LLVM: lib/Transforms/Scalar/DeadStoreElimination.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
84#include
85#include
86#include
87#include
88#include
89#include
90
91using namespace llvm;
93
94#define DEBUG_TYPE "dse"
95
96STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
97STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
98STATISTIC(NumFastStores, "Number of stores deleted");
99STATISTIC(NumFastOther, "Number of other instrs removed");
100STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
101STATISTIC(NumModifiedStores, "Number of stores modified");
102STATISTIC(NumCFGChecks, "Number of stores modified");
103STATISTIC(NumCFGTries, "Number of stores modified");
104STATISTIC(NumCFGSuccess, "Number of stores modified");
106 "Number of times a valid candidate is returned from getDomMemoryDef");
108 "Number iterations check for reads in getDomMemoryDef");
109
111 "Controls which MemoryDefs are eliminated.");
112
116 cl::desc("Enable partial-overwrite tracking in DSE"));
117
121 cl::desc("Enable partial store merging in DSE"));
122
125 cl::desc("The number of memory instructions to scan for "
126 "dead store elimination (default = 150)"));
129 cl::desc("The maximum number of steps while walking upwards to find "
130 "MemoryDefs that may be killed (default = 90)"));
131
134 cl::desc("The maximum number candidates that only partially overwrite the "
135 "killing MemoryDef to consider"
136 " (default = 5)"));
137
140 cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
141 "other stores per basic block (default = 5000)"));
142
146 "The cost of a step in the same basic block as the killing MemoryDef"
147 "(default = 1)"));
148
152 cl::desc("The cost of a step in a different basic "
153 "block than the killing MemoryDef"
154 "(default = 5)"));
155
158 cl::desc("The maximum number of blocks to check when trying to prove that "
159 "all paths to an exit go through a killing block (default = 50)"));
160
161
162
163
164
165
166
169 cl::desc("Allow DSE to optimize memory accesses."));
170
171
173 "enable-dse-initializes-attr-improvement", cl::init(true), cl::Hidden,
174 cl::desc("Enable the initializes attr improvement in DSE"));
175
176
177
178
181
182
183
185
187 return false;
188
190 switch (II->getIntrinsicID()) {
191 default: return false;
192 case Intrinsic::memset:
193 case Intrinsic::memcpy:
194 case Intrinsic::memcpy_element_unordered_atomic:
195 case Intrinsic::memset_element_unordered_atomic:
196
197
198 return true;
199 }
200 }
201
202
203
204 return false;
205}
206
207
208
214
222
225 return std::nullopt;
226}
227
228namespace {
229
230enum OverwriteResult {
231 OW_Begin,
232 OW_Complete,
233 OW_End,
234 OW_PartialEarlierWithFullLater,
235 OW_MaybePartial,
236 OW_None,
237 OW_Unknown
238};
239
240}
241
242
243
244
250 if (KillingII == nullptr || DeadII == nullptr)
251 return OW_Unknown;
252 if (KillingII->getIntrinsicID() != DeadII->getIntrinsicID())
253 return OW_Unknown;
254
255 switch (KillingII->getIntrinsicID()) {
256 case Intrinsic::masked_store:
257 case Intrinsic::vp_store: {
258 const DataLayout &DL = KillingII->getDataLayout();
259 auto *KillingTy = KillingII->getArgOperand(0)->getType();
260 auto *DeadTy = DeadII->getArgOperand(0)->getType();
261 if (DL.getTypeSizeInBits(KillingTy) != DL.getTypeSizeInBits(DeadTy))
262 return OW_Unknown;
263
266 return OW_Unknown;
267
268 Value *KillingPtr = KillingII->getArgOperand(1);
269 Value *DeadPtr = DeadII->getArgOperand(1);
270 if (KillingPtr != DeadPtr && .isMustAlias(KillingPtr, DeadPtr))
271 return OW_Unknown;
272 if (KillingII->getIntrinsicID() == Intrinsic::masked_store) {
273
274
275 if (KillingII->getArgOperand(2) != DeadII->getArgOperand(2))
276 return OW_Unknown;
277 } else if (KillingII->getIntrinsicID() == Intrinsic::vp_store) {
278
279
280 if (KillingII->getArgOperand(2) != DeadII->getArgOperand(2))
281 return OW_Unknown;
282
283 if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3))
284 return OW_Unknown;
285 }
286 return OW_Complete;
287 }
288 default:
289 return OW_Unknown;
290 }
291}
292
293
294
295
296
297
298
299
300
301
302
305 int64_t KillingOff, int64_t DeadOff,
310
311
312
313
314
316 KillingOff < int64_t(DeadOff + DeadSize) &&
317 int64_t(KillingOff + KillingSize) >= DeadOff) {
318
319
320 auto &IM = IOL[DeadI];
321 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
322 << int64_t(DeadOff + DeadSize) << ") KillingLoc ["
323 << KillingOff << ", " << int64_t(KillingOff + KillingSize)
324 << ")\n");
325
326
327
328
329
330 int64_t KillingIntStart = KillingOff;
331 int64_t KillingIntEnd = KillingOff + KillingSize;
332
333
334
335 auto ILI = IM.lower_bound(KillingIntStart);
336 if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
337
338
339
340 KillingIntStart = std::min(KillingIntStart, ILI->second);
341 KillingIntEnd = std::max(KillingIntEnd, ILI->first);
342 ILI = IM.erase(ILI);
343
344
345
346
347
348
349
350 while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
351 assert(ILI->second > KillingIntStart && "Unexpected interval");
352 KillingIntEnd = std::max(KillingIntEnd, ILI->first);
353 ILI = IM.erase(ILI);
354 }
355 }
356
357 IM[KillingIntEnd] = KillingIntStart;
358
359 ILI = IM.begin();
360 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
361 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
362 << DeadOff << ", " << int64_t(DeadOff + DeadSize)
363 << ") Composite KillingLoc [" << ILI->second << ", "
364 << ILI->first << ")\n");
365 ++NumCompletePartials;
366 return OW_Complete;
367 }
368 }
369
370
371
373 int64_t(DeadOff + DeadSize) > KillingOff &&
374 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
375 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
376 << ", " << int64_t(DeadOff + DeadSize)
377 << ") by a killing store [" << KillingOff << ", "
378 << int64_t(KillingOff + KillingSize) << ")\n");
379
380 return OW_PartialEarlierWithFullLater;
381 }
382
383
384
385
386
387
388
389
390
391
393 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
394 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
395 return OW_End;
396
397
398
399
400
401
402
403
404
405
407 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
408 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
409 "Expect to be handled as OW_Complete");
410 return OW_Begin;
411 }
412
413 return OW_Unknown;
414}
415
416
417
418
419
420static bool
424
425
426
427
428
429 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
431
432
434
436 ++FirstBBI;
443 else
445
446 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
447
448
450 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
451 bool isFirstBlock = true;
452
453
454 while (!WorkList.empty()) {
455 BlockAddressPair Current = WorkList.pop_back_val();
459
460
462
464 if (isFirstBlock) {
465
466 assert(B == SecondBB && "first block is not the store block");
467 EI = SecondBBI;
468 isFirstBlock = false;
469 } else {
470
471
472 EI = B->end();
473 }
474 for (; BI != EI; ++BI) {
476 if (I->mayWriteToMemory() && I != SecondI)
478 return false;
479 }
480 if (B != FirstBB) {
482 "Should not hit the entry block because SI must be dominated by LI");
487 return false;
489 return false;
490 }
492 auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr));
493 if (!Inserted.second) {
494
495
496 if (TranslatedPtr != Inserted.first->second)
497 return false;
498
499 continue;
500 }
501 WorkList.push_back(std::make_pair(Pred, PredAddr));
502 }
503 }
504 }
505 return true;
506}
507
510 uint64_t NewSizeInBits, bool IsOverwriteEnd) {
512 uint64_t DeadSliceSizeInBits = OldSizeInBits - NewSizeInBits;
513 uint64_t DeadSliceOffsetInBits =
514 OldOffsetInBits + (IsOverwriteEnd ? NewSizeInBits : 0);
515 auto SetDeadFragExpr = [](auto *Assign,
517
518
519 uint64_t RelativeOffset = DeadFragment.OffsetInBits -
520 Assign->getExpression()
521 ->getFragmentInfo()
523 .OffsetInBits;
525 Assign->getExpression(), RelativeOffset, DeadFragment.SizeInBits)) {
526 Assign->setExpression(*NewExpr);
527 return;
528 }
529
530
532 DIExpression::get(Assign->getContext(), {}), DeadFragment.OffsetInBits,
533 DeadFragment.SizeInBits);
534 Assign->setExpression(Expr);
535 Assign->setKillLocation();
536 };
537
538
539
542 auto GetDeadLink = [&Ctx, &LinkToNothing]() {
543 if (!LinkToNothing)
545 return LinkToNothing;
546 };
547
548
549
551 std::optionalDIExpression::FragmentInfo NewFragment;
553 DeadSliceSizeInBits, Assign,
554 NewFragment) ||
555 !NewFragment) {
556
557
558 Assign->setKillAddress();
559 Assign->setAssignId(GetDeadLink());
560 continue;
561 }
562
563 if (NewFragment->SizeInBits == 0)
564 continue;
565
566
567 auto *NewAssign = static_cast<decltype(Assign)>(Assign->clone());
568 NewAssign->insertAfter(Assign->getIterator());
569 NewAssign->setAssignId(GetDeadLink());
570 if (NewFragment)
571 SetDeadFragExpr(NewAssign, *NewFragment);
572 NewAssign->setKillAddress();
573 }
574}
575
576
577
578
581
583
584
586 for (auto &Attr : OldAttrs) {
587 if (Attr.hasKindAsEnum()) {
588 switch (Attr.getKindAsEnum()) {
589 default:
590 break;
591 case Attribute::Alignment:
592
593 if (isAligned(Attr.getAlignment().valueOrOne(), PtrOffset))
594 continue;
595 break;
596 case Attribute::Dereferenceable:
597 case Attribute::DereferenceableOrNull:
598
599
600 break;
601 case Attribute::NonNull:
602 case Attribute::NoUndef:
603 continue;
604 }
605 }
607 }
608
609
610 Intrinsic->removeParamAttrs(ArgNo, AttrsToRemove);
611}
612
614 uint64_t &DeadSize, int64_t KillingStart,
615 uint64_t KillingSize, bool IsOverwriteEnd) {
617 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633 int64_t ToRemoveStart = 0;
635
636
637 if (IsOverwriteEnd) {
638
639
642 ToRemoveStart = KillingStart + Off;
643 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
644 return false;
645 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
646 } else {
647 ToRemoveStart = DeadStart;
648 assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
649 "Not overlapping accesses?");
650 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
651
652
654 if (Off != 0) {
655 if (ToRemoveSize <= (PrefAlign.value() - Off))
656 return false;
657 ToRemoveSize -= PrefAlign.value() - Off;
658 }
660 "Should preserve selected alignment");
661 }
662
663 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
664 assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
665
666 uint64_t NewSize = DeadSize - ToRemoveSize;
667 if (DeadIntrinsic->isAtomic()) {
668
669
670 const uint32_t ElementSize = DeadIntrinsic->getElementSizeInBytes();
671 if (0 != NewSize % ElementSize)
672 return false;
673 }
674
676 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
677 << "\n KILLER [" << ToRemoveStart << ", "
678 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
679
680 DeadIntrinsic->setLength(NewSize);
681 DeadIntrinsic->setDestAlignment(PrefAlign);
682
683 Value *OrigDest = DeadIntrinsic->getRawDest();
684 if (!IsOverwriteEnd) {
685 Value *Indices[1] = {
686 ConstantInt::get(DeadIntrinsic->getLength()->getType(), ToRemoveSize)};
688 Type::getInt8Ty(DeadIntrinsic->getContext()), OrigDest, Indices, "",
690 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
691 DeadIntrinsic->setDest(NewDestGEP);
693 }
694
695
696 shortenAssignment(DeadI, OrigDest, DeadStart * 8, DeadSize * 8, NewSize * 8,
697 IsOverwriteEnd);
698
699
700 if (!IsOverwriteEnd)
701 DeadStart += ToRemoveSize;
702 DeadSize = NewSize;
703
704 return true;
705}
706
708 int64_t &DeadStart, uint64_t &DeadSize) {
710 return false;
711
712 OverlapIntervalsTy::iterator OII = --IntervalMap.end();
713 int64_t KillingStart = OII->second;
714 uint64_t KillingSize = OII->first - KillingStart;
715
716 assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
717
718 if (KillingStart > DeadStart &&
719
720
721 (uint64_t)(KillingStart - DeadStart) < DeadSize &&
722
723
724 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
725 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
726 true)) {
728 return true;
729 }
730 }
731 return false;
732}
733
736 int64_t &DeadStart, uint64_t &DeadSize) {
738 return false;
739
741 int64_t KillingStart = OII->second;
742 uint64_t KillingSize = OII->first - KillingStart;
743
744 assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
745
746 if (KillingStart <= DeadStart &&
747
748
749 KillingSize > (uint64_t)(DeadStart - KillingStart)) {
750
751
752 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
753 "Should have been handled as OW_Complete");
754 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
755 false)) {
757 return true;
758 }
759 }
760 return false;
761}
762
765 int64_t KillingOffset, int64_t DeadOffset,
768
774
775
776
777
778
779
780
781
782
783
785 APInt KillingValue =
787 unsigned KillingBits = KillingValue.getBitWidth();
789 KillingValue = KillingValue.zext(DeadValue.getBitWidth());
790
791
792 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
793 unsigned LShiftAmount =
794 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
795 : BitOffsetDiff;
797 LShiftAmount + KillingBits);
798
799
800 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
801 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI
802 << "\n Killing: " << *KillingI
803 << "\n Merged Value: " << Merged << '\n');
805 }
806 return nullptr;
807}
808
809
812 switch (II->getIntrinsicID()) {
813 case Intrinsic::lifetime_start:
814 case Intrinsic::lifetime_end:
815 case Intrinsic::invariant_end:
816 case Intrinsic::launder_invariant_group:
817 case Intrinsic::assume:
818 return true;
819 case Intrinsic::dbg_declare:
820 case Intrinsic::dbg_label:
821 case Intrinsic::dbg_value:
822 llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
823 default:
824 return false;
825 }
826 }
827 return false;
828}
829
830
833
834
836 if (CB->onlyAccessesInaccessibleMemory())
837 return true;
838
839
840
841 if (DI->mayThrow() && !DefVisibleToCaller)
842 return true;
843
844
845
846
847
848
850 return true;
851
852
854 return true;
855
856 return false;
857}
858
859namespace {
860
861
862
863struct MemoryLocationWrapper {
864 MemoryLocationWrapper(MemoryLocation MemLoc, MemoryDef *MemDef,
865 bool DefByInitializesAttr)
866 : MemLoc(MemLoc), MemDef(MemDef),
867 DefByInitializesAttr(DefByInitializesAttr) {
868 assert(MemLoc.Ptr && "MemLoc should be not null");
870 DefInst = MemDef->getMemoryInst();
871 }
872
873 MemoryLocation MemLoc;
874 const Value *UnderlyingObject;
875 MemoryDef *MemDef;
877 bool DefByInitializesAttr = false;
878};
879
880
881
882struct MemoryDefWrapper {
883 MemoryDefWrapper(MemoryDef *MemDef,
884 ArrayRef<std::pair<MemoryLocation, bool>> MemLocations) {
886 for (auto &[MemLoc, DefByInitializesAttr] : MemLocations)
887 DefinedLocations.push_back(
888 MemoryLocationWrapper(MemLoc, MemDef, DefByInitializesAttr));
889 }
892};
893
894struct ArgumentInitInfo {
895 unsigned Idx;
896 bool IsDeadOrInvisibleOnUnwind;
897 ConstantRangeList Inits;
898};
899}
900
905
906
907
908
909
912 bool CallHasNoUnwindAttr) {
913 if (Args.empty())
914 return {};
915
916
917
918 for (const auto &Arg : Args) {
919 if (!CallHasNoUnwindAttr && !Arg.IsDeadOrInvisibleOnUnwind)
920 return {};
921 if (Arg.Inits.empty())
922 return {};
923 }
924
926 for (auto &Arg : Args.drop_front())
927 IntersectedIntervals = IntersectedIntervals.intersectWith(Arg.Inits);
928
929 return IntersectedIntervals;
930}
931
932namespace {
933
934struct DSEState {
937 EarliestEscapeAnalysis EA;
938
939
940
941
942
943
944
945
946 BatchAAResults BatchAA;
947
949 DominatorTree &DT;
950 PostDominatorTree &PDT;
951 const TargetLibraryInfo &TLI;
952 const DataLayout &DL;
953 const LoopInfo &LI;
954
955
956
957 bool ContainsIrreducibleLoops;
958
959
961
962 SmallPtrSet<MemoryAccess *, 4> SkipStores;
963
964 DenseMap<const Value *, bool> CapturedBeforeReturn;
965
966
967 DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
968
969 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
970
971
972 DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
973
974
975
976 MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
977
978
979
980 bool AnyUnreachableExit;
981
982
983
984
985 bool ShouldIterateEndOfFunctionDSE;
986
987
989
990
991 DSEState(const DSEState &) = delete;
992 DSEState &operator=(const DSEState &) = delete;
993
995 PostDominatorTree &PDT, const TargetLibraryInfo &TLI,
996 const LoopInfo &LI)
997 : F(F), AA(AA), EA(DT, &LI), BatchAA(AA, &EA), MSSA(MSSA), DT(DT),
998 PDT(PDT), TLI(TLI), DL(F.getDataLayout()), LI(LI) {
999
1000
1001 unsigned PO = 0;
1002 for (BasicBlock *BB : post_order(&F)) {
1003 PostOrderNumbers[BB] = PO++;
1004 for (Instruction &I : *BB) {
1005 MemoryAccess *MA = MSSA.getMemoryAccess(&I);
1006 if (I.mayThrow() && !MA)
1007 ThrowingBlocks.insert(I.getParent());
1008
1011 (getLocForWrite(&I) || isMemTerminatorInst(&I) ||
1013 MemDefs.push_back(MD);
1014 }
1015 }
1016
1017
1018
1019 for (Argument &AI : F.args())
1020 if (AI.hasPassPointeeByValueCopyAttr() || AI.hasDeadOnReturnAttr())
1021 InvisibleToCallerAfterRet.insert({&AI, true});
1022
1023
1025
1026 AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) {
1027 return isa(E->getTerminator());
1028 });
1029 }
1030
1031 static void pushMemUses(MemoryAccess *Acc,
1032 SmallVectorImpl<MemoryAccess *> &WorkList,
1033 SmallPtrSetImpl<MemoryAccess *> &Visited) {
1034 for (Use &U : Acc->uses()) {
1036 if (Visited.insert(MA).second)
1038 }
1039 };
1040
1041 LocationSize strengthenLocationSize(const Instruction *I,
1042 LocationSize Size) const {
1044 LibFunc F;
1045 if (TLI.getLibFunc(*CB, F) && TLI.has(F) &&
1046 (F == LibFunc_memset_chk || F == LibFunc_memcpy_chk)) {
1047
1048
1049
1050
1051
1052
1053
1054
1057 }
1058 }
1059 return Size;
1060 }
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070 OverwriteResult isOverwrite(const Instruction *KillingI,
1071 const Instruction *DeadI,
1072 const MemoryLocation &KillingLoc,
1073 const MemoryLocation &DeadLoc,
1074 int64_t &KillingOff, int64_t &DeadOff) {
1075
1076
1077
1078 if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc))
1079 return OW_Unknown;
1080
1081 LocationSize KillingLocSize =
1082 strengthenLocationSize(KillingI, KillingLoc.Size);
1087
1088
1089
1090 if (DeadUndObj == KillingUndObj && KillingLocSize.isPrecise() &&
1092 std::optional KillingUndObjSize =
1094 if (KillingUndObjSize && *KillingUndObjSize == KillingLocSize.getValue())
1095 return OW_Complete;
1096 }
1097
1098
1099
1101
1102
1105 if (KillingMemI && DeadMemI) {
1106 const Value *KillingV = KillingMemI->getLength();
1107 const Value *DeadV = DeadMemI->getLength();
1108 if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc))
1109 return OW_Complete;
1110 }
1111
1112
1113
1115 }
1116
1117 const TypeSize KillingSize = KillingLocSize.getValue();
1118 const TypeSize DeadSize = DeadLoc.Size.getValue();
1119
1120
1121 const bool AnyScalable =
1123
1124 if (AnyScalable)
1125 return OW_Unknown;
1126
1127 AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc);
1128
1129
1130
1132
1133 if (KillingSize >= DeadSize)
1134 return OW_Complete;
1135 }
1136
1137
1140 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
1141 return OW_Complete;
1142 }
1143
1144
1145
1146 if (DeadUndObj != KillingUndObj) {
1147
1148
1149
1150
1151
1153 return OW_None;
1154 return OW_Unknown;
1155 }
1156
1157
1158
1159
1160 DeadOff = 0;
1161 KillingOff = 0;
1162 const Value *DeadBasePtr =
1164 const Value *KillingBasePtr =
1166
1167
1168
1169 if (DeadBasePtr != KillingBasePtr)
1170 return OW_Unknown;
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187 if (DeadOff >= KillingOff) {
1188
1189
1190 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
1191 return OW_Complete;
1192
1193
1194 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
1195 return OW_MaybePartial;
1196 }
1197
1198
1199 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
1200 return OW_MaybePartial;
1201 }
1202
1203
1204 return OW_None;
1205 }
1206
1207 bool isInvisibleToCallerAfterRet(const Value *V) {
1209 return true;
1210
1211 auto I = InvisibleToCallerAfterRet.insert({V, false});
1212 if (I.second && isInvisibleToCallerOnUnwind(V) && isNoAliasCall(V))
1214 V, true, CaptureComponents::Provenance));
1215 return I.first->second;
1216 }
1217
1218 bool isInvisibleToCallerOnUnwind(const Value *V) {
1219 bool RequiresNoCaptureBeforeUnwind;
1221 return false;
1222 if (!RequiresNoCaptureBeforeUnwind)
1223 return true;
1224
1225 auto I = CapturedBeforeReturn.insert({V, true});
1226 if (I.second)
1227
1228
1229
1230
1232 V, false, CaptureComponents::Provenance));
1233 return .first->second;
1234 }
1235
1236 std::optional getLocForWrite(Instruction *I) const {
1237 if (->mayWriteToMemory())
1238 return std::nullopt;
1239
1242
1244 }
1245
1246
1247
1249 getLocForInst(Instruction *I, bool ConsiderInitializesAttr) {
1251 if (isMemTerminatorInst(I)) {
1252 if (auto Loc = getLocForTerminator(I))
1253 Locations.push_back(std::make_pair(Loc->first, false));
1255 }
1256
1257 if (auto Loc = getLocForWrite(I))
1258 Locations.push_back(std::make_pair(*Loc, false));
1259
1260 if (ConsiderInitializesAttr) {
1261 for (auto &MemLoc : getInitializesArgMemLoc(I)) {
1262 Locations.push_back(std::make_pair(MemLoc, true));
1263 }
1264 }
1266 }
1267
1268
1269
1270 bool isRemovable(Instruction *I) {
1271 assert(getLocForWrite(I) && "Must have analyzable write");
1272
1273
1275 return SI->isUnordered();
1276
1278
1280 return ->isVolatile();
1281
1282
1283
1284 if (CB->isLifetimeStartOrEnd())
1285 return false;
1286
1287 return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() &&
1288 !CB->isTerminator();
1289 }
1290
1291 return false;
1292 }
1293
1294
1295
1296 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1297 Instruction *UseInst) {
1298
1299
1300
1302 return false;
1303
1305 if (CB->onlyAccessesInaccessibleMemory())
1306 return false;
1307
1308 int64_t InstWriteOffset, DepWriteOffset;
1309 if (auto CC = getLocForWrite(UseInst))
1310 return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset,
1311 DepWriteOffset) == OW_Complete;
1312 return false;
1313 }
1314
1315
1316 bool isWriteAtEndOfFunction(MemoryDef *Def, const MemoryLocation &DefLoc) {
1317 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " ("
1318 << *Def->getMemoryInst()
1319 << ") is at the end the function \n");
1321 SmallPtrSet<MemoryAccess *, 8> Visited;
1322
1323 pushMemUses(Def, WorkList, Visited);
1324 for (unsigned I = 0; I < WorkList.size(); I++) {
1326 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n");
1327 return false;
1328 }
1329
1330 MemoryAccess *UseAccess = WorkList[I];
1332
1333
1334
1335 if (!isGuaranteedLoopInvariant(DefLoc.Ptr))
1336 return false;
1337
1338 pushMemUses(cast(UseAccess), WorkList, Visited);
1339 continue;
1340 }
1341
1342
1344 if (isReadClobber(DefLoc, UseInst)) {
1345 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n");
1346 return false;
1347 }
1348
1350 pushMemUses(UseDef, WorkList, Visited);
1351 }
1352 return true;
1353 }
1354
1355
1356
1357
1358 std::optional<std::pair<MemoryLocation, bool>>
1359 getLocForTerminator(Instruction *I) const {
1361 if (CB->getIntrinsicID() == Intrinsic::lifetime_end)
1362 return {
1366 }
1367
1368 return std::nullopt;
1369 }
1370
1371
1372
1373 bool isMemTerminatorInst(Instruction *I) const {
1375 return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end ||
1377 }
1378
1379
1380
1381 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1382 Instruction *MaybeTerm) {
1383 std::optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1384 getLocForTerminator(MaybeTerm);
1385
1386 if (!MaybeTermLoc)
1387 return false;
1388
1389
1390
1393 return false;
1394
1395 auto TermLoc = MaybeTermLoc->first;
1396 if (MaybeTermLoc->second) {
1398 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
1399 }
1400 int64_t InstWriteOffset = 0;
1401 int64_t DepWriteOffset = 0;
1402 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset,
1403 DepWriteOffset) == OW_Complete;
1404 }
1405
1406
1407 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1409 return false;
1410
1411
1412
1414 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);
1415
1417 return false;
1418
1420 if (CB->onlyAccessesInaccessibleMemory())
1421 return false;
1422
1423 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
1424 }
1425
1426
1427
1428
1429
1430
1431 bool isGuaranteedLoopIndependent(const Instruction *Current,
1432 const Instruction *KillingDef,
1433 const MemoryLocation &CurrentLoc) {
1434
1435
1436
1437
1439 return true;
1440 const Loop *CurrentLI = LI.getLoopFor(Current->getParent());
1441 if (!ContainsIrreducibleLoops && CurrentLI &&
1442 CurrentLI == LI.getLoopFor(KillingDef->getParent()))
1443 return true;
1444
1445 return isGuaranteedLoopInvariant(CurrentLoc.Ptr);
1446 }
1447
1448
1449
1450
1451 bool isGuaranteedLoopInvariant(const Value *Ptr) {
1454 if (GEP->hasAllConstantIndices())
1456
1458 return I->getParent()->isEntryBlock() ||
1459 (!ContainsIrreducibleLoops && !LI.getLoopFor(I->getParent()));
1460 }
1461 return true;
1462 }
1463
1464
1465
1466
1467
1468
1469
1470 std::optional<MemoryAccess *>
1471 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1472 const MemoryLocation &KillingLoc, const Value *KillingUndObj,
1473 unsigned &ScanLimit, unsigned &WalkerStepLimit,
1474 bool IsMemTerm, unsigned &PartialLimit,
1475 bool IsInitializesAttrMemLoc) {
1476 if (ScanLimit == 0 || WalkerStepLimit == 0) {
1478 return std::nullopt;
1479 }
1480
1481 MemoryAccess *Current = StartAccess;
1483 LLVM_DEBUG(dbgs() << " trying to get dominating access\n");
1484
1485
1486
1487
1488
1489
1493
1494
1495 std::optional CurrentLoc;
1496 for (;; Current = cast(Current)->getDefiningAccess()) {
1498 dbgs() << " visiting " << *Current;
1501 << ")";
1502 dbgs() << "\n";
1503 });
1504
1505
1506 if (MSSA.isLiveOnEntryDef(Current)) {
1507 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n");
1509
1511 return std::nullopt;
1512 }
1513
1514
1515
1516 unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1519 if (WalkerStepLimit <= StepCost) {
1520 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n");
1521 return std::nullopt;
1522 }
1523 WalkerStepLimit -= StepCost;
1524
1525
1526
1529 return Current;
1530 }
1531
1532
1533
1536
1537 if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) {
1538 CanOptimize = false;
1539 continue;
1540 }
1541
1542
1543
1544 if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) {
1546 return std::nullopt;
1547 }
1548
1549
1550
1551 if (isDSEBarrier(KillingUndObj, CurrentI)) {
1553 return std::nullopt;
1554 }
1555
1556
1557
1558
1559
1560 if ((CurrentI) && isReadClobber(KillingLoc, CurrentI))
1561 return std::nullopt;
1562
1563
1564 if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) {
1565 if (auto *UseOrDef = dyn_cast(U.getUser()))
1566 return !MSSA.dominates(StartAccess, UseOrDef) &&
1567 isReadClobber(KillingLoc, UseOrDef->getMemoryInst());
1568 return false;
1569 })) {
1570 LLVM_DEBUG(dbgs() << " ... found a read clobber\n");
1571 return std::nullopt;
1572 }
1573
1574
1575
1576 CurrentLoc = getLocForWrite(CurrentI);
1577 if (!CurrentLoc || !isRemovable(CurrentI)) {
1578 CanOptimize = false;
1579 continue;
1580 }
1581
1582
1583
1584
1585 if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) {
1586 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n");
1587 CanOptimize = false;
1588 continue;
1589 }
1590
1591 if (IsMemTerm) {
1592
1593
1594
1595 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
1596 CanOptimize = false;
1597 continue;
1598 }
1599 } else {
1600 int64_t KillingOffset = 0;
1601 int64_t DeadOffset = 0;
1602 auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc,
1603 KillingOffset, DeadOffset);
1604 if (CanOptimize) {
1605
1606
1607
1609 (OR == OW_Complete || OR == OW_MaybePartial))
1611
1612
1613
1614 if (OR != OW_None)
1615 CanOptimize = false;
1616 }
1617
1618
1619
1620 if (OR == OW_Unknown || OR == OW_None)
1621 continue;
1622 else if (OR == OW_MaybePartial) {
1623
1624
1625
1626
1627 if (PartialLimit <= 1) {
1628 WalkerStepLimit -= 1;
1629 LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n");
1630 continue;
1631 }
1632 PartialLimit -= 1;
1633 }
1634 }
1635 break;
1636 };
1637
1638
1639
1640
1641
1642 SmallPtrSet<Instruction *, 16> KillingDefs;
1644 MemoryAccess *MaybeDeadAccess = Current;
1645 MemoryLocation MaybeDeadLoc = *CurrentLoc;
1647 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " ("
1648 << *MaybeDeadI << ")\n");
1649
1651 SmallPtrSet<MemoryAccess *, 32> Visited;
1652 pushMemUses(MaybeDeadAccess, WorkList, Visited);
1653
1654
1655 for (unsigned I = 0; I < WorkList.size(); I++) {
1656 MemoryAccess *UseAccess = WorkList[I];
1657
1659
1660 if (ScanLimit < (WorkList.size() - I)) {
1662 return std::nullopt;
1663 }
1664 --ScanLimit;
1665 NumDomMemDefChecks++;
1666
1668 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
1669 return DT.properlyDominates(KI->getParent(),
1671 })) {
1672 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1673 continue;
1674 }
1676 pushMemUses(UseAccess, WorkList, Visited);
1677 continue;
1678 }
1679
1682
1683 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
1684 return DT.dominates(KI, UseInst);
1685 })) {
1686 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1687 continue;
1688 }
1689
1690
1691
1692 if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1695 << " ... skipping, memterminator invalidates following accesses\n");
1696 continue;
1697 }
1698
1700 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n");
1701 pushMemUses(UseAccess, WorkList, Visited);
1702 continue;
1703 }
1704
1705 if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) {
1706 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n");
1707 return std::nullopt;
1708 }
1709
1710
1711
1712
1713
1714 bool IsKillingDefFromInitAttr = false;
1715 if (IsInitializesAttrMemLoc) {
1716 if (KillingI == UseInst &&
1718 IsKillingDefFromInitAttr = true;
1719 }
1720
1721 if (isReadClobber(MaybeDeadLoc, UseInst) && !IsKillingDefFromInitAttr) {
1723 return std::nullopt;
1724 }
1725
1726
1727
1728
1729 if (MaybeDeadAccess == UseAccess &&
1730 !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) {
1731 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n");
1732 return std::nullopt;
1733 }
1734
1735
1736
1737
1738 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
1739 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n");
1740 continue;
1741 }
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1754 if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1756 if (PostOrderNumbers.find(MaybeKillingBlock)->second <
1757 PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) {
1758 if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1760 << " ... found killing def " << *UseInst << "\n");
1761 KillingDefs.insert(UseInst);
1762 }
1763 } else {
1765 << " ... found preceeding def " << *UseInst << "\n");
1766 return std::nullopt;
1767 }
1768 } else
1769 pushMemUses(UseDef, WorkList, Visited);
1770 }
1771 }
1772
1773
1774
1775
1776 if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1777 SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1778 for (Instruction *KD : KillingDefs)
1779 KillingBlocks.insert(KD->getParent());
1781 "Expected at least a single killing block");
1782
1783
1786 if (!CommonPred)
1787 break;
1788 CommonPred = PDT.findNearestCommonDominator(CommonPred, BB);
1789 }
1790
1791
1792
1793
1794 if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) {
1795 if (!AnyUnreachableExit)
1796 return std::nullopt;
1797
1798
1799
1800 CommonPred = nullptr;
1801 }
1802
1803
1804 if (KillingBlocks.count(CommonPred))
1805 return {MaybeDeadAccess};
1806
1807 SetVector<BasicBlock *> WorkList;
1808
1809
1810 if (CommonPred)
1811 WorkList.insert(CommonPred);
1812 else
1813 for (BasicBlock *R : PDT.roots()) {
1816 }
1817
1818 NumCFGTries++;
1819
1820
1821 for (unsigned I = 0; I < WorkList.size(); I++) {
1822 NumCFGChecks++;
1824 if (KillingBlocks.count(Current))
1825 continue;
1826 if (Current == MaybeDeadAccess->getBlock())
1827 return std::nullopt;
1828
1829
1830
1831 if (!DT.isReachableFromEntry(Current))
1832 continue;
1833
1835
1837 return std::nullopt;
1838 }
1839 NumCFGSuccess++;
1840 }
1841
1842
1843
1844 return {MaybeDeadAccess};
1845 }
1846
1847
1848
1849 void
1851 SmallPtrSetImpl<MemoryAccess *> *Deleted = nullptr) {
1852 MemorySSAUpdater Updater(&MSSA);
1855 --NumFastOther;
1856
1857 while (!NowDeadInsts.empty()) {
1859 ++NumFastOther;
1860
1861
1864
1865
1866 MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst);
1868 if (MA) {
1869 if (IsMemDef) {
1871 SkipStores.insert(MD);
1875 if (SI->getValueOperand()->getType()->isPointerTy()) {
1877 if (CapturedBeforeReturn.erase(UO))
1878 ShouldIterateEndOfFunctionDSE = true;
1879 InvisibleToCallerAfterRet.erase(UO);
1880 }
1881 }
1882 }
1883
1884 Updater.removeMemoryAccess(MA);
1885 }
1886
1887 auto I = IOLs.find(DeadInst->getParent());
1888 if (I != IOLs.end())
1889 I->second.erase(DeadInst);
1890
1891 for (Use &O : DeadInst->operands())
1896 }
1897
1898 EA.removeInstruction(DeadInst);
1899
1900
1901
1902
1903
1906 else
1907 ToRemove.push_back(DeadInst);
1908 }
1909 }
1910
1911
1912
1913
1914
1915 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
1916 const Value *KillingUndObj) {
1917
1918
1919
1920 if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj))
1921 return false;
1922
1924 return ThrowingBlocks.count(KillingI->getParent());
1925 return !ThrowingBlocks.empty();
1926 }
1927
1928
1929
1930
1931
1932
1933 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
1934
1935
1936 if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj))
1937 return true;
1938
1939
1940
1951 llvm_unreachable("other instructions should be skipped in MemorySSA");
1952 }
1953 return false;
1954 }
1955
1956
1957
1958 bool eliminateDeadWritesAtEndOfFunction() {
1959 bool MadeChange = false;
1962 << "Trying to eliminate MemoryDefs at the end of the function\n");
1963 do {
1964 ShouldIterateEndOfFunctionDSE = false;
1966 if (SkipStores.contains(Def))
1967 continue;
1968
1970 auto DefLoc = getLocForWrite(DefI);
1971 if (!DefLoc || !isRemovable(DefI)) {
1972 LLVM_DEBUG(dbgs() << " ... could not get location for write or "
1973 "instruction not removable.\n");
1974 continue;
1975 }
1976
1977
1978
1979
1980
1981
1983 if (!isInvisibleToCallerAfterRet(UO))
1984 continue;
1985
1986 if (isWriteAtEndOfFunction(Def, *DefLoc)) {
1987
1988 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end "
1989 "of the function\n");
1991 ++NumFastStores;
1992 MadeChange = true;
1993 }
1994 }
1995 } while (ShouldIterateEndOfFunctionDSE);
1996 return MadeChange;
1997 }
1998
1999
2000
2001 bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
2004 if (!MemSet)
2005
2006 return false;
2008 if (!StoredConstant || !StoredConstant->isNullValue())
2009 return false;
2010
2011 if (!isRemovable(DefI))
2012
2013 return false;
2014
2015 if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
2016 F.hasFnAttribute(Attribute::SanitizeAddress) ||
2017 F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
2018 F.getName() == "calloc")
2019 return false;
2022 return false;
2023 auto *InnerCallee = Malloc->getCalledFunction();
2024 if (!InnerCallee)
2025 return false;
2026 LibFunc Func = NotLibFunc;
2027 StringRef ZeroedVariantName;
2028 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
2029 Func != LibFunc_malloc) {
2030 Attribute Attr = Malloc->getFnAttr("alloc-variant-zeroed");
2032 return false;
2034 if (ZeroedVariantName.empty())
2035 return false;
2036 }
2037
2038
2040 if (!MallocDef)
2041 return false;
2042
2043 auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
2044
2045
2046 auto *MallocBB = Malloc->getParent(),
2047 *MemsetBB = Memset->getParent();
2048 if (MallocBB == MemsetBB)
2049 return true;
2050 auto *Ptr = Memset->getArgOperand(0);
2051 auto *TI = MallocBB->getTerminator();
2055 TrueBB, FalseBB)))
2056 return false;
2057 if (MemsetBB != FalseBB)
2058 return false;
2059 return true;
2060 };
2061
2063 return false;
2064 if (!shouldCreateCalloc(Malloc, MemSet) || !DT.dominates(Malloc, MemSet) ||
2066 return false;
2068 assert(Func == LibFunc_malloc || !ZeroedVariantName.empty());
2069 Value *Calloc = nullptr;
2070 if (!ZeroedVariantName.empty()) {
2071 LLVMContext &Ctx = Malloc->getContext();
2072 AttributeList Attrs = InnerCallee->getAttributes();
2074 Attrs.getFnAttr(Attribute::AllocKind).getAllocKind() |
2075 AllocFnKind::Zeroed;
2078 Attrs.addFnAttribute(Ctx, Attribute::getWithAllocKind(Ctx, AllocKind))
2079 .removeFnAttribute(Ctx, "alloc-variant-zeroed");
2080 FunctionCallee ZeroedVariant = Malloc->getModule()->getOrInsertFunction(
2081 ZeroedVariantName, InnerCallee->getFunctionType(), Attrs);
2084 Calloc = IRB.CreateCall(ZeroedVariant, Args, ZeroedVariantName);
2085 } else {
2086 Type *SizeTTy = Malloc->getArgOperand(0)->getType();
2087 Calloc =
2088 emitCalloc(ConstantInt::get(SizeTTy, 1), Malloc->getArgOperand(0),
2089 IRB, TLI, Malloc->getType()->getPointerAddressSpace());
2090 }
2091 if (!Calloc)
2092 return false;
2093
2094 MemorySSAUpdater Updater(&MSSA);
2095 auto *NewAccess =
2096 Updater.createMemoryAccessAfter(cast(Calloc), nullptr,
2097 MallocDef);
2099 Updater.insertDef(NewAccessMD, true);
2100 Malloc->replaceAllUsesWith(Calloc);
2102 return true;
2103 }
2104
2105
2106
2107 bool dominatingConditionImpliesValue(MemoryDef *Def) {
2109 BasicBlock *StoreBB = StoreI->getParent();
2110 Value *StorePtr = StoreI->getPointerOperand();
2111 Value *StoreVal = StoreI->getValueOperand();
2112
2114 if (!IDom)
2115 return false;
2116
2118 if (!BI || !BI->isConditional())
2119 return false;
2120
2121
2122
2123
2124 if (BI->getSuccessor(0) == BI->getSuccessor(1))
2125 return false;
2126
2128 CmpPredicate Pred;
2129 if ((BI->getCondition(),
2135 return false;
2136
2137
2138
2139 if (Pred == ICmpInst::ICMP_EQ &&
2140 !DT.dominates(BasicBlockEdge(BI->getParent(), BI->getSuccessor(0)),
2141 StoreBB))
2142 return false;
2143
2144 if (Pred == ICmpInst::ICMP_NE &&
2145 !DT.dominates(BasicBlockEdge(BI->getParent(), BI->getSuccessor(1)),
2146 StoreBB))
2147 return false;
2148
2149 MemoryAccess *LoadAcc = MSSA.getMemoryAccess(ICmpL);
2150 MemoryAccess *ClobAcc =
2151 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, BatchAA);
2152
2153 return MSSA.dominates(ClobAcc, LoadAcc);
2154 }
2155
2156
2157
2158 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
2162 Constant *StoredConstant = nullptr;
2163 if (Store)
2165 else if (MemSet)
2167 else
2168 return false;
2169
2170 if (!isRemovable(DefI))
2171 return false;
2172
2173 if (StoredConstant) {
2176
2177
2178 if (InitC && InitC == StoredConstant)
2179 return MSSA.isLiveOnEntryDef(
2180 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, BatchAA));
2181 }
2182
2183 if (!Store)
2184 return false;
2185
2186 if (dominatingConditionImpliesValue(Def))
2187 return true;
2188
2190 if (LoadI->getPointerOperand() == Store->getOperand(1)) {
2191
2192 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
2193
2194 if (LoadAccess == Def->getDefiningAccess())
2195 return true;
2196
2197
2198
2199
2200 SetVector<MemoryAccess *> ToCheck;
2201 MemoryAccess *Current =
2202 MSSA.getWalker()->getClobberingMemoryAccess(Def, BatchAA);
2203
2204
2205
2206 ToCheck.insert(Def);
2207 ToCheck.insert(Current);
2208
2209 for (unsigned I = 1; I < ToCheck.size(); ++I) {
2210 Current = ToCheck[I];
2212
2213 for (auto &Use : PhiAccess->incoming_values())
2215 continue;
2216 }
2217
2218
2219
2221 "Only MemoryDefs should reach here.");
2222
2223
2224
2225
2226 if (LoadAccess != Current)
2227 return false;
2228 }
2229 return true;
2230 }
2231 }
2232
2233 return false;
2234 }
2235
2238 for (auto OI : IOL) {
2240 MemoryLocation Loc = *getLocForWrite(DeadI);
2241 assert(isRemovable(DeadI) && "Expect only removable instruction");
2242
2244 int64_t DeadStart = 0;
2249 if (IntervalMap.empty())
2250 continue;
2252 }
2254 }
2255
2256
2257
2258 bool eliminateRedundantStoresOfExistingValues() {
2259 bool MadeChange = false;
2260 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
2261 "already existing value\n");
2262 for (auto *Def : MemDefs) {
2263 if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def))
2264 continue;
2265
2267 auto MaybeDefLoc = getLocForWrite(DefInst);
2268 if (!MaybeDefLoc || !isRemovable(DefInst))
2269 continue;
2270
2271 MemoryDef *UpperDef;
2272
2273
2274
2275 if (Def->isOptimized())
2277 else
2279 if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef))
2280 continue;
2281
2283 auto IsRedundantStore = [&]() {
2284
2286 true))
2287 return true;
2290
2291 auto UpperLoc = getLocForWrite(UpperInst);
2292 if (!UpperLoc)
2293 return false;
2294 int64_t InstWriteOffset = 0;
2295 int64_t DepWriteOffset = 0;
2296 auto OR = isOverwrite(UpperInst, DefInst, *UpperLoc, *MaybeDefLoc,
2297 InstWriteOffset, DepWriteOffset);
2299 return StoredByte && StoredByte == MemSetI->getOperand(1) &&
2300 OR == OW_Complete;
2301 }
2302 }
2303 return false;
2304 };
2305
2306 if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst))
2307 continue;
2308 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst
2309 << '\n');
2311 NumRedundantStores++;
2312 MadeChange = true;
2313 }
2314 return MadeChange;
2315 }
2316
2317
2318
2319
2320
2321
2322
2323
2324
2326
2327
2328
2329
2330 std::pair<bool, bool>
2331 eliminateDeadDefs(const MemoryLocationWrapper &KillingLocWrapper);
2332
2333
2334
2335 bool eliminateDeadDefs(const MemoryDefWrapper &KillingDefWrapper);
2336};
2337}
2338
2339
2347
2349DSEState::getInitializesArgMemLoc(const Instruction *I) {
2351 if (!CB)
2352 return {};
2353
2354
2355 SmallMapVector<Value *, SmallVector<ArgumentInitInfo, 2>, 2> Arguments;
2356 for (unsigned Idx = 0, Count = CB->arg_size(); Idx < Count; ++Idx) {
2359 continue;
2360
2361 ConstantRangeList Inits;
2363
2364
2367
2368
2369
2370
2373 Inits = ConstantRangeList();
2374
2375
2376
2377
2378
2379
2380
2381 bool IsDeadOrInvisibleOnUnwind =
2382 CB->paramHasAttr(Idx, Attribute::DeadOnUnwind) ||
2383 (isa(CB) && isInvisibleToCallerOnUnwind(CurArg));
2384 ArgumentInitInfo InitInfo{Idx, IsDeadOrInvisibleOnUnwind, Inits};
2385 bool FoundAliasing = false;
2386 for (auto &[Arg, AliasList] : Arguments) {
2390 continue;
2392 FoundAliasing = true;
2393 AliasList.push_back(InitInfo);
2394 } else {
2395
2396
2397
2398 FoundAliasing = true;
2399 AliasList.push_back(ArgumentInitInfo{Idx, IsDeadOrInvisibleOnUnwind,
2400 ConstantRangeList()});
2401 }
2402 }
2403 if (!FoundAliasing)
2405 }
2406
2408 for (const auto &[_, Args] : Arguments) {
2409 auto IntersectedRanges =
2411 if (IntersectedRanges.empty())
2412 continue;
2413
2414 for (const auto &Arg : Args) {
2415 for (const auto &Range : IntersectedRanges) {
2418
2419 if (Start == 0)
2423 }
2424 }
2425 }
2427}
2428
2429std::pair<bool, bool>
2430DSEState::eliminateDeadDefs(const MemoryLocationWrapper &KillingLocWrapper) {
2432 bool DeletedKillingLoc = false;
2436
2437
2438 SmallSetVector<MemoryAccess *, 8> ToCheck;
2439
2440
2441
2442 SmallPtrSet<MemoryAccess *, 8> Deleted;
2443 [[maybe_unused]] unsigned OrigNumSkipStores = SkipStores.size();
2445
2446
2447
2448 for (unsigned I = 0; I < ToCheck.size(); I++) {
2449 MemoryAccess *Current = ToCheck[I];
2450 if (Deleted.contains(Current))
2451 continue;
2452 std::optional<MemoryAccess *> MaybeDeadAccess = getDomMemoryDef(
2453 KillingLocWrapper.MemDef, Current, KillingLocWrapper.MemLoc,
2454 KillingLocWrapper.UnderlyingObject, ScanLimit, WalkerStepLimit,
2455 isMemTerminatorInst(KillingLocWrapper.DefInst), PartialLimit,
2456 KillingLocWrapper.DefByInitializesAttr);
2457
2458 if (!MaybeDeadAccess) {
2460 continue;
2461 }
2462 MemoryAccess *DeadAccess = *MaybeDeadAccess;
2463 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
2465 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n");
2470
2471
2472
2473
2474 if (PostOrderNumbers[IncomingBlock] > PostOrderNumbers[PhiBlock])
2475 ToCheck.insert(IncomingAccess);
2476 }
2477 continue;
2478 }
2479
2480
2481
2482
2483
2484
2485
2486 MemoryDefWrapper DeadDefWrapper(
2488 getLocForInst(cast(DeadAccess)->getMemoryInst(),
2489 false));
2490 assert(DeadDefWrapper.DefinedLocations.size() == 1);
2491 MemoryLocationWrapper &DeadLocWrapper =
2492 DeadDefWrapper.DefinedLocations.front();
2493 LLVM_DEBUG(dbgs() << " (" << *DeadLocWrapper.DefInst << ")\n");
2495 NumGetDomMemoryDefPassed++;
2496
2498 continue;
2499 if (isMemTerminatorInst(KillingLocWrapper.DefInst)) {
2500 if (KillingLocWrapper.UnderlyingObject != DeadLocWrapper.UnderlyingObject)
2501 continue;
2502 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: "
2503 << *DeadLocWrapper.DefInst << "\n KILLER: "
2504 << *KillingLocWrapper.DefInst << '\n');
2506 ++NumFastStores;
2508 } else {
2509
2510 int64_t KillingOffset = 0;
2511 int64_t DeadOffset = 0;
2512 OverwriteResult OR =
2513 isOverwrite(KillingLocWrapper.DefInst, DeadLocWrapper.DefInst,
2514 KillingLocWrapper.MemLoc, DeadLocWrapper.MemLoc,
2515 KillingOffset, DeadOffset);
2516 if (OR == OW_MaybePartial) {
2517 auto &IOL = IOLs[DeadLocWrapper.DefInst->getParent()];
2519 KillingOffset, DeadOffset,
2520 DeadLocWrapper.DefInst, IOL);
2521 }
2525
2526
2527
2528 if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) {
2530 KillingSI, DeadSI, KillingOffset, DeadOffset, DL, BatchAA,
2531 &DT)) {
2532
2533
2534 DeadSI->setOperand(0, Merged);
2535 ++NumModifiedStores;
2537 DeletedKillingLoc = true;
2538
2539
2540
2542 auto I = IOLs.find(DeadSI->getParent());
2544 I->second.erase(DeadSI);
2545 break;
2546 }
2547 }
2548 }
2549 if (OR == OW_Complete) {
2550 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: "
2551 << *DeadLocWrapper.DefInst << "\n KILLER: "
2552 << *KillingLocWrapper.DefInst << '\n');
2554 ++NumFastStores;
2556 }
2557 }
2558 }
2559
2560 assert(SkipStores.size() - OrigNumSkipStores == Deleted.size() &&
2561 "SkipStores and Deleted out of sync?");
2562
2563 return {Changed, DeletedKillingLoc};
2564}
2565
2566bool DSEState::eliminateDeadDefs(const MemoryDefWrapper &KillingDefWrapper) {
2567 if (KillingDefWrapper.DefinedLocations.empty()) {
2568 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
2569 << *KillingDefWrapper.DefInst << "\n");
2570 return false;
2571 }
2572
2573 bool MadeChange = false;
2574 for (auto &KillingLocWrapper : KillingDefWrapper.DefinedLocations) {
2575 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
2576 << *KillingLocWrapper.MemDef << " ("
2577 << *KillingLocWrapper.DefInst << ")\n");
2578 auto [Changed, DeletedKillingLoc] = eliminateDeadDefs(KillingLocWrapper);
2580
2581
2582 if (!DeletedKillingLoc && storeIsNoop(KillingLocWrapper.MemDef,
2583 KillingLocWrapper.UnderlyingObject)) {
2584 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: "
2585 << *KillingLocWrapper.DefInst << '\n');
2587 NumRedundantStores++;
2588 MadeChange = true;
2589 continue;
2590 }
2591
2592 if (!DeletedKillingLoc &&
2593 tryFoldIntoCalloc(KillingLocWrapper.MemDef,
2594 KillingLocWrapper.UnderlyingObject)) {
2595 LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2596 << " DEAD: " << *KillingLocWrapper.DefInst << '\n');
2598 MadeChange = true;
2599 continue;
2600 }
2601 }
2602 return MadeChange;
2603}
2604
2609 bool MadeChange = false;
2610 DSEState State(F, AA, MSSA, DT, PDT, TLI, LI);
2611
2612 for (unsigned I = 0; I < State.MemDefs.size(); I++) {
2613 MemoryDef *KillingDef = State.MemDefs[I];
2614 if (State.SkipStores.count(KillingDef))
2615 continue;
2616
2617 MemoryDefWrapper KillingDefWrapper(
2618 KillingDef, State.getLocForInst(KillingDef->getMemoryInst(),
2620 MadeChange |= State.eliminateDeadDefs(KillingDefWrapper);
2621 }
2622
2624 for (auto &KV : State.IOLs)
2625 MadeChange |= State.removePartiallyOverlappedStores(KV.second);
2626
2627 MadeChange |= State.eliminateRedundantStoresOfExistingValues();
2628 MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2629
2630 while (!State.ToRemove.empty()) {
2631 Instruction *DeadInst = State.ToRemove.pop_back_val();
2633 }
2634
2635 return MadeChange;
2636}
2637
2638
2639
2640
2648
2650
2651#ifdef LLVM_ENABLE_STATS
2655#endif
2656
2659
2664 return PA;
2665}
2666
2667namespace {
2668
2669
2671public:
2672 static char ID;
2673
2676 }
2677
2679 if (skipFunction(F))
2680 return false;
2681
2682 AliasAnalysis &AA = getAnalysis().getAAResults();
2683 DominatorTree &DT = getAnalysis().getDomTree();
2685 getAnalysis().getTLI(F);
2686 MemorySSA &MSSA = getAnalysis().getMSSA();
2688 getAnalysis().getPostDomTree();
2689 LoopInfo &LI = getAnalysis().getLoopInfo();
2690
2692
2693#ifdef LLVM_ENABLE_STATS
2697#endif
2698
2700 }
2701
2702 void getAnalysisUsage(AnalysisUsage &AU) const override {
2705 AU.addRequired();
2707 AU.addRequired();
2708 AU.addPreserved();
2709 AU.addRequired();
2711 AU.addPreserved();
2715 AU.addRequired();
2716 }
2717};
2718
2719}
2720
2721char DSELegacyPass::ID = 0;
2722
2724 false)
2736
2738 return new DSELegacyPass();
2739}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
MapVector< Instruction *, OverlapIntervalsTy > InstOverlapIntervalsTy
Definition DeadStoreElimination.cpp:180
static bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller)
Definition DeadStoreElimination.cpp:831
static cl::opt< bool > EnableInitializesImprovement("enable-dse-initializes-attr-improvement", cl::init(true), cl::Hidden, cl::desc("Enable the initializes attr improvement in DSE"))
static void shortenAssignment(Instruction *Inst, Value *OriginalDest, uint64_t OldOffsetInBits, uint64_t OldSizeInBits, uint64_t NewSizeInBits, bool IsOverwriteEnd)
Definition DeadStoreElimination.cpp:508
static bool isShortenableAtTheEnd(Instruction *I)
Returns true if the end of this instruction can be safely shortened in length.
Definition DeadStoreElimination.cpp:184
static bool isNoopIntrinsic(Instruction *I)
Definition DeadStoreElimination.cpp:810
static ConstantRangeList getIntersectedInitRangeList(ArrayRef< ArgumentInitInfo > Args, bool CallHasNoUnwindAttr)
Definition DeadStoreElimination.cpp:911
static cl::opt< bool > EnablePartialStoreMerging("enable-dse-partial-store-merging", cl::init(true), cl::Hidden, cl::desc("Enable partial store merging in DSE"))
static bool tryToShortenBegin(Instruction *DeadI, OverlapIntervalsTy &IntervalMap, int64_t &DeadStart, uint64_t &DeadSize)
Definition DeadStoreElimination.cpp:734
std::map< int64_t, int64_t > OverlapIntervalsTy
Definition DeadStoreElimination.cpp:179
static bool isShortenableAtTheBeginning(Instruction *I)
Returns true if the beginning of this instruction can be safely shortened in length.
Definition DeadStoreElimination.cpp:209
static cl::opt< unsigned > MemorySSADefsPerBlockLimit("dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden, cl::desc("The number of MemoryDefs we consider as candidates to eliminated " "other stores per basic block (default = 5000)"))
static Constant * tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI, int64_t KillingOffset, int64_t DeadOffset, const DataLayout &DL, BatchAAResults &AA, DominatorTree *DT)
Definition DeadStoreElimination.cpp:764
static bool memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, BatchAAResults &AA, const DataLayout &DL, DominatorTree *DT)
Returns true if the memory which is accessed by the second instruction is not modified between the fi...
Definition DeadStoreElimination.cpp:421
static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI, const Instruction *DeadI, BatchAAResults &AA)
Check if two instruction are masked stores that completely overwrite one another.
Definition DeadStoreElimination.cpp:245
static cl::opt< unsigned > MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5), cl::Hidden, cl::desc("The cost of a step in a different basic " "block than the killing MemoryDef" "(default = 5)"))
static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart, uint64_t &DeadSize, int64_t KillingStart, uint64_t KillingSize, bool IsOverwriteEnd)
Definition DeadStoreElimination.cpp:613
static cl::opt< unsigned > MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden, cl::desc("The number of memory instructions to scan for " "dead store elimination (default = 150)"))
static bool isFuncLocalAndNotCaptured(Value *Arg, const CallBase *CB, EarliestEscapeAnalysis &EA)
Definition DeadStoreElimination.cpp:2340
static cl::opt< unsigned > MemorySSASameBBStepCost("dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden, cl::desc("The cost of a step in the same basic block as the killing MemoryDef" "(default = 1)"))
static cl::opt< bool > EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", cl::init(true), cl::Hidden, cl::desc("Enable partial-overwrite tracking in DSE"))
static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc, const MemoryLocation &DeadLoc, int64_t KillingOff, int64_t DeadOff, Instruction *DeadI, InstOverlapIntervalsTy &IOL)
Return 'OW_Complete' if a store to the 'KillingLoc' location completely overwrites a store to the 'De...
Definition DeadStoreElimination.cpp:303
static cl::opt< unsigned > MemorySSAPartialStoreLimit("dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden, cl::desc("The maximum number candidates that only partially overwrite the " "killing MemoryDef to consider" " (default = 5)"))
static std::optional< TypeSize > getPointerSize(const Value *V, const DataLayout &DL, const TargetLibraryInfo &TLI, const Function *F)
Definition DeadStoreElimination.cpp:215
static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap, int64_t &DeadStart, uint64_t &DeadSize)
Definition DeadStoreElimination.cpp:707
static void adjustArgAttributes(AnyMemIntrinsic *Intrinsic, unsigned ArgNo, uint64_t PtrOffset)
Update the attributes given that a memory access is updated (the dereferenced pointer could be moved ...
Definition DeadStoreElimination.cpp:579
static cl::opt< unsigned > MemorySSAUpwardsStepLimit("dse-memoryssa-walklimit", cl::init(90), cl::Hidden, cl::desc("The maximum number of steps while walking upwards to find " "MemoryDefs that may be killed (default = 90)"))
static cl::opt< bool > OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden, cl::desc("Allow DSE to optimize memory accesses."))
static bool hasInitializesAttr(Instruction *I)
Definition DeadStoreElimination.cpp:901
static cl::opt< unsigned > MemorySSAPathCheckLimit("dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden, cl::desc("The maximum number of blocks to check when trying to prove that " "all paths to an exit go through a killing block (default = 50)"))
static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT, PostDominatorTree &PDT, const TargetLibraryInfo &TLI, const LoopInfo &LI)
Definition DeadStoreElimination.cpp:2605
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
early cse Early CSE w MemorySSA
static bool runOnFunction(Function &F, bool PostInlining)
This is the interface for a simple mod/ref and alias analysis over globals.
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
static void deleteDeadInstruction(Instruction *I)
This file implements a map that provides insertion order iteration.
This file provides utility analysis objects describing memory locations.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
Contains a collection of routines for determining if a given instruction is guaranteed to execute if ...
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
unsigned getBitWidth() const
Return the number of bits in the APInt.
int64_t getSExtValue() const
Get sign extended value.
@ NoAlias
The two locations do not alias at all.
@ PartialAlias
The two locations alias, but only due to a partial overlap.
@ MustAlias
The two locations precisely alias each other.
constexpr int32_t getOffset() const
constexpr bool hasOffset() const
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
An immutable pass that tracks lazily created AssumptionCache objects.
This class stores enough information to efficiently remove some attributes from an existing AttrBuild...
AttributeMask & addAttribute(Attribute::AttrKind Val)
Add an attribute to the mask.
This class holds the attributes for a particular argument, parameter, function, or return value.
LLVM_ABI ArrayRef< ConstantRange > getValueAsConstantRangeList() const
Return the attribute's value as a ConstantRange array.
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB)
Represents analyses that only rely on functions' control flow.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Get the attribute of a given kind from a given arg.
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
LLVM_ABI bool onlyAccessesInaccessibleMemOrArgMem() const
Determine if the function may only access memory that is either inaccessible from the IR or pointed t...
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
LLVM_ABI Value * getArgOperandWithAttribute(Attribute::AttrKind Kind) const
If one of the arguments has the specified attribute, returns its operand value.
unsigned arg_size() const
This class represents a list of constant ranges.
bool empty() const
Return true if this list contains no members.
LLVM_ABI ConstantRangeList intersectWith(const ConstantRangeList &CRL) const
Return the range list that results from the intersection of this ConstantRangeList with another Const...
const APInt & getLower() const
Return the lower value for this range.
const APInt & getUpper() const
Return the upper value for this range.
This is an important base class in LLVM.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
static DIAssignID * getDistinct(LLVMContext &Context)
DbgVariableFragmentInfo FragmentInfo
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM)
Definition DeadStoreElimination.cpp:2641
A parsed version of the target data layout string in and methods for querying it.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(CounterInfo &Counter)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
DomTreeNodeBase * getIDom() const
Analysis pass which computes a DominatorTree.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Context-sensitive CaptureAnalysis provider, which computes and caches the earliest common dominator c...
CaptureComponents getCapturesBefore(const Value *Object, const Instruction *I, bool OrAt) override
Return how Object may be captured before instruction I, considering only provenance captures.
FunctionPass class - This class is used to implement most global optimizations.
const BasicBlock & getEntryBlock() const
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Legacy wrapper pass to provide the GlobalsAAResult object.
bool isEquality() const
Return true if this predicate is either EQ or NE.
LLVM_ABI bool mayThrow(bool IncludePhaseOneUnwind=false) const LLVM_READONLY
Return true if this instruction may throw an exception.
LLVM_ABI bool mayWriteToMemory() const LLVM_READONLY
Return true if this instruction may modify memory.
LLVM_ABI bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isIdenticalToWhenDefined(const Instruction *I, bool IntersectAttrs=false) const LLVM_READONLY
This is like isIdenticalTo, except that it ignores the SubclassOptionalData flags,...
LLVM_ABI bool mayReadFromMemory() const LLVM_READONLY
Return true if this instruction may read memory.
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
const_iterator begin() const
bool empty() const
empty - Return true when no intervals are mapped.
const_iterator end() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
static LocationSize precise(uint64_t Value)
TypeSize getValue() const
Analysis pass that exposes the LoopInfo for a function.
The legacy pass manager's analysis pass to compute loop information.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
Value * getLength() const
BasicBlock * getBlock() const
Represents a read-write access to memory, whether it is a must-alias, or a may-alias.
void setOptimized(MemoryAccess *MA)
A wrapper analysis pass for the legacy pass manager that exposes a MemoryDepnedenceResults instance.
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
static MemoryLocation getBeforeOrAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location before or after Ptr, while remaining within the underl...
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
MemoryLocation getWithNewPtr(const Value *NewPtr) const
const Value * Ptr
The address of the start of the location.
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
static LLVM_ABI std::optional< MemoryLocation > getOrNone(const Instruction *Inst)
static LLVM_ABI MemoryLocation getForArgument(const CallBase *Call, unsigned ArgIdx, const TargetLibraryInfo *TLI)
Return a location representing a particular argument of a call.
An analysis that produces MemorySSA for a function.
Legacy analysis pass which computes MemorySSA.
Encapsulates MemorySSA, including all data associated with memory accesses.
MemoryAccess * getDefiningAccess() const
Get the access that produces the memory state used by this Use.
Instruction * getMemoryInst() const
Get the instruction that this MemoryUse represents.
PHITransAddr - An address value which tracks and handles phi translation.
LLVM_ABI Value * translateValue(BasicBlock *CurBB, BasicBlock *PredBB, const DominatorTree *DT, bool MustDominate)
translateValue - PHI translate the current address up the CFG from CurBB to Pred, updating our state ...
LLVM_ABI bool isPotentiallyPHITranslatable() const
isPotentiallyPHITranslatable - If this needs PHI translation, return true if we have some hope of doi...
bool needsPHITranslationFromBlock(BasicBlock *BB) const
needsPHITranslationFromBlock - Return true if moving from the specified BasicBlock to its predecessor...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis pass which computes a PostDominatorTree.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
bool insert(const value_type &X)
Insert a new element into the SetVector.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Value * getValueOperand()
constexpr bool empty() const
empty - Check if the string is empty.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
bool isVoidTy() const
Return true if this is 'void'.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ BasicBlock
Various leaf nodes.
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
SmallVector< DbgVariableRecord * > getDVRAssignmentMarkers(const Instruction *Inst)
Return a range of dbg_assign records for which Inst performs the assignment they encode.
LLVM_ABI bool calculateFragmentIntersect(const DataLayout &DL, const Value *Dest, uint64_t SliceOffsetInBits, uint64_t SliceSizeInBits, const DbgVariableRecord *DVRAssign, std::optional< DIExpression::FragmentInfo > &Result)
Calculate the fragment of the variable in DAI covered from (Dest + SliceOffsetInBits) to to (Dest + S...
initializer< Ty > init(const Ty &Val)
NodeAddr< DefNode * > Def
NodeAddr< FuncNode * > Func
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI void initializeDSELegacyPassPass(PassRegistry &)
FunctionAddr VTableAddr Value
LLVM_ABI Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
bool isStrongerThanMonotonic(AtomicOrdering AO)
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
iterator_range< po_iterator< T > > post_order(const T &G)
LLVM_ABI bool isNoAliasCall(const Value *V)
Return true if this pointer is returned by a noalias function.
DomTreeNodeBase< BasicBlock > DomTreeNode
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI bool getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, const TargetLibraryInfo *TLI, ObjectSizeOpts Opts={})
Compute the size of the object pointed by Ptr.
auto reverse(ContainerTy &&C)
bool isModSet(const ModRefInfo MRI)
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
FunctionAddr VTableAddr Count
LLVM_ABI bool AreStatisticsEnabled()
Check if statistics are enabled.
LLVM_ABI bool isNotVisibleOnUnwind(const Value *Object, bool &RequiresNoCaptureBeforeUnwind)
Return true if Object memory is not visible after an unwind, in the sense that program semantics cann...
LLVM_ABI Value * emitCalloc(Value *Num, Value *Size, IRBuilderBase &B, const TargetLibraryInfo &TLI, unsigned AddrSpace)
Emit a call to the calloc function.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
uint64_t offsetToAlignment(uint64_t Value, Align Alignment)
Returns the offset to the next integer (mod 2**64) that is greater than or equal to Value and is a mu...
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI bool salvageKnowledge(Instruction *I, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Calls BuildAssumeFromInst and if the resulting llvm.assume is valid insert if before I.
LLVM_ABI bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, unsigned MaxUsesToExplore=0)
PointerMayBeCaptured - Return true if this pointer value may be captured by the enclosing function (w...
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
LLVM_ABI bool isIdentifiedFunctionLocal(const Value *V)
Return true if V is umabigously identified at the function-level.
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
LLVM_ABI FunctionPass * createDeadStoreEliminationPass()
Definition DeadStoreElimination.cpp:2737
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
auto predecessors(const MachineBasicBlock *BB)
bool capturesAnything(CaptureComponents CC)
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool mayContainIrreducibleControl(const Function &F, const LoopInfo *LI)
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
bool capturesNothing(CaptureComponents CC)
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
bool isStrongerThan(AtomicOrdering AO, AtomicOrdering Other)
Returns true if ao is stronger than other as defined by the AtomicOrdering lattice,...
bool isRefSet(const ModRefInfo MRI)
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Various options to control the behavior of getObjectSize.
bool NullIsUnknownSize
If this is true, null pointers in address space 0 will be treated as though they can't be evaluated.