LLVM: lib/ExecutionEngine/Interpreter/Execution.cpp Source File (original) (raw)

1

2

3

4

5

6

7

8

9

10

11

12

26#include

27#include

28using namespace llvm;

29

30#define DEBUG_TYPE "interpreter"

31

32STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");

33

35 cl::desc("make the interpreter print every volatile load and store"));

36

37

38

39

40

43}

44

45

46

47

48

52 Dest.FloatVal = -Src.FloatVal;

53 break;

56 break;

57 default:

59 }

60}

61

64 Type *Ty = I.getOperand(0)->getType();

65 GenericValue Src = getOperandValue(I.getOperand(0), SF);

67

68

70 R.AggregateVal.resize(Src.AggregateVal.size());

71

72 switch(I.getOpcode()) {

73 default:

74 llvm_unreachable("Don't know how to handle this unary operator");

75 break;

76 case Instruction::FNeg:

77 if (cast(Ty)->getElementType()->isFloatTy()) {

78 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)

79 R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal;

80 } else if (cast(Ty)->getElementType()->isDoubleTy()) {

81 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)

82 R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal;

83 } else {

85 }

86 break;

87 }

88 } else {

89 switch (I.getOpcode()) {

90 default:

91 llvm_unreachable("Don't know how to handle this unary operator");

92 break;

93 case Instruction::FNeg: executeFNegInst(R, Src, Ty); break;

94 }

95 }

97}

98

99

100

101

102

103#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \

104 case Type::TY##TyID: \

105 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \

106 break

107

113 default:

114 dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";

116 }

117}

118

124 default:

125 dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";

127 }

128}

129

135 default:

136 dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";

138 }

139}

140

146 default:

147 dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";

149 }

150}

151

157 break;

160 break;

161 default:

162 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";

164 }

165}

166

167#define IMPLEMENT_INTEGER_ICMP(OP, TY) \

168 case Type::IntegerTyID: \

169 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \

170 break;

171

172#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \

173 case Type::FixedVectorTyID: \

174 case Type::ScalableVectorTyID: { \

175 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \

176 Dest.AggregateVal.resize(Src1.AggregateVal.size()); \

177 for (uint32_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \

178 Dest.AggregateVal[_i].IntVal = APInt( \

179 1, Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal)); \

180 } break;

181

182

183

184

185

186#define IMPLEMENT_POINTER_ICMP(OP) \

187 case Type::PointerTyID: \

188 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \

189 (void*)(intptr_t)Src2.PointerVal); \

190 break;

191

199 default:

200 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";

202 }

203 return Dest;

204}

205

213 default:

214 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";

216 }

217 return Dest;

218}

219

227 default:

228 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";

230 }

231 return Dest;

232}

233

241 default:

242 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";

244 }

245 return Dest;

246}

247

255 default:

256 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";

258 }

259 return Dest;

260}

261

269 default:

270 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";

272 }

273 return Dest;

274}

275

283 default:

284 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";

286 }

287 return Dest;

288}

289

297 default:

298 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";

300 }

301 return Dest;

302}

303

311 default:

312 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";

314 }

315 return Dest;

316}

317

325 default:

326 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";

328 }

329 return Dest;

330}

331

334 Type *Ty = I.getOperand(0)->getType();

335 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

336 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

338

339 switch (I.getPredicate()) {

350 default:

351 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;

353 }

354

356}

357

358#define IMPLEMENT_FCMP(OP, TY) \

359 case Type::TY##TyID: \

360 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \

361 break

362

363#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \

364 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \

365 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \

366 for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \

367 Dest.AggregateVal[_i].IntVal = APInt(1, \

368 Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\

369 break;

370

371#define IMPLEMENT_VECTOR_FCMP(OP) \

372 case Type::FixedVectorTyID: \

373 case Type::ScalableVectorTyID: \

374 if (cast(Ty)->getElementType()->isFloatTy()) { \

375 IMPLEMENT_VECTOR_FCMP_T(OP, Float); \

376 } else { \

377 IMPLEMENT_VECTOR_FCMP_T(OP, Double); \

378 }

379

387 default:

388 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";

390 }

391 return Dest;

392}

393

394#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \

395 if (TY->isFloatTy()) { \

396 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \

397 Dest.IntVal = APInt(1,false); \

398 return Dest; \

399 } \

400 } else { \

401 if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \

402 Dest.IntVal = APInt(1,false); \

403 return Dest; \

404 } \

405 }

406

407#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \

408 assert(X.AggregateVal.size() == Y.AggregateVal.size()); \

409 Dest.AggregateVal.resize( X.AggregateVal.size() ); \

410 for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \

411 if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \

412 Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \

413 Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \

414 else { \

415 Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \

416 } \

417 }

418

419#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \

420 if (TY->isVectorTy()) { \

421 if (cast(TY)->getElementType()->isFloatTy()) { \

422 MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \

423 } else { \

424 MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \

425 } \

426 } \

427

428

429

432{

434

436

443 default:

444 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";

446 }

447

449 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)

450 if (DestMask.AggregateVal[_i].IntVal == false)

452

453 return Dest;

454}

455

463 default:

464 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";

466 }

467 return Dest;

468}

469

477 default:

478 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";

480 }

481 return Dest;

482}

483

491 default:

492 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";

494 }

495 return Dest;

496}

497

505 default:

506 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";

508 }

509 return Dest;

510}

511

512#define IMPLEMENT_UNORDERED(TY, X,Y) \

513 if (TY->isFloatTy()) { \

514 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \

515 Dest.IntVal = APInt(1,true); \

516 return Dest; \

517 } \

518 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \

519 Dest.IntVal = APInt(1,true); \

520 return Dest; \

521 }

522

523#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \

524 if (TY->isVectorTy()) { \

525 GenericValue DestMask = Dest; \

526 Dest = FUNC(Src1, Src2, Ty); \

527 for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \

528 if (DestMask.AggregateVal[_i].IntVal == true) \

529 Dest.AggregateVal[_i].IntVal = APInt(1, true); \

530 return Dest; \

531 }

532

540

541}

542

550}

551

559}

560

568}

569

577}

578

586}

587

594 if (cast(Ty)->getElementType()->isFloatTy()) {

595 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)

601 } else {

602 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)

608 }

612 else {

615 }

616 return Dest;

617}

618

625 if (cast(Ty)->getElementType()->isFloatTy()) {

626 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)

632 } else {

633 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)

639 }

643 else {

646 }

647 return Dest;

648}

649

651 Type *Ty, const bool val) {

656 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)

658 } else {

660 }

661

662 return Dest;

663}

664

667 Type *Ty = I.getOperand(0)->getType();

668 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

669 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

671

672 switch (I.getPredicate()) {

673 default:

674 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;

676 break;

678 break;

680 break;

695 }

696

698}

699

702 Type *Ty = I.getOperand(0)->getType();

703 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

704 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

706

707

710 R.AggregateVal.resize(Src1.AggregateVal.size());

711

712

713#define INTEGER_VECTOR_OPERATION(OP) \

714 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \

715 R.AggregateVal[i].IntVal = \

716 Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;

717

718

719

720#define INTEGER_VECTOR_FUNCTION(OP) \

721 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \

722 R.AggregateVal[i].IntVal = \

723 Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);

724

725

726

727#define FLOAT_VECTOR_FUNCTION(OP, TY) \

728 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \

729 R.AggregateVal[i].TY = \

730 Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;

731

732

733

734#define FLOAT_VECTOR_OP(OP) { \

735 if (cast(Ty)->getElementType()->isFloatTy()) \

736 FLOAT_VECTOR_FUNCTION(OP, FloatVal) \

737 else { \

738 if (cast(Ty)->getElementType()->isDoubleTy()) \

739 FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \

740 else { \

741 dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \

742 llvm_unreachable(0); \

743 } \

744 } \

745}

746

747 switch(I.getOpcode()){

748 default:

749 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;

751 break;

766 case Instruction::FRem:

767 if (cast(Ty)->getElementType()->isFloatTy())

768 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)

769 R.AggregateVal[i].FloatVal =

771 else {

772 if (cast(Ty)->getElementType()->isDoubleTy())

773 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)

774 R.AggregateVal[i].DoubleVal =

776 else {

777 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";

779 }

780 }

781 break;

782 }

783 } else {

784 switch (I.getOpcode()) {

785 default:

786 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;

788 break;

789 case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;

790 case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;

791 case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;

792 case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;

793 case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;

794 case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;

795 case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;

796 case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;

797 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;

798 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;

799 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;

800 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;

801 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;

802 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;

803 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;

804 }

805 }

807}

808

816 for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)

819 } else {

820 Dest = (Src1.IntVal == 0) ? Src3 : Src2;

821 }

822 return Dest;

823}

824

827 Type * Ty = I.getOperand(0)->getType();

828 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

829 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

830 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);

833}

834

835

836

837

838

840

841

842

843 ECStack.clear();

846}

847

848

849

850

851

852

853

854

855

856void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,

858

859 ECStack.pop_back();

860

861 if (ECStack.empty()) {

862 if (RetTy && RetTy->isVoidTy()) {

863 ExitValue = Result;

864 } else {

865 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));

866 }

867 } else {

868

869

871 if (CallingSF.Caller) {

872

876 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);

877 CallingSF.Caller = nullptr;

878 }

879 }

880}

881

886

887

888 if (I.getNumOperands()) {

889 RetTy = I.getReturnValue()->getType();

890 Result = getOperandValue(I.getReturnValue(), SF);

891 }

892

893 popStackAndReturnValueToCaller(RetTy, Result);

894}

895

897 report_fatal_error("Program executed an 'unreachable' instruction!");

898}

899

903

904 Dest = I.getSuccessor(0);

905 if (I.isUnconditional()) {

907 if (getOperandValue(Cond, SF).IntVal == 0)

908 Dest = I.getSuccessor(1);

909 }

910 SwitchToNewBasicBlock(Dest, SF);

911}

912

916 Type *ElTy = Cond->getType();

918

919

921 for (auto Case : I.cases()) {

922 GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);

923 if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {

924 Dest = cast(Case.getCaseSuccessor());

925 break;

926 }

927 }

928 if (!Dest) Dest = I.getDefaultDest();

929 SwitchToNewBasicBlock(Dest, SF);

930}

931

934 void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));

935 SwitchToNewBasicBlock((BasicBlock*)Dest, SF);

936}

937

938

939

940

941

942

943

944

945

946

947

948

950 BasicBlock *PrevBB = SF.CurBB;

951 SF.CurBB = Dest;

953

954 if (!isa(SF.CurInst)) return;

955

956

957 std::vector ResultValues;

958

960

962 assert(i != -1 && "PHINode doesn't contain entry for predecessor??");

964

965

966 ResultValues.push_back(getOperandValue(IncomingValue, SF));

967 }

968

969

971 for (unsigned i = 0; isa(SF.CurInst); ++SF.CurInst, ++i) {

973 SetValue(PN, ResultValues[i], SF);

974 }

975}

976

977

978

979

980

983

984 Type *Ty = I.getAllocatedType();

985

986

987 unsigned NumElements =

989

991

992

993 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);

994

995

997

999 << " bytes) x " << NumElements << " (Total: " << MemToAlloc

1000 << ") at " << uintptr_t(Memory) << '\n');

1001

1003 assert(Result.PointerVal && "Null pointer returned by malloc!");

1005

1006 if (I.getOpcode() == Instruction::Alloca)

1007 ECStack.back().Allocas.add(Memory);

1008}

1009

1010

1011

1015 assert(Ptr->getType()->isPointerTy() &&

1016 "Cannot getElementOffset of a nonpointer type!");

1017

1019

1020 for (; I != E; ++I) {

1021 if (StructType *STy = I.getStructTypeOrNull()) {

1023

1024 const ConstantInt *CPU = cast(I.getOperand());

1026

1028 } else {

1029

1030 GenericValue IdxGV = getOperandValue(I.getOperand(), SF);

1031

1032 int64_t Idx;

1034 cast(I.getOperand()->getType())->getBitWidth();

1037 else {

1038 assert(BitWidth == 64 && "Invalid index type for getelementptr");

1040 }

1042 }

1043 }

1044

1049}

1050

1053 SetValue(&I, executeGEPOperation(I.getPointerOperand(),

1055}

1056

1059 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);

1065 dbgs() << "Volatile load " << I;

1066}

1067

1070 GenericValue Val = getOperandValue(I.getOperand(0), SF);

1071 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);

1073 I.getOperand(0)->getType());

1075 dbgs() << "Volatile store: " << I;

1076}

1077

1078

1079

1080

1081

1088}

1089

1091

1092}

1093

1096 SetValue(&I, getOperandValue(*I.arg_begin(), SF), SF);

1097}

1098

1101

1102

1103

1104

1107 bool atBegin(Parent->begin() == Me);

1108 if (!atBegin)

1109 --Me;

1111

1112

1113

1114 if (atBegin) {

1116 } else {

1119 }

1120}

1121

1124

1126 std::vector ArgVals;

1128 ArgVals.reserve(NumArgs);

1130 ArgVals.push_back(getOperandValue(V, SF));

1131

1132

1133

1136}

1137

1138

1141 unsigned valueWidth = valueToShift.getBitWidth();

1142 if (orgShiftAmount < (uint64_t)valueWidth)

1143 return orgShiftAmount;

1144

1145

1146 return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;

1147}

1148

1149

1152 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

1153 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

1155 Type *Ty = I.getType();

1156

1160 for (unsigned i = 0; i < src1Size; i++) {

1164 Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));

1166 }

1167 } else {

1168

1172 }

1173

1175}

1176

1179 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

1180 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

1182 Type *Ty = I.getType();

1183

1187 for (unsigned i = 0; i < src1Size; i++) {

1191 Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));

1193 }

1194 } else {

1195

1199 }

1200

1202}

1203

1206 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

1207 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

1209 Type *Ty = I.getType();

1210

1214 for (unsigned i = 0; i < src1Size; i++) {

1218 Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));

1220 }

1221 } else {

1222

1226 }

1227

1229}

1230

1233 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1237 unsigned DBitWidth = cast(DstVecTy)->getBitWidth();

1238 unsigned NumElts = Src.AggregateVal.size();

1239

1241 for (unsigned i = 0; i < NumElts; i++)

1242 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);

1243 } else {

1244 IntegerType *DITy = cast(DstTy);

1245 unsigned DBitWidth = DITy->getBitWidth();

1246 Dest.IntVal = Src.IntVal.trunc(DBitWidth);

1247 }

1248 return Dest;

1249}

1250

1254 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1257 unsigned DBitWidth = cast(DstVecTy)->getBitWidth();

1258 unsigned size = Src.AggregateVal.size();

1259

1261 for (unsigned i = 0; i < size; i++)

1262 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);

1263 } else {

1264 auto *DITy = cast(DstTy);

1265 unsigned DBitWidth = DITy->getBitWidth();

1266 Dest.IntVal = Src.IntVal.sext(DBitWidth);

1267 }

1268 return Dest;

1269}

1270

1274 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1277 unsigned DBitWidth = cast(DstVecTy)->getBitWidth();

1278

1279 unsigned size = Src.AggregateVal.size();

1280

1282 for (unsigned i = 0; i < size; i++)

1283 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);

1284 } else {

1285 auto *DITy = cast(DstTy);

1286 unsigned DBitWidth = DITy->getBitWidth();

1287 Dest.IntVal = Src.IntVal.zext(DBitWidth);

1288 }

1289 return Dest;

1290}

1291

1294 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1295

1296 if (isa(SrcVal->getType())) {

1299 "Invalid FPTrunc instruction");

1300

1301 unsigned size = Src.AggregateVal.size();

1302

1304 for (unsigned i = 0; i < size; i++)

1305 Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;

1306 } else {

1308 "Invalid FPTrunc instruction");

1309 Dest.FloatVal = (float)Src.DoubleVal;

1310 }

1311

1312 return Dest;

1313}

1314

1317 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1318

1319 if (isa(SrcVal->getType())) {

1322

1323 unsigned size = Src.AggregateVal.size();

1324

1326 for (unsigned i = 0; i < size; i++)

1327 Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;

1328 } else {

1330 "Invalid FPExt instruction");

1331 Dest.DoubleVal = (double)Src.FloatVal;

1332 }

1333

1334 return Dest;

1335}

1336

1340 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1341

1342 if (isa(SrcTy)) {

1345 uint32_t DBitWidth = cast(DstVecTy)->getBitWidth();

1346 unsigned size = Src.AggregateVal.size();

1347

1349

1352 for (unsigned i = 0; i < size; i++)

1354 Src.AggregateVal[i].FloatVal, DBitWidth);

1355 } else {

1356 for (unsigned i = 0; i < size; i++)

1358 Src.AggregateVal[i].DoubleVal, DBitWidth);

1359 }

1360 } else {

1361

1362 uint32_t DBitWidth = cast(DstTy)->getBitWidth();

1364

1367 else {

1369 }

1370 }

1371

1372 return Dest;

1373}

1374

1378 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1379

1380 if (isa(SrcTy)) {

1383 uint32_t DBitWidth = cast(DstVecTy)->getBitWidth();

1384 unsigned size = Src.AggregateVal.size();

1385

1387

1390 for (unsigned i = 0; i < size; i++)

1392 Src.AggregateVal[i].FloatVal, DBitWidth);

1393 } else {

1394 for (unsigned i = 0; i < size; i++)

1396 Src.AggregateVal[i].DoubleVal, DBitWidth);

1397 }

1398 } else {

1399

1400 unsigned DBitWidth = cast(DstTy)->getBitWidth();

1402

1405 else {

1407 }

1408 }

1409 return Dest;

1410}

1411

1414 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1415

1416 if (isa(SrcVal->getType())) {

1418 unsigned size = Src.AggregateVal.size();

1419

1421

1424 for (unsigned i = 0; i < size; i++)

1427 } else {

1428 for (unsigned i = 0; i < size; i++)

1431 }

1432 } else {

1433

1437 else {

1439 }

1440 }

1441 return Dest;

1442}

1443

1446 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1447

1448 if (isa(SrcVal->getType())) {

1450 unsigned size = Src.AggregateVal.size();

1451

1453

1456 for (unsigned i = 0; i < size; i++)

1459 } else {

1460 for (unsigned i = 0; i < size; i++)

1463 }

1464 } else {

1465

1467

1470 else {

1472 }

1473 }

1474

1475 return Dest;

1476}

1477

1480 uint32_t DBitWidth = cast(DstTy)->getBitWidth();

1481 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1483

1484 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);

1485 return Dest;

1486}

1487

1490 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1492

1494 if (PtrSize != Src.IntVal.getBitWidth())

1495 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);

1496

1498 return Dest;

1499}

1500

1503

1504

1505

1507 GenericValue Dest, Src = getOperandValue(SrcVal, SF);

1508

1509 if (isa(SrcTy) || isa(DstTy)) {

1510

1511

1514 Type *SrcElemTy;

1515 Type *DstElemTy;

1516 unsigned SrcBitSize;

1517 unsigned DstBitSize;

1518 unsigned SrcNum;

1519 unsigned DstNum;

1520

1521 if (isa(SrcTy)) {

1524 SrcNum = Src.AggregateVal.size();

1525 SrcVec = Src;

1526 } else {

1527

1528 SrcElemTy = SrcTy;

1530 SrcNum = 1;

1532 }

1533

1534 if (isa(DstTy)) {

1537 DstNum = (SrcNum * SrcBitSize) / DstBitSize;

1538 } else {

1539 DstElemTy = DstTy;

1541 DstNum = 1;

1542 }

1543

1544 if (SrcNum * SrcBitSize != DstNum * DstBitSize)

1546

1547

1550 for (unsigned i = 0; i < SrcNum; i++)

1553

1554 } else if (SrcElemTy->isDoubleTy()) {

1555 for (unsigned i = 0; i < SrcNum; i++)

1559 for (unsigned i = 0; i < SrcNum; i++)

1561 } else {

1562

1564 }

1565

1566

1567 if (DstNum < SrcNum) {

1568

1569 unsigned Ratio = SrcNum / DstNum;

1570 unsigned SrcElt = 0;

1571 for (unsigned i = 0; i < DstNum; i++) {

1575 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);

1576 for (unsigned j = 0; j < Ratio; j++) {

1578 Tmp = Tmp.zext(SrcBitSize);

1579 Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;

1580 Tmp = Tmp.zext(DstBitSize);

1581 Tmp <<= ShiftAmt;

1582 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;

1584 }

1586 }

1587 } else {

1588

1589 unsigned Ratio = DstNum / SrcNum;

1590 for (unsigned i = 0; i < SrcNum; i++) {

1591 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);

1592 for (unsigned j = 0; j < Ratio; j++) {

1597

1598 if (DstBitSize < SrcBitSize)

1600 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;

1602 }

1603 }

1604 }

1605

1606

1607 if (isa(DstTy)) {

1610 for (unsigned i = 0; i < DstNum; i++)

1612 TempDst.AggregateVal[i].IntVal.bitsToDouble();

1613 } else if (DstElemTy->isFloatTy()) {

1615 for (unsigned i = 0; i < DstNum; i++)

1617 TempDst.AggregateVal[i].IntVal.bitsToFloat();

1618 } else {

1619 Dest = TempDst;

1620 }

1621 } else {

1624 else if (DstElemTy->isFloatTy()) {

1626 } else {

1628 }

1629 }

1630 } else {

1631

1632

1642 Dest.IntVal = Src.IntVal;

1643 } else {

1645 }

1646 } else if (DstTy->isFloatTy()) {

1648 Dest.FloatVal = Src.IntVal.bitsToFloat();

1649 else {

1650 Dest.FloatVal = Src.FloatVal;

1651 }

1654 Dest.DoubleVal = Src.IntVal.bitsToDouble();

1655 else {

1657 }

1658 } else {

1660 }

1661 }

1662

1663 return Dest;

1664}

1665

1668 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);

1669}

1670

1673 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);

1674}

1675

1678 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);

1679}

1680

1683 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);

1684}

1685

1688 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);

1689}

1690

1693 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);

1694}

1695

1698 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);

1699}

1700

1703 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);

1704}

1705

1708 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);

1709}

1710

1713 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);

1714}

1715

1718 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);

1719}

1720

1723 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);

1724}

1725

1726#define IMPLEMENT_VAARG(TY) \

1727 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break

1728

1731

1732

1733

1734 GenericValue VAList = getOperandValue(I.getOperand(0), SF);

1738 Type *Ty = I.getType();

1741 Dest.IntVal = Src.IntVal;

1742 break;

1746 default:

1747 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";

1749 }

1750

1751

1753

1754

1756}

1757

1760 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

1761 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

1763

1764 Type *Ty = I.getType();

1766

1769 default:

1770 dbgs() << "Unhandled destination type for extractelement instruction: "

1771 << *Ty << "\n";

1773 break;

1776 break;

1779 break;

1782 break;

1783 }

1784 } else {

1785 dbgs() << "Invalid index in extractelement instruction\n";

1786 }

1787

1789}

1790

1793 VectorType *Ty = cast(I.getType());

1794

1795 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

1796 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

1797 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);

1799

1801

1804

1806 llvm_unreachable("Invalid index in insertelement instruction");

1807 switch (TyContained->getTypeID()) {

1808 default:

1809 llvm_unreachable("Unhandled dest type for insertelement instruction");

1812 break;

1815 break;

1818 break;

1819 }

1821}

1822

1825

1826 VectorType *Ty = cast(I.getType());

1827

1828 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

1829 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

1831

1832

1833

1834

1835

1839 unsigned src3Size = I.getShuffleMask().size();

1840

1842

1843 switch (TyContained->getTypeID()) {

1844 default:

1845 llvm_unreachable("Unhandled dest type for insertelement instruction");

1846 break;

1848 for( unsigned i=0; i<src3Size; i++) {

1849 unsigned j = std::max(0, I.getMaskValue(i));

1850 if(j < src1Size)

1852 else if(j < src1Size + src2Size)

1854 else

1855

1856

1857

1858

1859

1860 llvm_unreachable("Invalid mask in shufflevector instruction");

1861 }

1862 break;

1864 for( unsigned i=0; i<src3Size; i++) {

1865 unsigned j = std::max(0, I.getMaskValue(i));

1866 if(j < src1Size)

1868 else if(j < src1Size + src2Size)

1870 else

1871 llvm_unreachable("Invalid mask in shufflevector instruction");

1872 }

1873 break;

1875 for( unsigned i=0; i<src3Size; i++) {

1876 unsigned j = std::max(0, I.getMaskValue(i));

1877 if(j < src1Size)

1879 else if(j < src1Size + src2Size)

1882 else

1883 llvm_unreachable("Invalid mask in shufflevector instruction");

1884 }

1885 break;

1886 }

1888}

1889

1892 Value *Agg = I.getAggregateOperand();

1894 GenericValue Src = getOperandValue(Agg, SF);

1895

1897 unsigned Num = I.getNumIndices();

1899

1900 for (unsigned i = 0 ; i < Num; ++i) {

1902 ++IdxBegin;

1903 }

1904

1906 switch (IndexedType->getTypeID()) {

1907 default:

1908 llvm_unreachable("Unhandled dest type for extractelement instruction");

1909 break;

1912 break;

1915 break;

1918 break;

1924 break;

1927 break;

1928 }

1929

1931}

1932

1934

1936 Value *Agg = I.getAggregateOperand();

1937

1938 GenericValue Src1 = getOperandValue(Agg, SF);

1939 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

1940 GenericValue Dest = Src1;

1941

1943 unsigned Num = I.getNumIndices();

1944

1946 for (unsigned i = 0 ; i < Num; ++i) {

1948 ++IdxBegin;

1949 }

1950

1951

1953

1954 switch (IndexedType->getTypeID()) {

1955 default:

1956 llvm_unreachable("Unhandled dest type for insertelement instruction");

1957 break;

1960 break;

1963 break;

1966 break;

1972 break;

1975 break;

1976 }

1977

1979}

1980

1983 switch (CE->getOpcode()) {

1984 case Instruction::Trunc:

1985 return executeTruncInst(CE->getOperand(0), CE->getType(), SF);

1986 case Instruction::PtrToInt:

1987 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);

1988 case Instruction::IntToPtr:

1989 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);

1990 case Instruction::BitCast:

1991 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);

1992 case Instruction::GetElementPtr:

1993 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),

1995 break;

1996 }

1997

1998

1999

2000 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);

2001 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);

2003 switch (CE->getOpcode()) {

2004 case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;

2005 case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;

2006 case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;

2007 case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;

2008 case Instruction::Shl:

2010 break;

2011 default:

2012 dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";

2014 }

2015 return Dest;

2016}

2017

2019 if (ConstantExpr *CE = dyn_cast(V)) {

2020 return getConstantExprValue(CE, SF);

2021 } else if (Constant *CPV = dyn_cast(V)) {

2023 } else if (GlobalValue *GV = dyn_cast(V)) {

2025 } else {

2027 }

2028}

2029

2030

2031

2032

2033

2034

2035

2036

2038 assert((ECStack.empty() || !ECStack.back().Caller ||

2039 ECStack.back().Caller->arg_size() == ArgVals.size()) &&

2040 "Incorrect number of arguments passed into function call!");

2041

2042 ECStack.emplace_back();

2045

2046

2047 if (F->isDeclaration()) {

2049

2050 popStackAndReturnValueToCaller (F->getReturnType (), Result);

2051 return;

2052 }

2053

2054

2055 StackFrame.CurBB = &F->front();

2057

2058

2059 assert((ArgVals.size() == F->arg_size() ||

2060 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&

2061 "Invalid number of values passed to function invocation!");

2062

2063

2064 unsigned i = 0;

2066 AI != E; ++AI, ++i)

2067 SetValue(&*AI, ArgVals[i], StackFrame);

2068

2069

2070 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());

2071}

2072

2073

2075 while (!ECStack.empty()) {

2076

2077 ExecutionContext &SF = ECStack.back();

2079

2080

2081 ++NumDynamicInsts;

2082

2083 LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n");

2084 visit(I);

2085 }

2086}

This file implements a class to represent arbitrary precision integral constant values and operations...

This file contains the declarations for the subclasses of Constant, which represent the different fla...

Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx

static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty)

static void executeFSubInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty)

#define FLOAT_VECTOR_OP(OP)

#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)

static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, Type *Ty)

static void executeFDivInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, Type *Ty)

#define INTEGER_VECTOR_OPERATION(OP)

#define IMPLEMENT_BINARY_OPERATOR(OP, TY)

static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, Type *Ty)

#define IMPLEMENT_SCALAR_NANS(TY, X, Y)

static void executeFAddInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, GenericValue Src3, Type *Ty)

static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, Type *Ty)

static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty)

static cl::opt< bool > PrintVolatile("interpreter-print-volatile", cl::Hidden, cl::desc("make the interpreter print every volatile load and store"))

#define INTEGER_VECTOR_FUNCTION(OP)

#define MASK_VECTOR_NANS(TY, X, Y, FLAG)

#define IMPLEMENT_VECTOR_FCMP(OP)

static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, Type *Ty)

#define IMPLEMENT_POINTER_ICMP(OP)

static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, Type *Ty)

#define IMPLEMENT_UNORDERED(TY, X, Y)

static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, Type *Ty, const bool val)

static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF)

#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC)

#define IMPLEMENT_VAARG(TY)

static void executeFRemInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)

static unsigned getShiftAmount(uint64_t orgShiftAmount, llvm::APInt valueToShift)

#define IMPLEMENT_INTEGER_ICMP(OP, TY)

#define IMPLEMENT_FCMP(OP, TY)

static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty)

static void executeFMulInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)

static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty)

uint64_t IntrinsicInst * II

const SmallVectorImpl< MachineOperand > & Cond

assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())

This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...

#define STATISTIC(VARNAME, DESC)

Class for arbitrary precision integers.

APInt udiv(const APInt &RHS) const

Unsigned division operation.

APInt zext(unsigned width) const

Zero extend to a new width.

uint64_t getZExtValue() const

Get zero extended value.

APInt zextOrTrunc(unsigned width) const

Zero extend or truncate to width.

APInt trunc(unsigned width) const

Truncate to new width.

static APInt floatToBits(float V)

Converts a float to APInt bits.

APInt urem(const APInt &RHS) const

Unsigned remainder operation.

unsigned getBitWidth() const

Return the number of bits in the APInt.

APInt sdiv(const APInt &RHS) const

Signed division function for APInt.

APInt ashr(unsigned ShiftAmt) const

Arithmetic right-shift function.

APInt srem(const APInt &RHS) const

Function for signed remainder operation.

static APInt doubleToBits(double V)

Converts a double to APInt bits.

APInt shl(unsigned shiftAmt) const

Left-shift function.

void lshrInPlace(unsigned ShiftAmt)

Logical right-shift this APInt by ShiftAmt in place.

APInt lshr(unsigned shiftAmt) const

Logical right-shift function.

an instruction to allocate memory on the stack

This class represents an incoming formal argument to a Function.

ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...

size_t size() const

size - Get the array size.

LLVM Basic Block Representation.

iterator begin()

Instruction iterator methods.

InstListType::iterator iterator

Instruction iterators...

This class represents a no-op cast from one type to another.

Conditional or Unconditional Branch instruction.

Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...

Value * getCalledOperand() const

iterator_range< User::op_iterator > args()

Iteration adapter for range-for loops.

unsigned arg_size() const

@ FCMP_OEQ

0 0 0 1 True if ordered and equal

@ FCMP_TRUE

1 1 1 1 Always true (always folded)

@ ICMP_SLT

signed less than

@ ICMP_SLE

signed less or equal

@ FCMP_OLT

0 1 0 0 True if ordered and less than

@ FCMP_ULE

1 1 0 1 True if unordered, less than, or equal

@ FCMP_OGT

0 0 1 0 True if ordered and greater than

@ FCMP_OGE

0 0 1 1 True if ordered and greater than or equal

@ ICMP_UGE

unsigned greater or equal

@ ICMP_UGT

unsigned greater than

@ ICMP_SGT

signed greater than

@ FCMP_ULT

1 1 0 0 True if unordered or less than

@ FCMP_ONE

0 1 1 0 True if ordered and operands are unequal

@ FCMP_UEQ

1 0 0 1 True if unordered or equal

@ ICMP_ULT

unsigned less than

@ FCMP_UGT

1 0 1 0 True if unordered or greater than

@ FCMP_OLE

0 1 0 1 True if ordered and less than or equal

@ FCMP_ORD

0 1 1 1 True if ordered (no nans)

@ ICMP_SGE

signed greater or equal

@ FCMP_UNE

1 1 1 0 True if unordered or not equal

@ ICMP_ULE

unsigned less or equal

@ FCMP_UGE

1 0 1 1 True if unordered, greater than, or equal

@ FCMP_FALSE

0 0 0 0 Always false (always folded)

@ FCMP_UNO

1 0 0 0 True if unordered: isnan(X) | isnan(Y)

A constant value that is initialized with an expression using other constant values.

This is the shared class of boolean and integer constants.

uint64_t getZExtValue() const

Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...

This is an important base class in LLVM.

unsigned getPointerSizeInBits(unsigned AS=0) const

Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...

bool isLittleEndian() const

Layout endianness...

const StructLayout * getStructLayout(StructType *Ty) const

Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...

TypeSize getTypeAllocSize(Type *Ty) const

Returns the offset in bytes between successive objects of the specified type, including alignment pad...

void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, Type *Ty)

StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.

GenericValue getConstantValue(const Constant *C)

Converts a Constant* into a GenericValue, including handling of ConstantExpr values.

const DataLayout & getDataLayout() const

void * getPointerToGlobal(const GlobalValue *GV)

getPointerToGlobal - This returns the address of the specified global value.

void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, Type *Ty)

FIXME: document.

This instruction compares its operands according to the predicate given to the constructor.

This class represents an extension of floating point types.

This class represents a cast from floating point to signed integer.

This class represents a cast from floating point to unsigned integer.

This class represents a truncation of floating point types.

an instruction for type-safe pointer arithmetic to access elements of arrays and structs

This instruction compares its operands according to the predicate given to the constructor.

Indirect Branch Instruction.

This instruction inserts a single (scalar) element into a VectorType value.

This instruction inserts a struct field of array element value into an aggregate value.

void visit(Iterator Start, Iterator End)

This class represents a cast from an integer to a pointer.

Class to represent integer types.

unsigned getBitWidth() const

Get the number of bits in this IntegerType.

void visitSIToFPInst(SIToFPInst &I)

void visitFCmpInst(FCmpInst &I)

void visitPtrToIntInst(PtrToIntInst &I)

void visitShuffleVectorInst(ShuffleVectorInst &I)

void visitCallBase(CallBase &I)

void visitAllocaInst(AllocaInst &I)

void visitSelectInst(SelectInst &I)

void exitCalled(GenericValue GV)

void visitReturnInst(ReturnInst &I)

void visitIntToPtrInst(IntToPtrInst &I)

void visitUnreachableInst(UnreachableInst &I)

void visitICmpInst(ICmpInst &I)

void visitLShr(BinaryOperator &I)

void visitUIToFPInst(UIToFPInst &I)

void visitIndirectBrInst(IndirectBrInst &I)

void visitInsertValueInst(InsertValueInst &I)

void runAtExitHandlers()

runAtExitHandlers - Run any functions registered by the program's calls to atexit(3),...

void visitBranchInst(BranchInst &I)

void visitVAArgInst(VAArgInst &I)

void visitStoreInst(StoreInst &I)

void visitExtractValueInst(ExtractValueInst &I)

void visitSwitchInst(SwitchInst &I)

void visitExtractElementInst(ExtractElementInst &I)

void visitVACopyInst(VACopyInst &I)

void visitVAEndInst(VAEndInst &I)

void visitTruncInst(TruncInst &I)

void visitFPToUIInst(FPToUIInst &I)

void visitLoadInst(LoadInst &I)

void visitGetElementPtrInst(GetElementPtrInst &I)

void callFunction(Function *F, ArrayRef< GenericValue > ArgVals)

void visitInsertElementInst(InsertElementInst &I)

void visitUnaryOperator(UnaryOperator &I)

void visitFPExtInst(FPExtInst &I)

void visitVAStartInst(VAStartInst &I)

void visitBitCastInst(BitCastInst &I)

void visitSExtInst(SExtInst &I)

void visitAShr(BinaryOperator &I)

GenericValue callExternalFunction(Function *F, ArrayRef< GenericValue > ArgVals)

void visitFPTruncInst(FPTruncInst &I)

void visitBinaryOperator(BinaryOperator &I)

void visitShl(BinaryOperator &I)

void visitZExtInst(ZExtInst &I)

void visitFPToSIInst(FPToSIInst &I)

void visitIntrinsicInst(IntrinsicInst &I)

A wrapper class for inspecting calls to intrinsic functions.

void LowerIntrinsicCall(CallInst *CI)

Replace a call to the specified intrinsic function.

An instruction for reading from memory.

Value * getIncomingValue(unsigned i) const

Return incoming value number x.

int getBasicBlockIndex(const BasicBlock *BB) const

Return the first index of the specified basic block in the value list for this PHI.

This class represents a cast from a pointer to an integer.

Return a value (possibly void), from a function.

This class represents a sign extension of integer types.

This class represents a cast from signed integer to floating point.

This class represents the LLVM 'select' instruction.

This instruction constructs a fixed permutation of two input vectors.

An instruction for storing to memory.

Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...

TypeSize getElementOffset(unsigned Idx) const

Class to represent struct types.

This class represents a truncation of integer types.

The instances of the Type class are immutable: once they are created, they are never changed.

bool isVectorTy() const

True if this is an instance of VectorType.

bool isPointerTy() const

True if this is an instance of PointerType.

bool isFloatTy() const

Return true if this is 'float', a 32-bit IEEE fp type.

@ ScalableVectorTyID

Scalable SIMD vector type.

@ FloatTyID

32-bit floating point type

@ IntegerTyID

Arbitrary bit width integers.

@ FixedVectorTyID

Fixed width SIMD vector type.

@ DoubleTyID

64-bit floating point type

unsigned getScalarSizeInBits() const LLVM_READONLY

If this is a vector type, return the getPrimitiveSizeInBits value for the element type.

static Type * getVoidTy(LLVMContext &C)

bool isDoubleTy() const

Return true if this is 'double', a 64-bit IEEE fp type.

bool isFloatingPointTy() const

Return true if this is one of the floating-point types.

bool isIntegerTy() const

True if this is an instance of IntegerType.

TypeID getTypeID() const

Return the type id for the type.

TypeSize getPrimitiveSizeInBits() const LLVM_READONLY

Return the basic size of this type if it is a primitive type.

bool isVoidTy() const

Return true if this is 'void'.

Type * getScalarType() const

If this is a vector type, return the element type, otherwise return 'this'.

This class represents a cast unsigned integer to floating point.

This function has undefined behavior.

This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...

This represents the llvm.va_copy intrinsic.

This represents the llvm.va_end intrinsic.

This represents the llvm.va_start intrinsic.

LLVM Value Representation.

Type * getType() const

All values are typed, get the type of this value.

Base class of all SIMD vector types.

Type * getElementType() const

This class represents zero extension of integer types.

This class provides various memory handling functions that manipulate MemoryBlock instances.

#define llvm_unreachable(msg)

Marks that the current location is not supposed to be reachable.

float RoundAPIntToFloat(const APInt &APIVal)

Converts the given APInt to a float value.

double RoundAPIntToDouble(const APInt &APIVal)

Converts the given APInt to a double value.

APInt RoundFloatToAPInt(float Float, unsigned width)

Converts a float value into a APInt.

APInt RoundDoubleToAPInt(double Double, unsigned width)

Converts the given double value into a APInt.

double RoundSignedAPIntToDouble(const APInt &APIVal)

Converts the given APInt to a double value.

float RoundSignedAPIntToFloat(const APInt &APIVal)

Converts the given APInt to a float value.

This is an optimization pass for GlobalISel generic memory operations.

auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)

Get the size of a range.

gep_type_iterator gep_type_end(const User *GEP)

GenericValue PTOGV(void *P)

raw_ostream & dbgs()

dbgs() - This returns a reference to a raw_ostream for debugging messages.

void report_fatal_error(Error Err, bool gen_crash_diag=true)

Report a serious error, calling any installed error handler.

LLVM_ATTRIBUTE_RETURNS_NONNULL void * safe_malloc(size_t Sz)

constexpr unsigned BitWidth

void * GVTOP(const GenericValue &GV)

gep_type_iterator gep_type_begin(const User *GEP)

constexpr uint64_t NextPowerOf2(uint64_t A)

Returns the next power of two (in 64-bits) that is strictly greater than A.

BasicBlock::iterator CurInst

std::map< Value *, GenericValue > Values

std::vector< GenericValue > VarArgs

struct IntPair UIntPairVal

std::vector< GenericValue > AggregateVal