LLVM: include/llvm/Support/GenericLoopInfoImpl.h Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14#ifndef LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
15#define LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
16
22
23namespace llvm {
24
25
26
27
28
29
30
31
32template <class BlockT, class LoopT>
35 assert(!isInvalid() && "Loop not in a valid state!");
36 for (const auto BB : blocks())
37 for (auto *Succ : children<BlockT *>(BB))
39
41 break;
42 }
43}
44
45
46
47template <class BlockT, class LoopT>
49 assert(!isInvalid() && "Loop not in a valid state!");
50 auto notInLoop = [&](BlockT *BB) { return (BB); };
51 auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * {
52 assert(!AllowRepeats && "Unexpected parameter value.");
53
54 return any_of(children<BlockT *>(BB), notInLoop) ? BB : nullptr;
55 };
56
58}
59
60
61
62
63template <class BlockT, class LoopT>
66 assert(!isInvalid() && "Loop not in a valid state!");
67 for (const auto BB : blocks())
68 for (auto *Succ : children<BlockT *>(BB))
70
72}
73
74
75
76template <class BlockT, class LoopT>
78 bool Unique) {
79 assert(!L->isInvalid() && "Loop not in a valid state!");
80 auto notInLoop = [&](BlockT *BB,
81 bool AllowRepeats) -> std::pair<BlockT *, bool> {
82 assert(AllowRepeats == Unique && "Unexpected parameter value.");
83 return {!L->contains(BB) ? BB : nullptr, false};
84 };
85 auto singleExitBlock = [&](BlockT *BB,
86 bool AllowRepeats) -> std::pair<BlockT *, bool> {
87 assert(AllowRepeats == Unique && "Unexpected parameter value.");
88 return find_singleton_nested(children<BlockT *>(BB), notInLoop,
89 AllowRepeats);
90 };
91 return find_singleton_nested(L->blocks(), singleExitBlock, Unique);
92}
93
94template <class BlockT, class LoopT>
97 if (RC.second)
98
99 return false;
100
101 return !RC.first;
102}
103
104
105
106template <class BlockT, class LoopT>
109}
110
111template <class BlockT, class LoopT>
113
114
116 getUniqueExitBlocks(UniqueExitBlocks);
117 for (BlockT *EB : UniqueExitBlocks)
118 for (BlockT *Predecessor : inverse_children<BlockT *>(EB))
120 return false;
121
122 return true;
123}
124
125
126
127template <class BlockT, class LoopT, typename PredicateT>
131 assert(!L->isInvalid() && "Loop not in a valid state!");
134 for (BlockT *BB : Filtered)
135 for (BlockT *Successor : children<BlockT *>(BB))
139}
140
141template <class BlockT, class LoopT>
145 [](const BlockT *BB) { return true; });
146}
147
148template <class BlockT, class LoopT>
151 const BlockT *Latch = getLoopLatch();
152 assert(Latch && "Latch block must exists");
154 [Latch](const BlockT *BB) { return BB != Latch; });
155}
156
157template <class BlockT, class LoopT>
160}
161
162template <class BlockT, class LoopT>
164 BlockT *Latch = getLoopLatch();
165 assert(Latch && "Latch block must exists");
166 auto IsExitBlock = [this](BlockT *BB, bool AllowRepeats) -> BlockT * {
167 assert(!AllowRepeats && "Unexpected parameter value.");
168 return (BB) ? BB : nullptr;
169 };
170 return find_singleton(children<BlockT *>(Latch), IsExitBlock);
171}
172
173
174template <class BlockT, class LoopT>
177 assert(!isInvalid() && "Loop not in a valid state!");
178 for (const auto BB : blocks())
179 for (auto *Succ : children<BlockT *>(BB))
181
183}
184
186template
188
189template
191
192
193
196 return Block->isLegalToHoistInto();
197 return false;
198}
199}
200
201
202
203
204
205
206
207
208
209template <class BlockT, class LoopT>
211 assert(!isInvalid() && "Loop not in a valid state!");
212
213 BlockT *Out = getLoopPredecessor();
214 if (!Out)
215 return nullptr;
216
217
219 return nullptr;
220
221
223 return nullptr;
224
225
226 return Out;
227}
228
229
230
231
232
233
234template <class BlockT, class LoopT>
236 assert(!isInvalid() && "Loop not in a valid state!");
237
238 BlockT *Out = nullptr;
239
240
241 BlockT *Header = getHeader();
242 for (const auto Pred : inverse_children<BlockT *>(Header)) {
243 if ((Pred)) {
244 if (Out && Out != Pred)
245 return nullptr;
246 Out = Pred;
247 }
248 }
249
250 return Out;
251}
252
253
254
255template <class BlockT, class LoopT>
257 assert(!isInvalid() && "Loop not in a valid state!");
258 BlockT *Header = getHeader();
259 BlockT *Latch = nullptr;
260 for (const auto Pred : inverse_children<BlockT *>(Header)) {
262 if (Latch)
263 return nullptr;
264 Latch = Pred;
266 }
267
268 return Latch;
270
271
272
274
275
276
278
279
280
281template <class BlockT, class LoopT>
284 assert(!isInvalid() && "Loop not in a valid state!");
285#ifndef NDEBUG
286 if (.empty()) {
287 auto SameHeader = LIB[getHeader()];
288 assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
289 "Incorrect LI specified for this loop!");
290 }
292 assert(NewBB && "Cannot add a null basic block to the loop!");
293 assert(!LIB[NewBB] && "BasicBlock already in the loop!");
294
295 LoopT *L = static_cast<LoopT *>(this);
296
297
298 LIB.BBMap[NewBB] = L;
300
301 while (L) {
302 L->addBlockEntry(NewBB);
303 L = L->getParentLoop();
304 }
305}
306
307
309
310
311template <class BlockT, class LoopT>
313 LoopT *NewChild) {
314 assert(!isInvalid() && "Loop not in a valid state!");
315 assert(OldChild->ParentLoop == this && "This loop is already broken!");
316 assert(!NewChild->ParentLoop && "NewChild already has a parent!");
317 typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
318 assert(I != SubLoops.end() && "OldChild not in loop!");
319 *I = NewChild;
320 OldChild->ParentLoop = nullptr;
321 NewChild->ParentLoop = static_cast<LoopT *>(this);
323
324
325template <class BlockT, class LoopT>
327 assert(!isInvalid() && "Loop not in a valid state!");
328#ifndef NDEBUG
329 assert(.empty() && "Loop header is missing");
330
331
333 getExitBlocks(ExitBBs);
336
337
339
340
341 for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) {
343 [&](BlockT *B) { return contains(B); }) &&
344 "Loop block has no in-loop successors!");
345
347 [&](BlockT *B) { return contains(B); }) &&
348 "Loop block has no in-loop predecessors!");
349
351 for (BlockT *B : inverse_children<BlockT *>(BB))
354
355 if (BB == getHeader()) {
356 assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
357 } else if (!OutsideLoopPreds.empty()) {
358
359
360
361 BlockT *EntryBB = &BB->getParent()->front();
363 for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
364 assert(CB != OutsideLoopPreds[i] &&
365 "Loop has multiple entry points!");
366 }
368 "Loop contains function entry block!");
369
370 VisitedBBs.insert(BB);
371 }
372
373 if (VisitedBBs.size() != getNumBlocks()) {
374 dbgs() << "The following blocks are unreachable in the loop: ";
375 for (auto *BB : Blocks) {
376 if (!VisitedBBs.count(BB)) {
377 dbgs() << *BB << "\n";
378 }
379 }
380 assert(false && "Unreachable block in loop");
382
383
384 for (iterator I = begin(), E = end(); I != E; ++I)
385
386 for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
387 BI != BE; ++BI) {
389 "Loop does not contain all the blocks of a subloop!");
390 }
391
392
393 if (ParentLoop) {
395 "Loop is not a subloop of its parent!");
396 }
397#endif
398}
399
400
401template <class BlockT, class LoopT>
404 assert(!isInvalid() && "Loop not in a valid state!");
405 Loops->insert(static_cast<const LoopT *>(this));
406
407 verifyLoop();
408
409 for (iterator I = begin(), E = end(); I != E; ++I)
410 (*I)->verifyLoopNest(Loops);
411}
412
413template <class BlockT, class LoopT>
415 bool PrintNested, unsigned Depth) const {
417 if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
418 OS << "Parallel ";
419 OS << "Loop at depth " << getLoopDepth() << " containing: ";
420
421 BlockT *H = getHeader();
422 for (unsigned i = 0; i < getBlocks().size(); ++i) {
423 BlockT *BB = getBlocks()[i];
425 if (i)
426 OS << ",";
427 BB->printAsOperand(OS, false);
428 } else
429 OS << "\n";
430
431 if (BB == H)
432 OS << "
433 if (isLoopLatch(BB))
434 OS << "";
435 if (isLoopExiting(BB))
436 OS << "";
438 BB->print(OS);
439 }
440
441 if (PrintNested) {
442 OS << "\n";
443
444 for (iterator I = begin(), E = end(); I != E; ++I)
445 (*I)->print(OS, false, PrintNested, Depth + 2);
446 }
447}
448
449
450
451
452
453
454
455
456
457template <class BlockT, class LoopT>
462
463 unsigned NumBlocks = 0;
464 unsigned NumSubloops = 0;
465
467 std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
468 while (!ReverseCFGWorklist.empty()) {
469 BlockT *PredBB = ReverseCFGWorklist.back();
470 ReverseCFGWorklist.pop_back();
471
472 LoopT *Subloop = LI->getLoopFor(PredBB);
473 if (!Subloop) {
475 continue;
476
477
479 ++NumBlocks;
480 if (PredBB == L->getHeader())
481 continue;
482
483 ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
484 InvBlockTraits::child_begin(PredBB),
485 InvBlockTraits::child_end(PredBB));
486 } else {
487
488 Subloop = Subloop->getOutermostLoop();
489
490
491 if (Subloop == L)
492 continue;
493
494
495 Subloop->setParentLoop(L);
496 ++NumSubloops;
497 NumBlocks += Subloop->getBlocksVector().capacity();
498 PredBB = Subloop->getHeader();
499
500
501
502
503 for (const auto Pred : inverse_children<BlockT *>(PredBB)) {
505 ReverseCFGWorklist.push_back(Pred);
506 }
507 }
508 }
509 L->getSubLoopsVector().reserve(NumSubloops);
510 L->reserveBlocks(NumBlocks);
511}
512
513
516 typedef typename BlockTraits::ChildIteratorType SuccIterTy;
517
519
520public:
522
523 void traverse(BlockT *EntryBlock);
524
525protected:
527};
528
529
530template <class BlockT, class LoopT>
532 for (BlockT *BB : post_order(EntryBlock))
533 insertIntoLoop(BB);
534}
535
536
537
538
539template <class BlockT, class LoopT>
542 if (Subloop && Block == Subloop->getHeader()) {
543
544
545 if (!Subloop->isOutermost())
546 Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
547 else
549
550
551
552 Subloop->reverseBlock(1);
553 std::reverse(Subloop->getSubLoopsVector().begin(),
554 Subloop->getSubLoopsVector().end());
555
556 Subloop = Subloop->getParentLoop();
557 }
558 for (; Subloop; Subloop = Subloop->getParentLoop())
559 Subloop->addBlockEntry(Block);
560}
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576template <class BlockT, class LoopT>
578
580 for (auto DomNode : post_order(DomRoot)) {
581
582 BlockT *Header = DomNode->getBlock();
584
585
586 for (const auto Backedge : inverse_children<BlockT *>(Header)) {
587
589 if (BackedgeNode && DomTree.dominates(DomNode, BackedgeNode))
591 }
593 if (!Backedges.empty()) {
594 LoopT *L = AllocateLoop(Header);
596 }
597 }
598
599
600 PopulateLoopsDFS<BlockT, LoopT> DFS(this);
601 DFS.traverse(DomRoot->getBlock());
603
604template <class BlockT, class LoopT>
608
609
610
611
612
613 for (LoopT *RootL : reverse(*this)) {
614 auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
615 PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
616 PreOrderLoopsInRootL.end());
617 }
618
619 return PreOrderLoops;
620}
621
622template <class BlockT, class LoopT>
626
627
628
629
630
631 for (LoopT *RootL : *this) {
633 "Must start with an empty preorder walk worklist.");
634 PreOrderWorklist.push_back(RootL);
635 do {
637
638
639 PreOrderWorklist.append(L->begin(), L->end());
641 } while (!PreOrderWorklist.empty());
642 }
643
644 return PreOrderLoops;
645}
646
647
648template <class BlockT, class LoopT>
650 for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
651 TopLevelLoops[i]->print(OS);
652#if 0
654 E = BBMap.end(); I != E; ++I)
655 OS << "BB '" << I->first->getName() << "' level = "
656 << I->second->getLoopDepth() << "\n";
657#endif
658}
659
660template
664 return BB1 == BB2;
665}
666
667template <class BlockT, class LoopT>
670 const LoopT &L) {
671 LoopHeaders[L.getHeader()] = &L;
672 for (LoopT *SL : L)
674}
675
676#ifndef NDEBUG
677template <class BlockT, class LoopT>
678static void compareLoops(const LoopT *L, const LoopT *OtherL,
680 BlockT *H = L->getHeader();
681 BlockT *OtherH = OtherL->getHeader();
683 "Mismatched headers even though found in the same map entry!");
684
685 assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
686 "Mismatched loop depth!");
687 const LoopT *ParentL = L, *OtherParentL = OtherL;
688 do {
689 assert(ParentL->getHeader() == OtherParentL->getHeader() &&
690 "Mismatched parent loop headers!");
691 ParentL = ParentL->getParentLoop();
692 OtherParentL = OtherParentL->getParentLoop();
693 } while (ParentL);
694
695 for (const LoopT *SubL : *L) {
696 BlockT *SubH = SubL->getHeader();
697 const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
698 assert(OtherSubL && "Inner loop is missing in computed loop info!");
699 OtherLoopHeaders.erase(SubH);
700 compareLoops(SubL, OtherSubL, OtherLoopHeaders);
701 }
702
703 std::vector<BlockT *> BBs = L->getBlocks();
704 std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
706 "Mismatched basic blocks in the loops!");
707
710 OtherL->getBlocksSet();
713 "Mismatched basic blocks in BlocksSets!");
714}
715#endif
716
717template <class BlockT, class LoopT>
721 for (iterator I = begin(), E = end(); I != E; ++I) {
722 assert((*I)->isOutermost() && "Top-level loop has a parent!");
723 (*I)->verifyLoopNest(&Loops);
724 }
725
726
727#ifndef NDEBUG
728 for (auto &Entry : BBMap) {
729 const BlockT *BB = Entry.first;
730 LoopT *L = Entry.second;
731 assert(Loops.count(L) && "orphaned loop");
732 assert(L->contains(BB) && "orphaned block");
733 for (LoopT *ChildLoop : *L)
734 assert(!ChildLoop->contains(BB) &&
735 "BBMap should point to the innermost loop containing BB");
736 }
737
738
740 OtherLI.analyze(DomTree);
741
742
743
744
746 for (LoopT *L : OtherLI)
748
749
750
751
752 for (LoopT *L : *this) {
753 BlockT *Header = L->getHeader();
754 const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
755 assert(OtherL && "Top level loop is missing in computed loop info!");
756
757 OtherLoopHeaders.erase(Header);
758
760 }
761
762
763
764 if (!OtherLoopHeaders.empty()) {
765 for (const auto &HeaderAndLoop : OtherLoopHeaders)
766 dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
767 llvm_unreachable("Found new loops when recomputing LoopInfo!");
768 }
769#endif
770}
771
772}
773
774#endif
static const Function * getParent(const Value *V)
bbsections Prepares for basic block by splitting functions into clusters of basic blocks
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
DenseMap< Block *, BlockRelaxAux > Blocks
static bool isExitBlock(BasicBlock *BB, const SmallVectorImpl< BasicBlock * > &ExitBlocks)
Return true if the specified block is in the list.
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
This file defines generic set operations that may be used on set's of different types,...
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
bool erase(const KeyT &Val)
Implements a dense probed hash-table based set.
Base class for the actual dominator tree node.
Core dominator tree base class.
DomTreeNodeBase< NodeT > * getRootNode()
getRootNode - This returns the entry node for the CFG of the function.
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
bool isReachableFromEntry(const NodeT *A) const
isReachableFromEntry - Return true if A is dominated by the entry block of the function containing it...
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Instances of this class are used to represent loops that are detected in the flow graph.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
void getExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all of the successor blocks of this loop.
void verifyLoop() const
Verify loop structure.
void verifyLoopNest(DenseSet< const LoopT * > *Loops) const
Verify loop structure of this loop and all nested loops.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
void print(raw_ostream &OS, bool Verbose=false, bool PrintNested=true, unsigned Depth=0) const
Print loop with all the BBs inside it.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
std::vector< LoopT * >::const_iterator iterator
BlockT * getLoopPredecessor() const
If the given loop's header has exactly one unique predecessor outside the loop, return it.
void getExitEdges(SmallVectorImpl< Edge > &ExitEdges) const
Return all pairs of (inside_block,outside_block).
BlockT * getExitBlock() const
If getExitBlocks would return exactly one block, return that block.
bool hasNoExitBlocks() const
Return true if this loop does not have any exit blocks.
void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild)
This is used when splitting loops up.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
void getUniqueExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all unique successor blocks of this loop.
bool hasDedicatedExits() const
Return true if no exit block for the loop has a predecessor that is outside the loop.
void getUniqueNonLatchExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all unique successor blocks of this loop except successors from Latch block are not considered...
BlockT * getUniqueExitBlock() const
If getUniqueExitBlocks would return exactly one block, return that block.
This class builds and contains all of the top-level loop structures in the specified function.
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
void analyze(const DominatorTreeBase< BlockT, false > &DomTree)
Create the loop forest using a stable algorithm.
SmallVector< LoopT *, 4 > getLoopsInReverseSiblingPreorder() const
Return all of the loops in the function in preorder across the loop nests, with siblings in reverse p...
void print(raw_ostream &OS) const
SmallVector< LoopT *, 4 > getLoopsInPreorder() const
Return all of the loops in the function in preorder across the loop nests, with siblings in forward p...
void changeLoopFor(BlockT *BB, LoopT *L)
Change the top-level loop that contains BB to the specified loop.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
std::vector< LoopT * >::const_iterator iterator
iterator/begin/end - The interface to the top-level loops in the current function.
Populate all loop data in a stable order during a single forward DFS.
void traverse(BlockT *EntryBlock)
Top-level driver for the forward DFS within the loop.
PopulateLoopsDFS(LoopInfoBase< BlockT, LoopT > *li)
void insertIntoLoop(BlockT *Block)
Add a single Block to its ancestor loops in PostOrder.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
decltype(&BlockT::isLegalToHoistInto) has_hoist_check
llvm::is_detected< has_hoist_check, BlockT > detect_has_hoist_check
bool isLegalToHoistInto(BlockT *Block)
SFINAE functions that dispatch to the isLegalToHoistInto member function or return false,...
This is an optimization pass for GlobalISel generic memory operations.
iterator_range< df_ext_iterator< T, SetTy > > depth_first_ext(const T &G, SetTy &S)
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
static void compareLoops(const LoopT *L, const LoopT *OtherL, DenseMap< BlockT *, const LoopT * > &OtherLoopHeaders)
bool set_is_subset(const S1Ty &S1, const S2Ty &S2)
set_is_subset(A, B) - Return true iff A in B
iterator_range< po_iterator< T > > post_order(const T &G)
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr)
typename detail::detector< void, Op, Args... >::value_t is_detected
Detects if a given trait holds for some set of arguments 'Args'.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
void sort(IteratorTy Start, IteratorTy End)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
std::pair< BlockT *, bool > getExitBlockHelper(const LoopBase< BlockT, LoopT > *L, bool Unique)
getExitBlock - If getExitBlocks would return exactly one block, return that block.
void addInnerLoopsToHeadersMap(DenseMap< BlockT *, const LoopT * > &LoopHeaders, const LoopInfoBase< BlockT, LoopT > &LI, const LoopT &L)
void getUniqueExitBlocksHelper(const LoopT *L, SmallVectorImpl< BlockT * > &ExitBlocks, PredicateT Pred)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool compareVectors(std::vector< T > &BB1, std::vector< T > &BB2)
iterator_range< df_iterator< T > > depth_first(const T &G)
static void discoverAndMapSubloop(LoopT *L, ArrayRef< BlockT * > Backedges, LoopInfoBase< BlockT, LoopT > *LI, const DomTreeBase< BlockT > &DomTree)
Stable LoopInfo Analysis - Build a loop tree using stable iterators so the result does / not depend o...
std::pair< iterator, bool > insert(NodeRef N)