LLVM: lib/CodeGen/GlobalISel/RegBankSelect.cpp Source File (original) (raw)

1

2

3

4

5

6

7

8

9

10

11

32#include "llvm/Config/llvm-config.h"

42#include

43#include

44#include

45#include

46#include

47#include

48

49#define DEBUG_TYPE "regbankselect"

50

51using namespace llvm;

52

56 "Run the Fast mode (default mapping)"),

57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",

58 "Use the Greedy mode (best local mapping)")));

59

61

63 "Assign register bank of generic virtual registers",

64 false, false);

69 "Assign register bank of generic virtual registers", false,

71

77 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");

78 }

79}

80

83 assert(RBI && "Cannot work without RegisterBankInfo");

86 TPC = &getAnalysis();

88 MBFI = &getAnalysis().getMBFI();

89 MBPI = &getAnalysis().getMBPI();

90 } else {

91 MBFI = nullptr;

92 MBPI = nullptr;

93 }

95 MORE = std::make_unique(MF, MBFI);

96}

97

100

101

104 }

108}

109

112 bool &OnlyAssign) const {

113

114 OnlyAssign = false;

115

116

118 return false;

119

122

123

124 OnlyAssign = CurRegBank == nullptr;

125 LLVM_DEBUG(dbgs() << "Does assignment already match: ";

126 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";

127 dbgs() << " against ";

128 assert(DesiredRegBank && "The mapping must be valid");

129 dbgs() << *DesiredRegBank << '\n';);

130 return CurRegBank == DesiredRegBank;

131}

132

137

139 "need new vreg for each breakdown");

140

141

142 assert(!NewVRegs.empty() && "We should not have to repair");

143

146

147

149 Register Dst = *NewVRegs.begin();

150

151

152

155

157 "We are about to create several defs for Dst");

158

159

160

161

167 << " to: " << printReg(Dst) << ':'

169 } else {

170

171

173

175 if (MO.isDef()) {

176 unsigned MergeOp;

179 MergeOp = TargetOpcode::G_BUILD_VECTOR;

180 else {

185 0) &&

186 "don't understand this value breakdown");

187

188 MergeOp = TargetOpcode::G_CONCAT_VECTORS;

189 }

190 } else

191 MergeOp = TargetOpcode::G_MERGE_VALUES;

192

193 auto MergeBuilder =

196

197 for (Register SrcReg : NewVRegs)

198 MergeBuilder.addUse(SrcReg);

199

200 MI = MergeBuilder;

201 } else {

204 for (Register DefReg : NewVRegs)

205 UnMergeBuilder.addDef(DefReg);

206

208 MI = UnMergeBuilder;

209 }

210 }

211

213 report_fatal_error("need testcase to support multiple insertion points");

214

215

216

217

218 std::unique_ptr<MachineInstr *[]> NewInstrs(

220 bool IsFirst = true;

221 unsigned Idx = 0;

222 for (const std::unique_ptr &InsertPt : RepairPt) {

224 if (IsFirst)

225 CurMI = MI;

226 else

228 InsertPt->insert(*CurMI);

229 NewInstrs[Idx++] = CurMI;

230 IsFirst = false;

231 }

232

233

234 return true;

235}

236

240 assert(MO.isReg() && "We should only repair register operand");

242

243 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;

245

246

248

249

250

251

252

253

254

255

256

257

258

261

262 if (IsSameNumOfValues) {

264

265

267 std::swap(CurRegBank, DesiredRegBank);

268

269

270

271

272

273

274

275

276

277

278

279 unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,

281

282 if (Cost != std::numeric_limits::max())

284

285 }

286 return std::numeric_limits::max();

287}

288

293 "Do not know how to map this instruction");

294

299 PossibleMappings) {

302 if (CurCost < Cost) {

303 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');

304 Cost = CurCost;

305 BestMapping = CurMapping;

306 RepairPts.clear();

309 }

310 }

312

313

314

315 BestMapping = *PossibleMappings.begin();

318 } else

319 assert(BestMapping && "No suitable mapping for instruction");

320 return *BestMapping;

321}

322

327 assert(RepairPt.hasSplit() && "We should not have to adjust for split");

328

329

330 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");

331

333 "Repairing placement does not match operand");

334

335

336

337

338

339 assert((MI.isPHI() || !MO.isDef()) && "Need split for phi def?");

340

341

342 if (!MO.isDef()) {

343 if (MI.isTerminator()) {

344 assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&

345 "Need to split for the first terminator?!");

346 } else {

347

348

349

351

353 }

354 return;

355 }

356

357

358

359

360

361

362

363

364

365

367 "This code is for the def of a terminator");

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

402 if (Reg.isPhysical()) {

403

404

405

406

407

408

409

410

411

412

413

414 assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&

415 "Do not know which outgoing edges are relevant");

418 "Do not know where each terminator ends up");

419 if (Next)

420

421

422

424 "Need to split between terminators");

425

426 } else {

427

429

430

431

432

433 assert(false && "Repairing cost may not be accurate");

434 } else {

435

436

437

439 }

440 }

441}

442

447 assert((MBFI || !BestCost) && "Costs comparison require MBFI");

448

449 if (!InstrMapping.isValid())

451

452

455 bool Saturated = Cost.addLocalCost(InstrMapping.getCost());

456 assert(!Saturated && "Possible mapping saturated the cost");

458 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');

459 RepairPts.clear();

460 if (BestCost && Cost > *BestCost) {

461 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");

463 }

465

466

467

468

469

470 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();

471 OpIdx != EndOpIdx; ++OpIdx) {

474 continue;

476 if (!Reg)

477 continue;

480 continue;

481

484 InstrMapping.getOperandMapping(OpIdx);

485

486 bool Assign;

489 continue;

490 }

491 if (Assign) {

492 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");

495 continue;

496 }

497

498

502

503

504

505

508

509

511 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");

513 }

514

515

516

517 if (!BestCost || Saturated)

518 continue;

519

520

521

522 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");

523

524

525

526

527

528

529

530

531

532

533

535

536

537 if (RepairCost == std::numeric_limits::max())

539

540

541 const uint64_t PercentageForBias = 5;

542 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;

543

544

545

546

547 assert(((RepairCost < RepairCost * PercentageForBias) &&

548 (RepairCost * PercentageForBias <

549 RepairCost * PercentageForBias + 99)) &&

550 "Repairing involves more than a billion of instructions?!");

551 for (const std::unique_ptr &InsertPt : RepairPt) {

552 assert(InsertPt->canMaterialize() && "We should not have made it here");

553

554 if (!InsertPt->isSplit())

555 Saturated = Cost.addLocalCost(RepairCost);

556 else {

557 uint64_t CostForInsertPt = RepairCost;

558

559

560 assert(CostForInsertPt + Bias > CostForInsertPt &&

561 "Repairing + split bias overflows");

562 CostForInsertPt += Bias;

563 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;

564

565 if ((Saturated = PtCost < CostForInsertPt))

566 Cost.saturate();

567 else

568 Saturated = Cost.addNonLocalCost(PtCost);

569 }

570

571

572

573 if (BestCost && Cost > *BestCost) {

574 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");

576 }

577

578

579

580 if (Saturated)

581 break;

582 }

583 }

586}

587

591

593

594

596 if (!RepairPt.canMaterialize() ||

598 return false;

600 "This should not make its way in the list");

601 unsigned OpIdx = RepairPt.getOpIdx();

604 InstrMapping.getOperandMapping(OpIdx);

606

607 switch (RepairPt.getKind()) {

610 "Reassignment should only be for simple mapping");

612 break;

614

615 if (MI.isDebugInstr())

616 break;

618 if (repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))

619 return false;

620 break;

621 default:

623 }

624 }

625

626

627 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');

629

630 return true;

631}

632

635

636 unsigned Opc = MI.getOpcode();

638 assert((Opc == TargetOpcode::G_ASSERT_ZEXT ||

639 Opc == TargetOpcode::G_ASSERT_SEXT ||

640 Opc == TargetOpcode::G_ASSERT_ALIGN) &&

641 "Unexpected hint opcode!");

642

643

646

647

648 assert(RB && "Expected source register to have a register bank?");

649 LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");

651 return true;

652 }

653

654

656

661 (void)DefaultCost;

663 return false;

664 } else {

667 if (PossibleMappings.empty())

668 return false;

670 }

671

672 assert(BestMapping->verify(MI) && "Invalid instruction mapping");

673

674 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');

675

676

677

679}

680

682

683

684

687

688

692

693 while (!WorkList.empty()) {

695

696

697

699 continue;

700

701

702

703 if (MI.isInlineAsm())

704 continue;

705

706

707 if (MI.isImplicitDef())

708 continue;

709

712 "unable to map instruction", MI);

713 return false;

714 }

715 }

716 }

717

718 return true;

719}

720

722#ifndef NDEBUG

726 "instruction is not legal", *MI);

727 return false;

728 }

729 }

730#endif

731 return true;

732}

733

735

738 return false;

739

743 if (F.hasOptNone())

746

747#ifndef NDEBUG

749 return false;

750#endif

751

753

755 return false;

756}

757

758

759

760

764

765 : Kind(Kind), OpIdx(OpIdx),

766 CanMaterialize(Kind != RepairingKind::Impossible), P(P) {

768 assert(MO.isReg() && "Trying to repair a non-reg operand");

769

771 return;

772

773

775

776

777 if (MI.isPHI() && MI.isTerminator()) {

779

780 return;

781 }

782

783

784 if (MI.isPHI()) {

785

786

787

790 if (It != MI.getParent()->end())

792 else

794 return;

795 }

796

798

799

802 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)

803 if (It->modifiesRegister(Reg, &TRI)) {

804

805

807 return;

808 }

809

810

811

812

813

814 if (It == Pred.end())

816 else

818 } else {

819

820

821

823

825 auto REnd = MI.getParent()->rend();

826

827 for (; It != REnd && It->isTerminator(); ++It) {

829 "copy insertion in middle of terminators not handled");

830 }

831

832 if (It == REnd) {

834 return;

835 }

836

837

839 return;

840 }

841

842

844 ++It != End;)

845

847 "Do not know where to split");

848

850 for (auto &Succ : Src.successors())

852 }

853}

854

858}

859

861 bool Beginning) {

863}

864

868}

869

873 HasSplit |= Point.isSplit();

874 InsertPoints.emplace_back(&Point);

875}

876

880

881

883 "Splitting before phis requires more points");

884 assert((Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&

885 "Splitting between phis does not make sense");

886}

887

888void RegBankSelect::InstrInsertPoint::materialize() {

889 if (isSplit()) {

890

891

892

893

894

895

896

897

898

899

900

901

902

904 }

905

906

907

908}

909

911

913 return Instr.isTerminator();

914

915

916 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();

917}

918

920

921

925 return 1;

927}

928

933 return 1;

935}

936

937void RegBankSelect::EdgeInsertPoint::materialize() {

938

939

940

941

942 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&

943 "This point has already been split");

945 assert(NewBB && "Invalid call to materialize");

946

947 DstOrSplit = NewBB;

948}

949

954 return 1;

956 if (WasMaterialized)

958

959 auto *MBPIWrapper =

962 MBPIWrapper ? &MBPIWrapper->getMBPI() : nullptr;

964 return 1;

965

967 .getFrequency();

968}

969

971

972

973

974 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&

975 "Edge is not critical");

976 return Src.canSplitCriticalEdge(DstOrSplit);

977}

978

980 : LocalFreq(LocalFreq.getFrequency()) {}

981

983

984 if (LocalCost + Cost < LocalCost) {

985 saturate();

986 return true;

987 }

988 LocalCost += Cost;

989 return isSaturated();

990}

991

993

994 if (NonLocalCost + Cost < NonLocalCost) {

995 saturate();

996 return true;

997 }

998 NonLocalCost += Cost;

999 return isSaturated();

1000}

1001

1002bool RegBankSelect::MappingCost::isSaturated() const {

1005}

1006

1008 *this = ImpossibleCost();

1009 --LocalCost;

1010}

1011

1014}

1015

1017

1018 if (*this == Cost)

1019 return false;

1020

1021

1022 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))

1023 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());

1024

1025

1026 if (isSaturated() || Cost.isSaturated())

1027 return isSaturated() < Cost.isSaturated();

1028

1029

1030

1031

1032

1033

1037

1038

1039

1040 if (NonLocalCost == Cost.NonLocalCost)

1041

1042

1043 return LocalCost < Cost.LocalCost;

1044

1045

1046

1047 ThisLocalAdjust = 0;

1048 OtherLocalAdjust = 0;

1049 if (LocalCost < Cost.LocalCost)

1050 OtherLocalAdjust = Cost.LocalCost - LocalCost;

1051 else

1052 ThisLocalAdjust = LocalCost - Cost.LocalCost;

1053 } else {

1054 ThisLocalAdjust = LocalCost;

1055 OtherLocalAdjust = Cost.LocalCost;

1056 }

1057

1058

1059 uint64_t ThisNonLocalAdjust = 0;

1060 uint64_t OtherNonLocalAdjust = 0;

1061 if (NonLocalCost < Cost.NonLocalCost)

1062 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;

1063 else

1064 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;

1065

1066 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;

1067

1068 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||

1069 ThisScaledCost < LocalFreq);

1070 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;

1071

1072 bool OtherOverflows =

1073 OtherLocalAdjust &&

1074 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);

1075

1076 ThisOverflows |= ThisNonLocalAdjust &&

1077 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;

1078 ThisScaledCost += ThisNonLocalAdjust;

1079 OtherOverflows |= OtherNonLocalAdjust &&

1080 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;

1081 OtherScaledCost += OtherNonLocalAdjust;

1082

1083

1084 if (ThisOverflows && OtherOverflows)

1085 return false;

1086

1087 if (ThisOverflows || OtherOverflows)

1088 return ThisOverflows < OtherOverflows;

1089

1090 return ThisScaledCost < OtherScaledCost;

1091}

1092

1094 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&

1095 LocalFreq == Cost.LocalFreq;

1096}

1097

1098#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

1101 dbgs() << '\n';

1102}

1103#endif

1104

1106 if (*this == ImpossibleCost()) {

1107 OS << "impossible";

1108 return;

1109 }

1110 if (isSaturated()) {

1111 OS << "saturated";

1112 return;

1113 }

1114 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;

1115}

#define clEnumValN(ENUMVAL, FLAGNAME, DESC)

#define LLVM_DUMP_METHOD

Mark debug helper function definitions like dump() that should not be stripped from debug builds.

#define LLVM_LIKELY(EXPR)

Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx

Interface for Targets to specify which operations they can successfully select and how the others sho...

unsigned const TargetRegisterInfo * TRI

#define INITIALIZE_PASS_DEPENDENCY(depName)

#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)

#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)

This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.

static cl::opt< RegBankSelect::Mode > RegBankSelectMode(cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", "Run the Fast mode (default mapping)"), clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", "Use the Greedy mode (best local mapping)")))

This file describes the interface of the MachineFunctionPass responsible for assigning the generic vi...

assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())

This file defines the SmallVector class.

Target-Independent Code Generator Pass Configuration Options pass.

Represent the analysis usage information of a pass.

AnalysisUsage & addRequired()

uint64_t getFrequency() const

Returns the frequency as a fixpoint number scaled by the entry frequency.

constexpr unsigned getScalarSizeInBits() const

constexpr bool isValid() const

constexpr uint16_t getNumElements() const

Returns the number of elements in a vector LLT.

constexpr bool isVector() const

constexpr TypeSize getSizeInBits() const

Returns the total size of the type. Must only be called on sized types.

const MachineBlockFrequencyInfo & getMBFI() const

iterator getLastNonDebugInstr(bool SkipPseudoOp=true)

Returns an iterator to the last non-debug instruction in the basic block, or end().

BlockFrequency getBlockFreq(const MachineBasicBlock *MBB) const

getblockFreq - Return block frequency.

BranchProbability getEdgeProbability(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const

MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...

void getAnalysisUsage(AnalysisUsage &AU) const override

getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.

bool hasProperty(Property P) const

const TargetSubtargetInfo & getSubtarget() const

getSubtarget - Return the subtarget for which this machine code is being compiled.

StringRef getName() const

getName - Return the name of the corresponding LLVM function.

MachineRegisterInfo & getRegInfo()

getRegInfo - Return information about the registers currently in use.

Function & getFunction()

Return the LLVM function that this machine code represents.

const MachineFunctionProperties & getProperties() const

Get the function properties.

MachineInstr * CloneMachineInstr(const MachineInstr *Orig)

Create a new MachineInstr which is a copy of Orig, identical in all ways except the instruction has n...

MachineFunction & getMF()

Getter for the function we currently build.

void setMBB(MachineBasicBlock &MBB)

Set the insertion point to the end of MBB.

MachineInstrBuilder buildInstrNoInsert(unsigned Opcode)

Build but don't insert = Opcode .

void setMF(MachineFunction &MF)

const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const

Add a virtual register use operand.

const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const

Add a virtual register definition operand.

Representation of each machine instruction.

bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const

Return true if the MachineInstr reads the specified register.

void insert(mop_iterator InsertBefore, ArrayRef< MachineOperand > Ops)

Inserts Ops BEFORE It. Can untie/retie tied operands.

bool isUnconditionalBranch(QueryType Type=AnyInBundle) const

Return true if this is a branch which always transfers control flow to some other block.

MachineOperand class - Representation of each machine instruction operand.

bool isReg() const

isReg - Tests if this is a MO_Register operand.

MachineInstr * getParent()

getParent - Return the instruction that this operand belongs to.

Register getReg() const

getReg - Returns the register number.

MachineRegisterInfo - Keep track of information for virtual and physical registers,...

LLT getType(Register Reg) const

Get the low-level type of Reg or LLT{} if Reg is not a generic (target independent) virtual register.

void setRegBank(Register Reg, const RegisterBank &RegBank)

Set the register bank to RegBank for Reg.

Pass interface - Implemented by all 'passes'.

Insertion point on an edge.

uint64_t frequency(const Pass &P) const override

Frequency of the insertion point.

bool canMaterialize() const override

Check whether this insertion point can be materialized.

Abstract class used to represent an insertion point in a CFG.

virtual bool canMaterialize() const

Check whether this insertion point can be materialized.

virtual bool isSplit() const

Does this point involve splitting an edge or block? As soon as getPoint is called and thus,...

Insertion point before or after an instruction.

InstrInsertPoint(MachineInstr &Instr, bool Before=true)

Create an insertion point before (Before=true) or after Instr.

bool isSplit() const override

Does this point involve splitting an edge or block? As soon as getPoint is called and thus,...

uint64_t frequency(const Pass &P) const override

Frequency of the insertion point.

Insertion point at the beginning or end of a basic block.

uint64_t frequency(const Pass &P) const override

Frequency of the insertion point.

Helper class used to represent the cost for mapping an instruction.

void saturate()

Saturate the cost to the maximal representable value.

bool operator==(const MappingCost &Cost) const

Check if this is equal to Cost.

bool addLocalCost(uint64_t Cost)

Add Cost to the local cost.

void dump() const

Print this on dbgs() stream.

static MappingCost ImpossibleCost()

Return an instance of MappingCost that represents an impossible mapping.

bool addNonLocalCost(uint64_t Cost)

Add Cost to the non-local cost.

bool operator<(const MappingCost &Cost) const

Check if this is less than Cost.

void print(raw_ostream &OS) const

Print this on OS;.

Struct used to represent the placement of a repairing point for a given operand.

unsigned getNumInsertPoints() const

bool canMaterialize() const

RepairingPlacement(MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, RepairingKind Kind=RepairingKind::Insert)

Create a repairing placement for the OpIdx-th operand of MI.

unsigned getOpIdx() const

RepairingKind

Define the kind of action this repairing needs.

@ Insert

Reparing code needs to happen before InsertPoints.

@ None

Nothing to repair, just drop this action.

@ Reassign

(Re)assign the register bank of the operand.

@ Impossible

Mark this repairing placement as impossible.

void switchTo(RepairingKind NewKind)

Change the type of this repairing placement to NewKind.

void addInsertPoint(MachineBasicBlock &MBB, bool Beginning)

This pass implements the reg bank selector pass used in the GlobalISel pipeline.

Mode

List of the modes supported by the RegBankSelect pass.

@ Fast

Assign the register banks as fast as possible (default).

bool checkFunctionIsLegal(MachineFunction &MF) const

Check that our input is fully legal: we require the function to have the Legalized property,...

MachineIRBuilder MIRBuilder

Helper class used for every code morphing.

MachineBlockFrequencyInfo * MBFI

Get the frequency of blocks.

Mode OptMode

Optimization mode of the pass.

const RegisterBankInfo::InstructionMapping & findBestMapping(MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, SmallVectorImpl< RepairingPlacement > &RepairPts)

Find the best mapping for MI from PossibleMappings.

bool assignInstr(MachineInstr &MI)

Assign the register bank of each operand of MI.

bool assignRegisterBanks(MachineFunction &MF)

Walk through MF and assign a register bank to every virtual register that are still mapped to nothing...

void init(MachineFunction &MF)

Initialize the field members using MF.

void tryAvoidingSplit(RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping) const

When RepairPt involves splitting to repair MO for the given ValMapping, try to change the way we repa...

const TargetRegisterInfo * TRI

Information on the register classes for the current function.

void getAnalysisUsage(AnalysisUsage &AU) const override

getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...

MachineBranchProbabilityInfo * MBPI

Get the frequency of the edges.

bool assignmentMatch(Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, bool &OnlyAssign) const

Check if Reg is already assigned what is described by ValMapping.

uint64_t getRepairCost(const MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping) const

Return the cost of the instruction needed to map MO to ValMapping.

MappingCost computeMapping(MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, SmallVectorImpl< RepairingPlacement > &RepairPts, const MappingCost *BestCost=nullptr)

Compute the cost of mapping MI with InstrMapping and compute the repairing placement for such mapping...

bool repairReg(MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, RegBankSelect::RepairingPlacement &RepairPt, const iterator_range< SmallVectorImpl< Register >::const_iterator > &NewVRegs)

Insert repairing code for Reg as specified by ValMapping.

MachineRegisterInfo * MRI

MRI contains all the register class/bank information that this pass uses and updates.

bool runOnMachineFunction(MachineFunction &MF) override

runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...

const TargetPassConfig * TPC

Current target configuration. Controls how the pass handles errors.

const RegisterBankInfo * RBI

Interface to the target lowering info related to register banks.

std::unique_ptr< MachineOptimizationRemarkEmitter > MORE

Current optimization remark emitter. Used to report failures.

bool applyMapping(MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, SmallVectorImpl< RepairingPlacement > &RepairPts)

Apply Mapping to MI.

Helper class that represents how the value of an instruction may be mapped and what is the related co...

unsigned getNumOperands() const

Get the number of operands.

unsigned getCost() const

Get the cost.

bool verify(const MachineInstr &MI) const

Verifiy that this mapping makes sense for MI.

bool isValid() const

Check whether this object is valid.

Helper class used to get/create the virtual registers that will be used to replace the MachineOperand...

void createVRegs(unsigned OpIdx)

Create as many new virtual registers as needed for the mapping of the OpIdx-th operand.

iterator_range< SmallVectorImpl< Register >::const_iterator > getVRegs(unsigned OpIdx, bool ForDebug=false) const

Get all the virtual registers required to map the OpIdx-th operand of the instruction.

void applyMapping(MachineIRBuilder &Builder, const OperandsMapper &OpdMapper) const

Apply OpdMapper.getInstrMapping() to OpdMapper.getMI().

virtual const InstructionMapping & getInstrMapping(const MachineInstr &MI) const

Get the mapping of the different operands of MI on the register bank.

const RegisterBank & getRegBank(unsigned ID)

Get the register bank identified by ID.

TypeSize getSizeInBits(Register Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) const

Get the size in bits of Reg.

InstructionMappings getInstrPossibleMappings(const MachineInstr &MI) const

Get the possible mapping for MI.

virtual unsigned copyCost(const RegisterBank &A, const RegisterBank &B, TypeSize Size) const

Get the cost of a copy from B to A, or put differently, get the cost of A = COPY B.

virtual unsigned getBreakDownCost(const ValueMapping &ValMapping, const RegisterBank *CurBank=nullptr) const

Get the cost of using ValMapping to decompose a register.

This class implements the register bank concept.

Wrapper class representing virtual and physical registers.

This class consists of common code factored out of the SmallVector class to reduce code duplication b...

reference emplace_back(ArgTypes &&... Args)

typename SuperClass::const_iterator const_iterator

This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.

Target-Independent Code Generator Pass Configuration Options.

bool isGlobalISelAbortEnabled() const

Check whether or not GlobalISel should abort on error.

TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...

virtual const TargetRegisterInfo * getRegisterInfo() const

getRegisterInfo - If register information is available, return it.

virtual const RegisterBankInfo * getRegBankInfo() const

If the information for the register banks is available, return it.

A range adaptor for a pair of iterators.

This class implements an extremely fast bulk output stream that can only output to a stream.

#define llvm_unreachable(msg)

Marks that the current location is not supposed to be reachable.

ValuesClass values(OptsTy... Options)

Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...

This is an optimization pass for GlobalISel generic memory operations.

auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)

Get the size of a range.

Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr)

bool isPreISelGenericOptimizationHint(unsigned Opcode)

cl::opt< bool > DisableGISelLegalityCheck

auto reverse(ContainerTy &&C)

void reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R)

Report an ISel error as a missed optimization remark to the LLVMContext's diagnostic stream.

raw_ostream & dbgs()

dbgs() - This returns a reference to a raw_ostream for debugging messages.

void report_fatal_error(Error Err, bool gen_crash_diag=true)

Report a serious error, calling any installed error handler.

Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo, const TargetRegisterInfo *TRI)

Create Printable object to print register classes or register banks on a raw_ostream.

const MachineInstr * machineFunctionIsIllegal(const MachineFunction &MF)

Checks that MIR is fully legal, returns an illegal instruction if it's not, nullptr otherwise.

void getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU)

Modify analysis usage so it preserves passes required for the SelectionDAG fallback.

bool isTargetSpecificOpcode(unsigned Opcode)

Check whether the given Opcode is a target-specific opcode.

iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)

Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)

Prints virtual and physical registers with or without a TRI instance.

void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)

Implement std::swap in terms of BitVector swap.

const RegisterBank * RegBank

Register bank where the partial value lives.

unsigned Length

Length of this mapping in bits.

Helper struct that represents how a value is mapped through different register banks.

bool partsAllUniform() const

unsigned NumBreakDowns

Number of partial mapping to break down this value.

const PartialMapping * BreakDown

How the value is broken down between the different register banks.