_fminimum:
2023 case Intrinsic::vector_reduce_umax:
2024 case Intrinsic::vector_reduce_umin: {
2027 }
2028 case Intrinsic::vector_reduce_fadd:
2029 case Intrinsic::vector_reduce_fmul: {
2031 IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF, I, 1);
2033 }
2034 case Intrinsic::fshl:
2035 case Intrinsic::fshr: {
2036 const Value *X = Args[0];
2037 const Value *Y = Args[1];
2038 const Value *Z = Args[2];
2042
2043
2044
2047 thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
2049 thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
2050 Cost += thisT()->getArithmeticInstrCost(
2051 BinaryOperator::Shl, RetTy, CostKind, OpInfoX,
2053 Cost += thisT()->getArithmeticInstrCost(
2054 BinaryOperator::LShr, RetTy, CostKind, OpInfoY,
2056
2057
2058
2060 Cost += thisT()->getArithmeticInstrCost(
2062 : BinaryOperator::URem,
2064 {TTI::OK_UniformConstantValue, TTI::OP_None});
2065
2069 thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2072 thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2074 }
2075 return Cost;
2076 }
2077 case Intrinsic::experimental_cttz_elts: {
2078 EVT ArgType = getTLI()->getValueType(DL, ICA.getArgTypes()[0], true);
2079
2080
2081
2082 if (!getTLI()->shouldExpandCttzElements(ArgType))
2084
2085
2086
2087
2088
2089
2094
2095 unsigned EltWidth = getTLI()->getBitWidthForCttzElements(
2098
2099
2102
2104 FMF);
2106 thisT()->getIntrinsicInstrCost(StepVecAttrs, CostKind);
2107
2109 thisT()->getArithmeticInstrCost(Instruction::Sub, NewVecTy, CostKind);
2110 Cost += thisT()->getCastInstrCost(Instruction::SExt, NewVecTy,
2114 thisT()->getArithmeticInstrCost(Instruction::And, NewVecTy, CostKind);
2115
2117 NewEltTy, NewVecTy, FMF, I, 1);
2118 Cost += thisT()->getTypeBasedIntrinsicInstrCost(ReducAttrs, CostKind);
2120 thisT()->getArithmeticInstrCost(Instruction::Sub, NewEltTy, CostKind);
2121
2122 return Cost;
2123 }
2124 case Intrinsic::get_active_lane_mask:
2125 case Intrinsic::experimental_vector_match:
2126 case Intrinsic::experimental_vector_histogram_add:
2127 case Intrinsic::experimental_vector_histogram_uadd_sat:
2128 case Intrinsic::experimental_vector_histogram_umax:
2129 case Intrinsic::experimental_vector_histogram_umin:
2130 return thisT()->getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2131 case Intrinsic::modf:
2132 case Intrinsic::sincos:
2133 case Intrinsic::sincospi: {
2134 std::optional CallRetElementIndex;
2135
2136
2137 if (ICA.getID() == Intrinsic::modf)
2138 CallRetElementIndex = 0;
2139
2140 if (auto Cost = getMultipleResultIntrinsicVectorLibCallCost(
2141 ICA, CostKind, CallRetElementIndex))
2142 return *Cost;
2143
2144 break;
2145 }
2146 }
2147
2148
2149
2150
2153 ScalarizationCost = 0;
2158 true, false, CostKind);
2159 }
2160 }
2162 filterConstantAndDuplicatedOperands(Args, ICA.getArgTypes()),
2164 }
2165
2167 ScalarizationCost);
2168 return thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
2169 }
2170
2171
2172
2173
2174
2184
2186 if (!Tys.empty()) {
2187
2188
2189 unsigned VecTyIndex = 0;
2190 if (IID == Intrinsic::vector_reduce_fadd ||
2191 IID == Intrinsic::vector_reduce_fmul)
2192 VecTyIndex = 1;
2193 assert(Tys.size() > VecTyIndex && "Unexpected IntrinsicCostAttributes");
2195 }
2196
2197
2199 unsigned ISD = 0;
2200 switch (IID) {
2201 default: {
2202
2205 }))
2207
2208
2210 SkipScalarizationCost ? ScalarizationCostPassed : 0;
2211 unsigned ScalarCalls = 1;
2212 Type *ScalarRetTy = RetTy;
2214 if (!SkipScalarizationCost)
2216 RetVTy, true, false, CostKind);
2217 ScalarCalls = std::max(ScalarCalls,
2220 }
2222 for (Type *Ty : Tys) {
2224 if (!SkipScalarizationCost)
2226 VTy, false, true, CostKind);
2227 ScalarCalls = std::max(ScalarCalls,
2229 Ty = Ty->getScalarType();
2230 }
2232 }
2233 if (ScalarCalls == 1)
2234 return 1;
2235
2238 thisT()->getIntrinsicInstrCost(ScalarAttrs, CostKind);
2239
2240 return ScalarCalls * ScalarCost + ScalarizationCost;
2241 }
2242
2243
2244 case Intrinsic::sqrt:
2245 ISD = ISD::FSQRT;
2246 break;
2247 case Intrinsic::sin:
2248 ISD = ISD::FSIN;
2249 break;
2250 case Intrinsic::cos:
2251 ISD = ISD::FCOS;
2252 break;
2253 case Intrinsic::sincos:
2254 ISD = ISD::FSINCOS;
2255 break;
2256 case Intrinsic::sincospi:
2257 ISD = ISD::FSINCOSPI;
2258 break;
2259 case Intrinsic::modf:
2260 ISD = ISD::FMODF;
2261 break;
2262 case Intrinsic::tan:
2263 ISD = ISD::FTAN;
2264 break;
2265 case Intrinsic::asin:
2266 ISD = ISD::FASIN;
2267 break;
2268 case Intrinsic::acos:
2269 ISD = ISD::FACOS;
2270 break;
2271 case Intrinsic::atan:
2272 ISD = ISD::FATAN;
2273 break;
2274 case Intrinsic::atan2:
2275 ISD = ISD::FATAN2;
2276 break;
2277 case Intrinsic::sinh:
2278 ISD = ISD::FSINH;
2279 break;
2280 case Intrinsic::cosh:
2281 ISD = ISD::FCOSH;
2282 break;
2283 case Intrinsic::tanh:
2284 ISD = ISD::FTANH;
2285 break;
2286 case Intrinsic::exp:
2287 ISD = ISD::FEXP;
2288 break;
2289 case Intrinsic::exp2:
2290 ISD = ISD::FEXP2;
2291 break;
2292 case Intrinsic::exp10:
2293 ISD = ISD::FEXP10;
2294 break;
2295 case Intrinsic:🪵
2296 ISD = ISD::FLOG;
2297 break;
2298 case Intrinsic::log10:
2299 ISD = ISD::FLOG10;
2300 break;
2301 case Intrinsic::log2:
2302 ISD = ISD::FLOG2;
2303 break;
2304 case Intrinsic::ldexp:
2305 ISD = ISD::FLDEXP;
2306 break;
2307 case Intrinsic::fabs:
2308 ISD = ISD::FABS;
2309 break;
2310 case Intrinsic::canonicalize:
2312 break;
2313 case Intrinsic::minnum:
2314 ISD = ISD::FMINNUM;
2315 break;
2316 case Intrinsic::maxnum:
2317 ISD = ISD::FMAXNUM;
2318 break;
2319 case Intrinsic::minimum:
2320 ISD = ISD::FMINIMUM;
2321 break;
2322 case Intrinsic::maximum:
2323 ISD = ISD::FMAXIMUM;
2324 break;
2325 case Intrinsic::minimumnum:
2326 ISD = ISD::FMINIMUMNUM;
2327 break;
2328 case Intrinsic::maximumnum:
2329 ISD = ISD::FMAXIMUMNUM;
2330 break;
2331 case Intrinsic::copysign:
2333 break;
2334 case Intrinsic:🤣
2335 ISD = ISD::FFLOOR;
2336 break;
2337 case Intrinsic::ceil:
2338 ISD = ISD::FCEIL;
2339 break;
2340 case Intrinsic::trunc:
2341 ISD = ISD::FTRUNC;
2342 break;
2343 case Intrinsic::nearbyint:
2344 ISD = ISD::FNEARBYINT;
2345 break;
2346 case Intrinsic::rint:
2347 ISD = ISD::FRINT;
2348 break;
2349 case Intrinsic::lrint:
2350 ISD = ISD::LRINT;
2351 break;
2352 case Intrinsic::llrint:
2353 ISD = ISD::LLRINT;
2354 break;
2355 case Intrinsic::round:
2356 ISD = ISD::FROUND;
2357 break;
2358 case Intrinsic::roundeven:
2359 ISD = ISD::FROUNDEVEN;
2360 break;
2361 case Intrinsic::lround:
2362 ISD = ISD::LROUND;
2363 break;
2364 case Intrinsic::llround:
2365 ISD = ISD::LLROUND;
2366 break;
2367 case Intrinsic::pow:
2368 ISD = ISD::FPOW;
2369 break;
2370 case Intrinsic::fma:
2372 break;
2373 case Intrinsic::fmuladd:
2375 break;
2376 case Intrinsic::experimental_constrained_fmuladd:
2378 break;
2379
2380 case Intrinsic::lifetime_start:
2381 case Intrinsic::lifetime_end:
2382 case Intrinsic::sideeffect:
2383 case Intrinsic::pseudoprobe:
2384 case Intrinsic::arithmetic_fence:
2385 return 0;
2386 case Intrinsic::masked_store: {
2387 Type *Ty = Tys[0];
2388 Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
2389 return thisT()->getMemIntrinsicInstrCost(
2391 }
2392 case Intrinsic::masked_load: {
2393 Type *Ty = RetTy;
2394 Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
2395 return thisT()->getMemIntrinsicInstrCost(
2397 }
2398 case Intrinsic::experimental_vp_strided_store: {
2400 Align Alignment = thisT()->DL.getABITypeAlign(Ty->getElementType());
2401 return thisT()->getMemIntrinsicInstrCost(
2403 true, Alignment,
2406 }
2407 case Intrinsic::experimental_vp_strided_load: {
2409 Align Alignment = thisT()->DL.getABITypeAlign(Ty->getElementType());
2410 return thisT()->getMemIntrinsicInstrCost(
2412 true, Alignment,
2415 }
2416 case Intrinsic::vector_reduce_add:
2417 case Intrinsic::vector_reduce_mul:
2418 case Intrinsic::vector_reduce_and:
2419 case Intrinsic::vector_reduce_or:
2420 case Intrinsic::vector_reduce_xor:
2421 return thisT()->getArithmeticReductionCost(
2424 case Intrinsic::vector_reduce_fadd:
2425 case Intrinsic::vector_reduce_fmul:
2426 return thisT()->getArithmeticReductionCost(
2428 case Intrinsic::vector_reduce_smax:
2429 case Intrinsic::vector_reduce_smin:
2430 case Intrinsic::vector_reduce_umax:
2431 case Intrinsic::vector_reduce_umin:
2432 case Intrinsic::vector_reduce_fmax:
2433 case Intrinsic::vector_reduce_fmin:
2434 case Intrinsic::vector_reduce_fmaximum:
2435 case Intrinsic::vector_reduce_fminimum:
2438 case Intrinsic::experimental_vector_match: {
2441 unsigned SearchSize = NeedleTy->getNumElements();
2442
2443
2444
2445 EVT SearchVT = getTLI()->getValueType(DL, SearchTy);
2446 if (!getTLI()->shouldExpandVectorMatch(SearchVT, SearchSize))
2448
2449
2450
2452 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, NeedleTy,
2453 CostKind, 1, nullptr, nullptr);
2454 Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, SearchTy,
2455 CostKind, 0, nullptr, nullptr);
2458 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SearchTy, RetTy,
2461 thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
2462 Cost *= SearchSize;
2464 thisT()->getArithmeticInstrCost(BinaryOperator::And, RetTy, CostKind);
2465 return Cost;
2466 }
2467 case Intrinsic::vector_reverse:
2471 case Intrinsic::experimental_vector_histogram_add:
2472 case Intrinsic::experimental_vector_histogram_uadd_sat:
2473 case Intrinsic::experimental_vector_histogram_umax:
2474 case Intrinsic::experimental_vector_histogram_umin: {
2477
2478
2479 if (!PtrsTy)
2481
2482 Align Alignment = thisT()->DL.getABITypeAlign(EltTy);
2484 Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, PtrsTy,
2485 CostKind, 1, nullptr, nullptr);
2486 Cost += thisT()->getMemoryOpCost(Instruction::Load, EltTy, Alignment, 0,
2488 switch (IID) {
2489 default:
2491 case Intrinsic::experimental_vector_histogram_add:
2493 thisT()->getArithmeticInstrCost(Instruction::Add, EltTy, CostKind);
2494 break;
2495 case Intrinsic::experimental_vector_histogram_uadd_sat: {
2497 Cost += thisT()->getIntrinsicInstrCost(UAddSat, CostKind);
2498 break;
2499 }
2500 case Intrinsic::experimental_vector_histogram_umax: {
2503 break;
2504 }
2505 case Intrinsic::experimental_vector_histogram_umin: {
2508 break;
2509 }
2510 }
2511 Cost += thisT()->getMemoryOpCost(Instruction::Store, EltTy, Alignment, 0,
2514 return Cost;
2515 }
2516 case Intrinsic::get_active_lane_mask: {
2518 EVT ResVT = getTLI()->getValueType(DL, RetTy, true);
2519 EVT ArgVT = getTLI()->getValueType(DL, ArgTy, true);
2520
2521
2522
2523 if (!getTLI()->shouldExpandGetActiveLaneMask(ResVT, ArgVT))
2525
2526
2527
2528 Type *ExpRetTy =
2532 thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
2533 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, ExpRetTy, RetTy,
2535 return Cost;
2536 }
2537 case Intrinsic::experimental_memset_pattern:
2538
2539
2540
2542 case Intrinsic::abs:
2544 break;
2545 case Intrinsic::fshl:
2547 break;
2548 case Intrinsic::fshr:
2550 break;
2551 case Intrinsic::smax:
2553 break;
2554 case Intrinsic::smin:
2556 break;
2557 case Intrinsic::umax:
2559 break;
2560 case Intrinsic::umin:
2562 break;
2563 case Intrinsic::sadd_sat:
2565 break;
2566 case Intrinsic::ssub_sat:
2568 break;
2569 case Intrinsic::uadd_sat:
2571 break;
2572 case Intrinsic::usub_sat:
2574 break;
2575 case Intrinsic::smul_fix:
2577 break;
2578 case Intrinsic::umul_fix:
2580 break;
2581 case Intrinsic::sadd_with_overflow:
2583 break;
2584 case Intrinsic::ssub_with_overflow:
2586 break;
2587 case Intrinsic::uadd_with_overflow:
2589 break;
2590 case Intrinsic::usub_with_overflow:
2592 break;
2593 case Intrinsic::smul_with_overflow:
2595 break;
2596 case Intrinsic::umul_with_overflow:
2598 break;
2599 case Intrinsic::fptosi_sat:
2600 case Intrinsic::fptoui_sat: {
2603
2604
2605
2606 if (!SrcLT.first.isValid() || !RetLT.first.isValid())
2610 break;
2611 }
2612 case Intrinsic::ctpop:
2614
2615
2617 break;
2618 case Intrinsic::ctlz:
2620 break;
2621 case Intrinsic::cttz:
2623 break;
2624 case Intrinsic::bswap:
2626 break;
2627 case Intrinsic::bitreverse:
2629 break;
2630 case Intrinsic::ucmp:
2632 break;
2633 case Intrinsic::scmp:
2635 break;
2636 }
2637
2639 Type *LegalizeTy = ST ? ST->getContainedType(0) : RetTy;
2641
2643
2645 if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
2647 return 0;
2648 }
2649
2650
2651
2652
2653
2654 if (LT.first > 1)
2655 return (LT.first * 2);
2656 else
2657 return (LT.first * 1);
2659
2660
2661 return (LT.first * 2);
2662 }
2663
2664 switch (IID) {
2665 case Intrinsic::fmuladd: {
2666
2667
2668
2669 return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy,
2671 thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy,
2673 }
2674 case Intrinsic::experimental_constrained_fmuladd: {
2676 Intrinsic::experimental_constrained_fmul, RetTy, Tys);
2678 Intrinsic::experimental_constrained_fadd, RetTy, Tys);
2679 return thisT()->getIntrinsicInstrCost(FMulAttrs, CostKind) +
2680 thisT()->getIntrinsicInstrCost(FAddAttrs, CostKind);
2681 }
2682 case Intrinsic::smin:
2683 case Intrinsic::smax:
2684 case Intrinsic::umin:
2685 case Intrinsic::umax: {
2686
2688 bool IsUnsigned = IID == Intrinsic::umax || IID == Intrinsic::umin;
2692 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2694 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2696 return Cost;
2697 }
2698 case Intrinsic::sadd_with_overflow:
2699 case Intrinsic::ssub_with_overflow: {
2702 unsigned Opcode = IID == Intrinsic::sadd_with_overflow
2703 ? BinaryOperator::Add
2704 : BinaryOperator::Sub;
2705
2706
2707
2708
2709
2711 Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
2713 2 * thisT()->getCmpSelInstrCost(Instruction::ICmp, SumTy, OverflowTy,
2715 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::Xor, OverflowTy,
2717 return Cost;
2718 }
2719 case Intrinsic::uadd_with_overflow:
2720 case Intrinsic::usub_with_overflow: {
2723 unsigned Opcode = IID == Intrinsic::uadd_with_overflow
2724 ? BinaryOperator::Add
2725 : BinaryOperator::Sub;
2729
2731 Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
2732 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
2733 OverflowTy, Pred, CostKind);
2734 return Cost;
2735 }
2736 case Intrinsic::smul_with_overflow:
2737 case Intrinsic::umul_with_overflow: {
2742 bool IsSigned = IID == Intrinsic::smul_with_overflow;
2743
2744 unsigned ExtOp = IsSigned ? Instruction::SExt : Instruction::ZExt;
2746
2748 Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH, CostKind);
2750 thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
2751 Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy,
2753 Cost += thisT()->getArithmeticInstrCost(
2756
2757 if (IsSigned)
2758 Cost += thisT()->getArithmeticInstrCost(
2759 Instruction::AShr, MulTy, CostKind,
2762
2763 Cost += thisT()->getCmpSelInstrCost(
2765 return Cost;
2766 }
2767 case Intrinsic::sadd_sat:
2768 case Intrinsic::ssub_sat: {
2769
2771
2773 Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
2774 ? Intrinsic::sadd_with_overflow
2775 : Intrinsic::ssub_with_overflow;
2777
2778
2779
2782 nullptr, ScalarizationCostPassed);
2783 Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
2784 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2786 Cost += 2 * thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
2788 return Cost;
2789 }
2790 case Intrinsic::uadd_sat:
2791 case Intrinsic::usub_sat: {
2793
2795 Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
2796 ? Intrinsic::uadd_with_overflow
2797 : Intrinsic::usub_with_overflow;
2798
2801 nullptr, ScalarizationCostPassed);
2802 Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
2804 thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2806 return Cost;
2807 }
2808 case Intrinsic::smul_fix:
2809 case Intrinsic::umul_fix: {
2812
2813 unsigned ExtOp =
2814 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
2816
2818 Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH, CostKind);
2820 thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
2821 Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy,
2823 Cost += thisT()->getArithmeticInstrCost(
2826 Cost += thisT()->getArithmeticInstrCost(
2829 Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy, CostKind);
2830 return Cost;
2831 }
2832 case Intrinsic::abs: {
2833
2837 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2839 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2841
2842 Cost += thisT()->getArithmeticInstrCost(
2843 BinaryOperator::Sub, RetTy, CostKind,
2845 return Cost;
2846 }
2847 case Intrinsic::fshl:
2848 case Intrinsic::fshr: {
2849
2850
2854 thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
2856 thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
2858 thisT()->getArithmeticInstrCost(BinaryOperator::Shl, RetTy, CostKind);
2859 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::LShr, RetTy,
2861
2862
2863
2864 Cost += thisT()->getArithmeticInstrCost(
2866 : BinaryOperator::URem,
2867 RetTy, CostKind, {TTI::OK_AnyValue, TTI::OP_None},
2868 {TTI::OK_UniformConstantValue, TTI::OP_None});
2869
2870 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
2872 Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
2874 return Cost;
2875 }
2876 case Intrinsic::fptosi_sat:
2877 case Intrinsic::fptoui_sat: {
2878 if (Tys.empty())
2879 break;
2880 Type *FromTy = Tys[0];
2881 bool IsSigned = IID == Intrinsic::fptosi_sat;
2882
2885 {FromTy, FromTy});
2886 Cost += thisT()->getIntrinsicInstrCost(Attrs1, CostKind);
2888 {FromTy, FromTy});
2889 Cost += thisT()->getIntrinsicInstrCost(Attrs2, CostKind);
2890 Cost += thisT()->getCastInstrCost(
2891 IsSigned ? Instruction::FPToSI : Instruction::FPToUI, RetTy, FromTy,
2893 if (IsSigned) {
2895 Cost += thisT()->getCmpSelInstrCost(
2897 Cost += thisT()->getCmpSelInstrCost(
2899 }
2900 return Cost;
2901 }
2902 case Intrinsic::ucmp:
2903 case Intrinsic::scmp: {
2904 Type *CmpTy = Tys[0];
2907 thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, CmpTy, CondTy,
2910 thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, CmpTy, CondTy,
2913
2916
2917 Cost += 2 * thisT()->getCmpSelInstrCost(
2918 BinaryOperator::Select, RetTy, CondTy,
2920 } else {
2921
2923 2 * thisT()->getCastInstrCost(CastInst::ZExt, RetTy, CondTy,
2925 Cost += thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy,
2927 }
2928 return Cost;
2929 }
2930 case Intrinsic::maximumnum:
2931 case Intrinsic::minimumnum: {
2932
2933
2934
2935
2936
2937
2938
2939
2940 int IeeeISD =
2941 IID == Intrinsic::maximumnum ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
2944 RetTy, Tys[0]);
2946 thisT()->getIntrinsicInstrCost(FCanonicalizeAttrs, CostKind);
2947 return LT.first + FCanonicalizeCost * 2;
2948 }
2949 break;
2950 }
2951 default:
2952 break;
2953 }
2954
2955
2956
2957
2960
2961
2965
2966 InstructionCost ScalarizationCost = ScalarizationCostPassed;
2967 if (!SkipScalarizationCost) {
2968 ScalarizationCost = 0;
2969 for (Type *RetVTy : RetVTys) {
2972 false, CostKind);
2973 }
2974 }
2975
2978 for (Type *Ty : Tys) {
2979 if (Ty->isVectorTy())
2980 Ty = Ty->getScalarType();
2982 }
2985 thisT()->getIntrinsicInstrCost(Attrs, CostKind);
2986 for (Type *Ty : Tys) {
2990 VTy, false, true, CostKind);
2991 ScalarCalls = std::max(ScalarCalls,
2993 }
2994 }
2995 return ScalarCalls * ScalarCost + ScalarizationCost;
2996 }
2997
2998
2999 return SingleCallCost;
3000 }
3001
3002
3006 unsigned Id = MICA.getID();
3010
3011 switch (Id) {
3012 case Intrinsic::experimental_vp_strided_load:
3013 case Intrinsic::experimental_vp_strided_store: {
3014 unsigned Opcode = Id == Intrinsic::experimental_vp_strided_load
3015 ? Instruction::Load
3016 : Instruction::Store;
3017
3018
3019
3020 return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment,
3021 VariableMask, true, CostKind);
3022 }
3023 case Intrinsic::masked_scatter:
3024 case Intrinsic::masked_gather:
3025 case Intrinsic::vp_scatter:
3026 case Intrinsic::vp_gather: {
3027 unsigned Opcode = (MICA.getID() == Intrinsic::masked_gather ||
3028 MICA.getID() == Intrinsic::vp_gather)
3029 ? Instruction::Load
3030 : Instruction::Store;
3031
3032 return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment,
3033 VariableMask, true, CostKind);
3034 }
3035 case Intrinsic::vp_load:
3036 case Intrinsic::vp_store:
3038 case Intrinsic::masked_load:
3039 case Intrinsic::masked_store: {
3040 unsigned Opcode =
3041 Id == Intrinsic::masked_load ? Instruction::Load : Instruction::Store;
3042
3043 return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, true, false,
3045 }
3046 case Intrinsic::masked_compressstore:
3047 case Intrinsic::masked_expandload: {
3048 unsigned Opcode = MICA.getID() == Intrinsic::masked_expandload
3049 ? Instruction::Load
3050 : Instruction::Store;
3051
3052
3053 return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment,
3054 VariableMask,
3055 true, CostKind);
3056 }
3057 case Intrinsic::vp_load_ff:
3059 default:
3061 }
3062 }
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3080
3083 if (!LT.first.isValid())
3084 return 0;
3085
3086
3088 Tp && LT.second.isFixedLengthVector() &&
3092 SubTp && SubTp->getElementType() == FTp->getElementType())
3093 return divideCeil(FTp->getNumElements(), SubTp->getNumElements());
3094 }
3095 return LT.first.getValue();
3096 }
3097
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3127
3128
3131
3132 Type *ScalarTy = Ty->getElementType();
3134 if ((Opcode == Instruction::Or || Opcode == Instruction::And) &&
3136 NumVecElts >= 2) {
3137
3138
3139
3140
3141
3142
3144 return thisT()->getCastInstrCost(Instruction::BitCast, ValTy, Ty,
3146 thisT()->getCmpSelInstrCost(Instruction::ICmp, ValTy,
3149 }
3150 unsigned NumReduxLevels = Log2_32(NumVecElts);
3153 std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
3154 unsigned LongVectorCount = 0;
3155 unsigned MVTLen =
3156 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
3157 while (NumVecElts > MVTLen) {
3158 NumVecElts /= 2;
3160 ShuffleCost += thisT()->getShuffleCost(
3162 ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy, CostKind);
3163 Ty = SubTy;
3164 ++LongVectorCount;
3165 }
3166
3167 NumReduxLevels -= LongVectorCount;
3168
3169
3170
3171
3172
3173
3174
3175 ShuffleCost +=
3178 ArithCost +=
3179 NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty, CostKind);
3180 return ShuffleCost + ArithCost +
3181 thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
3182 CostKind, 0, nullptr, nullptr);
3183 }
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3203
3204
3207
3210 VTy, false, true, CostKind);
3211 InstructionCost ArithCost = thisT()->getArithmeticInstrCost(
3214
3215 return ExtractCost + ArithCost;
3216 }
3217
3220 std::optional FMF,
3222 assert(Ty && "Unknown reduction vector type");
3226 }
3227
3228
3229
3233
3234
3237
3238 Type *ScalarTy = Ty->getElementType();
3240 unsigned NumReduxLevels = Log2_32(NumVecElts);
3243 std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
3244 unsigned LongVectorCount = 0;
3245 unsigned MVTLen =
3246 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
3247 while (NumVecElts > MVTLen) {
3248 NumVecElts /= 2;
3250
3251 ShuffleCost += thisT()->getShuffleCost(
3253
3256 Ty = SubTy;
3257 ++LongVectorCount;
3258 }
3259
3260 NumReduxLevels -= LongVectorCount;
3261
3262
3263
3264
3265
3266 ShuffleCost +=
3271
3272
3273 return ShuffleCost + MinMaxCost +
3274 thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
3275 CostKind, 0, nullptr, nullptr);
3276 }
3277
3280 VectorType *Ty, std::optional FMF,
3283 FTy && IsUnsigned && Opcode == Instruction::Add &&
3285
3286
3287 auto *IntTy =
3291 return thisT()->getCastInstrCost(Instruction::BitCast, IntTy, FTy,
3293 thisT()->getIntrinsicInstrCost(ICA, CostKind);
3294 }
3295
3296
3299 thisT()->getArithmeticReductionCost(Opcode, ExtTy, FMF, CostKind);
3301 IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
3303
3304 return RedCost + ExtCost;
3305 }
3306
3311
3312
3313
3314 assert((RedOpcode == Instruction::Add || RedOpcode == Instruction::Sub) &&
3315 "The reduction opcode is expected to be Add or Sub.");
3317 InstructionCost RedCost = thisT()->getArithmeticReductionCost(
3318 RedOpcode, ExtTy, std::nullopt, CostKind);
3320 IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
3322
3324 thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
3325
3326 return RedCost + MulCost + 2 * ExtCost;
3327 }
3328
3330
3331
3332};
3333
3334
3335
3338
3340
3343
3346
3347public:
3349};
3350
3351}
3352
3353#endif
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static const Function * getCalledFunction(const Value *V)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static unsigned getNumElements(Type *Ty)
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file describes how to lower LLVM code to machine code.
This file provides helpers for the implementation of a TargetTransformInfo-conforming class.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool sgt(const APInt &RHS) const
Signed greater than comparison.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
size_t size() const
size - Get the array size.
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
InstructionCost getFPOpCost(Type *Ty) const override
Definition BasicTTIImpl.h:674
bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const override
Definition BasicTTIImpl.h:684
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
Definition BasicTTIImpl.h:1560
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
Definition BasicTTIImpl.h:1435
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
Definition BasicTTIImpl.h:1045
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
Try to calculate op costs for min/max reduction operations.
Definition BasicTTIImpl.h:3231
bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty) const override
Definition BasicTTIImpl.h:507
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind) const override
Definition BasicTTIImpl.h:569
unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const override
Definition BasicTTIImpl.h:707
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
Definition BasicTTIImpl.h:1378
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override
Definition BasicTTIImpl.h:887
bool shouldBuildLookupTables() const override
Definition BasicTTIImpl.h:634
InstructionCost getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const override
Estimate the overhead of scalarizing an instruction.
Definition BasicTTIImpl.h:900
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override
Definition BasicTTIImpl.h:435
bool isProfitableToHoist(Instruction *I) const override
Definition BasicTTIImpl.h:553
unsigned getNumberOfParts(Type *Tp) const override
Definition BasicTTIImpl.h:3081
unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const override
Definition BasicTTIImpl.h:861
InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
Definition BasicTTIImpl.h:1455
bool useAA() const override
Definition BasicTTIImpl.h:557
unsigned getPrefetchDistance() const override
Definition BasicTTIImpl.h:857
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *SrcTy, int &Index, VectorType *&SubTy) const
Definition BasicTTIImpl.h:1123
unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const override
Definition BasicTTIImpl.h:487
bool isLegalAddScalableImmediate(int64_t Imm) const override
Definition BasicTTIImpl.h:462
unsigned getAssumedAddrSpace(const Value *V) const override
Definition BasicTTIImpl.h:439
std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const override
Definition BasicTTIImpl.h:819
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr, int64_t ScalableOffset=0) const override
Definition BasicTTIImpl.h:470
bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const override
Definition BasicTTIImpl.h:421
bool areInlineCompatible(const Function *Caller, const Function *Callee) const override
Definition BasicTTIImpl.h:395
bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty) const override
Definition BasicTTIImpl.h:512
bool haveFastSqrt(Type *Ty) const override
Definition BasicTTIImpl.h:665
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const override
Definition BasicTTIImpl.h:430
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
Definition BasicTTIImpl.h:1179
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Scalar, ArrayRef< std::tuple< Value *, User *, int > > ScalarUserAndIdx) const override
Definition BasicTTIImpl.h:1446
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JumpTableSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const override
Definition BasicTTIImpl.h:575
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const override
Definition BasicTTIImpl.h:453
unsigned adjustInliningThreshold(const CallBase *CB) const override
Definition BasicTTIImpl.h:704
unsigned getInliningThresholdMultiplier() const override
Definition BasicTTIImpl.h:703
int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset)
Definition BasicTTIImpl.h:483
bool shouldBuildRelLookupTables() const override
Definition BasicTTIImpl.h:640
bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const override
Definition BasicTTIImpl.h:948
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
Definition BasicTTIImpl.h:3219
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
Definition BasicTTIImpl.h:1383
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) const override
Definition BasicTTIImpl.h:534
unsigned getEpilogueVectorizationMinVF() const override
Definition BasicTTIImpl.h:800
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index, TTI::TargetCostKind CostKind) const override
Definition BasicTTIImpl.h:1368
InstructionCost getVectorSplitCost() const
Definition BasicTTIImpl.h:3329
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
Definition BasicTTIImpl.h:549
std::optional< unsigned > getMaxVScale() const override
Definition BasicTTIImpl.h:891
unsigned getFlatAddressSpace() const override
Definition BasicTTIImpl.h:425
InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const override
Compute a cost of the given call instruction.
Definition BasicTTIImpl.h:3076
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
Definition BasicTTIImpl.h:714
InstructionCost getTreeReductionCost(unsigned Opcode, VectorType *Ty, TTI::TargetCostKind CostKind) const
Try to calculate arithmetic and shuffle op costs for reduction intrinsics.
Definition BasicTTIImpl.h:3125
~BasicTTIImplBase() override=default
std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const override
Definition BasicTTIImpl.h:449
unsigned getMaxPrefetchIterationsAhead() const override
Definition BasicTTIImpl.h:869
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
Definition BasicTTIImpl.h:786
InstructionCost getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
Get intrinsic cost based on argument types.
Definition BasicTTIImpl.h:2176
bool hasBranchDivergence(const Function *F=nullptr) const override
Definition BasicTTIImpl.h:409
InstructionCost getOrderedReductionCost(unsigned Opcode, VectorType *Ty, TTI::TargetCostKind CostKind) const
Try to calculate the cost of performing strict (in-order) reductions, which involves doing a sequence...
Definition BasicTTIImpl.h:3201
bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const override
Definition BasicTTIImpl.h:932
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const override
Definition BasicTTIImpl.h:804
std::optional< unsigned > getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const override
Definition BasicTTIImpl.h:843
bool shouldPrefetchAddressSpace(unsigned AS) const override
Definition BasicTTIImpl.h:877
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, Align Alignment, unsigned *Fast) const override
Definition BasicTTIImpl.h:387
unsigned getCacheLineSize() const override
Definition BasicTTIImpl.h:853
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const override
Definition BasicTTIImpl.h:814
bool shouldDropLSRSolutionIfLessProfitable() const override
Definition BasicTTIImpl.h:526
int getInlinerVectorBonusPercent() const override
Definition BasicTTIImpl.h:712
bool isVScaleKnownToBeAPowerOfTwo() const override
Definition BasicTTIImpl.h:895
InstructionCost getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind) const override
Definition BasicTTIImpl.h:3308
InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
Definition BasicTTIImpl.h:1469
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
Definition BasicTTIImpl.h:1208
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
Estimate the cost of type-legalization and the legalized type.
Definition BasicTTIImpl.h:1009
bool isLegalAddImmediate(int64_t imm) const override
Definition BasicTTIImpl.h:458
InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) const override
Definition BasicTTIImpl.h:1483
unsigned getMaxInterleaveFactor(ElementCount VF) const override
Definition BasicTTIImpl.h:1043
bool isSingleThreaded() const override
Definition BasicTTIImpl.h:443
InstructionCost getScalarizationOverhead(VectorType *InTy, bool Insert, bool Extract, TTI::TargetCostKind CostKind) const
Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
Definition BasicTTIImpl.h:954
bool isProfitableLSRChainElement(Instruction *I) const override
Definition BasicTTIImpl.h:530
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override
Definition BasicTTIImpl.h:417
bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const override
Definition BasicTTIImpl.h:942
bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const override
Definition BasicTTIImpl.h:937
std::optional< unsigned > getVScaleForTuning() const override
Definition BasicTTIImpl.h:892
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
Definition BasicTTIImpl.h:3279
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
Get intrinsic cost based on arguments.
Definition BasicTTIImpl.h:1708
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const override
Definition BasicTTIImpl.h:809
std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const override
Definition BasicTTIImpl.h:826
InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *, const SCEV *, TTI::TargetCostKind) const override
Definition BasicTTIImpl.h:3099
bool isSourceOfDivergence(const Value *V) const override
Definition BasicTTIImpl.h:413
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const override
Definition BasicTTIImpl.h:672
InstructionCost getScalarizationOverhead(VectorType *RetTy, ArrayRef< const Value * > Args, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing the inputs and outputs of an instruction, with return type RetTy...
Definition BasicTTIImpl.h:990
std::optional< unsigned > getCacheSize(TargetTransformInfo::CacheLevel Level) const override
Definition BasicTTIImpl.h:837
bool isAlwaysUniform(const Value *V) const override
Definition BasicTTIImpl.h:415
bool isLegalICmpImmediate(int64_t imm) const override
Definition BasicTTIImpl.h:466
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const override
Definition BasicTTIImpl.h:794
unsigned getRegUsageForType(Type *Ty) const override
Definition BasicTTIImpl.h:564
InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const override
Get memory intrinsic cost based on arguments.
Definition BasicTTIImpl.h:3004
BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
Definition BasicTTIImpl.h:378
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
Definition BasicTTIImpl.h:1515
bool isTypeLegal(Type *Ty) const override
Definition BasicTTIImpl.h:559
bool enableWritePrefetching() const override
Definition BasicTTIImpl.h:873
bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const override
Definition BasicTTIImpl.h:517
InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const override
Estimate the overhead of scalarizing an instruction's operands.
Definition BasicTTIImpl.h:969
bool isNumRegsMajorCostOfLSR() const override
Definition BasicTTIImpl.h:522
BasicTTIImpl(const TargetMachine *TM, const Function &F)
size_type count() const
count - Returns the number of bits which are set.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ ICMP_ULT
unsigned less than
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
static CmpInst::Predicate getGTPredicate(Intrinsic::ID ID)
static CmpInst::Predicate getLTPredicate(Intrinsic::ID ID)
This class represents a range of values.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
Container class for subtarget features.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
AttributeList getAttributes() const
Return the attribute list for this Function.
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
FastMathFlags getFlags() const
const TargetLibraryInfo * getLibInfo() const
const SmallVectorImpl< Type * > & getArgTypes() const
Type * getReturnType() const
bool skipScalarizationCost() const
const SmallVectorImpl< const Value * > & getArgs() const
InstructionCost getScalarizationCost() const
const IntrinsicInst * getInst() const
Intrinsic::ID getID() const
bool isTypeBasedOnly() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
const FeatureBitset & getFeatureBits() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Information for memory intrinsic cost model.
Align getAlignment() const
Type * getDataType() const
bool getVariableMask() const
Intrinsic::ID getID() const
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Analysis providing profile information.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
static LLVM_ABI bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
static LLVM_ABI bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
static LLVM_ABI bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
static LLVM_ABI bool isReverseMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask swaps the order of elements from exactly one source vector.
static LLVM_ABI bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
static LLVM_ABI bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
static StackOffset getScalable(int64_t Scalable)
static StackOffset getFixed(int64_t Fixed)
static LLVM_ABI StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool preferSelectsOverBooleanArithmetic(EVT VT) const
Should we prefer selects to doing arithmetic on boolean types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
virtual bool areJTsAllowed(const Function *Fn) const
Return true if lowering to a jump table is allowed.
bool isOperationLegalOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal using promotion.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool isSuitableForBitTests(const DenseMap< const BasicBlock *, unsigned int > &DestCmps, const APInt &Low, const APInt &High, const DataLayout &DL) const
Return true if lowering to a bit test is suitable for a set of case clusters which contains NumDests ...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const
Return how this store with truncation should be treated: either it is legal, needs to be promoted to ...
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return how this load with extension should be treated: either it is legal, needs to be promoted to a ...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
virtual const TargetSubtargetInfo * getSubtargetImpl(const Function &) const
Virtual method implemented by subclasses that returns a reference to that target's TargetSubtargetInf...
CodeModel::Model getCodeModel() const
Returns the code model.
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual bool isProfitableLSRChainElement(Instruction *I) const
virtual const DataLayout & getDataLayout() const
virtual std::optional< unsigned > getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const
virtual std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
virtual bool shouldDropLSRSolutionIfLessProfitable() const
virtual bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
virtual std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
virtual std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
virtual unsigned getEpilogueVectorizationMinVF() const
virtual bool isLoweredToCall(const Function *F) const
virtual InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info, TTI::OperandValueInfo Opd2Info, ArrayRef< const Value * > Args, const Instruction *CxtI=nullptr) const
virtual InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const
virtual bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const
virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I) const
virtual InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, const Instruction *I) const
virtual bool isNumRegsMajorCostOfLSR() const
virtual TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
TargetTransformInfoImplCRTPBase(const DataLayout &DL)
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind) const override
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Basic
The cost of a typical 'add' instruction.
MemIndexedMode
The type of load/store indexing.
@ MIM_Unindexed
No indexing.
@ MIM_PostInc
Post-incrementing.
@ MIM_PostDec
Post-decrementing.
@ MIM_PreDec
Pre-decrementing.
@ MIM_PreInc
Pre-incrementing.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
CastContextHint
Represents a hint about the context in which a cast is used.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ OK_UniformConstantValue
CacheLevel
The possible cache levels.
Triple - Helper class for working with autoconf configuration names.
ArchType getArch() const
Get the parsed architecture type of this triple.
LLVM_ABI bool isArch64Bit() const
Test whether the architecture is 64-bit.
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
bool isVoidTy() const
Return true if this is 'void'.
Value * getOperand(unsigned i) const
static LLVM_ABI bool isVPBinOp(Intrinsic::ID ID)
static LLVM_ABI bool isVPCast(Intrinsic::ID ID)
static LLVM_ABI bool isVPCmp(Intrinsic::ID ID)
static LLVM_ABI std::optional< unsigned > getFunctionalOpcodeForVP(Intrinsic::ID ID)
static LLVM_ABI std::optional< Intrinsic::ID > getFunctionalIntrinsicIDForVP(Intrinsic::ID ID)
static LLVM_ABI bool isVPIntrinsic(Intrinsic::ID)
static LLVM_ABI bool isVPReduction(Intrinsic::ID ID)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
Base class of all SIMD vector types.
static VectorType * getHalfElementsVectorType(VectorType *VTy)
This static method returns a VectorType with half as many elements as the input type and the same ele...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ SMULO
Same for multiplication.
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isTargetIntrinsic(ID IID)
isTargetIntrinsic - Returns true if IID is an intrinsic specific to a certain target.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
DiagnosticInfoOptimizationBase::Argument NV
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Type * toScalarizedTy(Type *Ty)
A helper for converting vectorized types to scalarized (non-vector) types.
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
bool isVectorizedTy(Type *Ty)
Returns true if Ty is a vector type or a struct of vector types where all vector types share the same...
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
ElementCount getVectorizedTypeVF(Type *Ty)
Returns the number of vector elements for a vectorized type.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
FunctionAddr VTableAddr uintptr_t uintptr_t Data
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
cl::opt< unsigned > PartialUnrollingThreshold
LLVM_ABI bool isVectorizedStructTy(StructType *StructTy)
Returns true if StructTy is an unpacked literal struct where all elements are vectors of matching ele...
This struct is a compact representation of a valid (non-zero power of two) alignment.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
ElementCount getVectorElementCount() const
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
Attributes of a target dependent hardware loop.
static bool hasVectorMaskArgument(RTLIB::LibcallImpl Impl)
Returns true if the function has a vector mask argument, which is assumed to be the last argument.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
bool AllowPeeling
Allow peeling off loop iterations.
bool AllowLoopNestsPeeling
Allow peeling off loop iterations for loop nests.
bool PeelProfiledIterations
Allow peeling basing on profile.
unsigned PeelCount
A forced peeling factor (the number of bodied of the original loop that should be peeled off before t...
Parameters that control the generic loop unrolling transformation.
bool UpperBound
Allow using trip count upper bound to unroll loops.
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).