LLVM: lib/Support/SHA256.cpp Source File (original) (raw)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

28

29namespace llvm {

30

31#define SHR(x, c) ((x) >> (c))

32#define ROTR(x, n) (((x) >> n) | ((x) << (32 - (n))))

33

34#define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))

35#define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

36

37#define SIGMA_0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))

38#define SIGMA_1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))

39

40#define SIGMA_2(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))

41#define SIGMA_3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))

42

43#define F_EXPAND(A, B, C, D, E, F, G, H, M1, M2, M3, M4, k) \

44 do { \

45 H += SIGMA_1(E) + CH(E, F, G) + M1 + k; \

46 D += H; \

47 H += SIGMA_0(A) + MAJ(A, B, C); \

48 M1 += SIGMA_2(M2) + M3 + SIGMA_3(M4); \

49 } while (0);

50

52 InternalState.State[0] = 0x6A09E667;

53 InternalState.State[1] = 0xBB67AE85;

54 InternalState.State[2] = 0x3C6EF372;

55 InternalState.State[3] = 0xA54FF53A;

56 InternalState.State[4] = 0x510E527F;

57 InternalState.State[5] = 0x9B05688C;

58 InternalState.State[6] = 0x1F83D9AB;

59 InternalState.State[7] = 0x5BE0CD19;

60 InternalState.ByteCount = 0;

61 InternalState.BufferOffset = 0;

62}

63

64void SHA256::hashBlock() {

65 uint32_t A = InternalState.State[0];

66 uint32_t B = InternalState.State[1];

67 uint32_t C = InternalState.State[2];

68 uint32_t D = InternalState.State[3];

69 uint32_t E = InternalState.State[4];

70 uint32_t F = InternalState.State[5];

71 uint32_t G = InternalState.State[6];

72 uint32_t H = InternalState.State[7];

73

74 uint32_t W00 = InternalState.Buffer.L[0];

75 uint32_t W01 = InternalState.Buffer.L[1];

76 uint32_t W02 = InternalState.Buffer.L[2];

77 uint32_t W03 = InternalState.Buffer.L[3];

78 uint32_t W04 = InternalState.Buffer.L[4];

79 uint32_t W05 = InternalState.Buffer.L[5];

80 uint32_t W06 = InternalState.Buffer.L[6];

81 uint32_t W07 = InternalState.Buffer.L[7];

82 uint32_t W08 = InternalState.Buffer.L[8];

83 uint32_t W09 = InternalState.Buffer.L[9];

84 uint32_t W10 = InternalState.Buffer.L[10];

85 uint32_t W11 = InternalState.Buffer.L[11];

86 uint32_t W12 = InternalState.Buffer.L[12];

87 uint32_t W13 = InternalState.Buffer.L[13];

88 uint32_t W14 = InternalState.Buffer.L[14];

89 uint32_t W15 = InternalState.Buffer.L[15];

90

91 F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x428A2F98);

92 F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x71374491);

93 F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0xB5C0FBCF);

94 F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0xE9B5DBA5);

95 F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x3956C25B);

96 F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x59F111F1);

97 F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x923F82A4);

98 F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0xAB1C5ED5);

99 F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xD807AA98);

100 F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x12835B01);

101 F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x243185BE);

102 F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x550C7DC3);

103 F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x72BE5D74);

104 F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0x80DEB1FE);

105 F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x9BDC06A7);

106 F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC19BF174);

107

108 F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0xE49B69C1);

109 F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0xEFBE4786);

110 F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x0FC19DC6);

111 F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x240CA1CC);

112 F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x2DE92C6F);

113 F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4A7484AA);

114 F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5CB0A9DC);

115 F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x76F988DA);

116 F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x983E5152);

117 F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA831C66D);

118 F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xB00327C8);

119 F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xBF597FC7);

120 F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xC6E00BF3);

121 F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD5A79147);

122 F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x06CA6351);

123 F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x14292967);

124

125 F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x27B70A85);

126 F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x2E1B2138);

127 F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x4D2C6DFC);

128 F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x53380D13);

129 F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x650A7354);

130 F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x766A0ABB);

131 F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x81C2C92E);

132 F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x92722C85);

133 F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xA2BFE8A1);

134 F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA81A664B);

135 F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xC24B8B70);

136 F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xC76C51A3);

137 F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xD192E819);

138 F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD6990624);

139 F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xF40E3585);

140 F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x106AA070);

141

142 F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x19A4C116);

143 F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x1E376C08);

144 F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x2748774C);

145 F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x34B0BCB5);

146 F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x391C0CB3);

147 F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4ED8AA4A);

148 F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5B9CCA4F);

149 F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x682E6FF3);

150 F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x748F82EE);

151 F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x78A5636F);

152 F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x84C87814);

153 F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x8CC70208);

154 F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x90BEFFFA);

155 F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xA4506CEB);

156 F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xBEF9A3F7);

157 F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC67178F2);

158

159 InternalState.State[0] += A;

160 InternalState.State[1] += B;

161 InternalState.State[2] += C;

162 InternalState.State[3] += D;

163 InternalState.State[4] += E;

164 InternalState.State[5] += F;

165 InternalState.State[6] += G;

166 InternalState.State[7] += H;

167}

168

171 InternalState.Buffer.C[InternalState.BufferOffset] = Data;

172 else

173 InternalState.Buffer.C[InternalState.BufferOffset ^ 3] = Data;

174

175 InternalState.BufferOffset++;

176 if (InternalState.BufferOffset == BLOCK_LENGTH) {

178 InternalState.BufferOffset = 0;

179 }

180}

181

182void SHA256::writebyte(uint8_t Data) {

183 ++InternalState.ByteCount;

184 addUncounted(Data);

185}

186

188 InternalState.ByteCount += Data.size();

189

190

191 if (InternalState.BufferOffset > 0) {

192 const size_t Remainder = std::min<size_t>(

193 Data.size(), BLOCK_LENGTH - InternalState.BufferOffset);

194 for (size_t I = 0; I < Remainder; ++I)

195 addUncounted(Data[I]);

196 Data = Data.drop_front(Remainder);

197 }

198

199

200 while (Data.size() >= BLOCK_LENGTH) {

201 assert(InternalState.BufferOffset == 0);

202 static_assert(BLOCK_LENGTH % 4 == 0);

203 constexpr size_t BLOCK_LENGTH_32 = BLOCK_LENGTH / 4;

204 for (size_t I = 0; I < BLOCK_LENGTH_32; ++I)

206 hashBlock();

207 Data = Data.drop_front(BLOCK_LENGTH);

208 }

209

210

212 addUncounted(C);

213}

214

219

220void SHA256::pad() {

221

222

223

224 addUncounted(0x80);

225 while (InternalState.BufferOffset != 56)

226 addUncounted(0x00);

227

228 uint64_t len = InternalState.ByteCount << 3;

229

230

231 addUncounted(len >> 56);

232 addUncounted(len >> 48);

233 addUncounted(len >> 40);

234 addUncounted(len >> 32);

235 addUncounted(len >> 24);

236 addUncounted(len >> 16);

237 addUncounted(len >> 8);

238 addUncounted(len);

239}

240

241void SHA256::final(std::array<uint32_t, HASH_LENGTH / 4> &HashResult) {

242

244

246

247 for (int i = 0; i < 8; i++) {

248 HashResult[i] = InternalState.State[i];

249 }

250 } else {

251

252 for (int i = 0; i < 8; i++) {

253 HashResult[i] = llvm::byteswap(InternalState.State[i]);

254 }

255 }

256}

257

259 union {

260 std::array<uint32_t, HASH_LENGTH / 4> HashResult;

261 std::array<uint8_t, HASH_LENGTH> ReturnResult;

262 };

263 static_assert(sizeof(HashResult) == sizeof(ReturnResult));

264 final(HashResult);

265 return ReturnResult;

266}

267

269 auto StateToRestore = InternalState;

270

271 auto Hash = final();

272

273

274 InternalState = StateToRestore;

275

276

277 return Hash;

278}

279

283 return Hash.final();

284}

285

286}

assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")

static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")

static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")

static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")

static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")

uint64_t hashBlock(const MachineBasicBlock &MBB, bool HashOperands)

#define F_EXPAND(A, B, C, D, E, F, G, H, M1, M2, M3, M4, k)

Definition SHA256.cpp:43

static void pad(raw_fd_ostream &OS)

ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...

LLVM_ABI void init()

Reinitialize the internal state.

Definition SHA256.cpp:51

LLVM_ABI std::array< uint8_t, 32 > final()

Return the current raw 256-bits SHA256 for the digested data since the last call to init().

Definition SHA256.cpp:258

static LLVM_ABI std::array< uint8_t, 32 > hash(ArrayRef< uint8_t > Data)

Returns a raw 256-bit SHA256 hash for the given data.

Definition SHA256.cpp:280

LLVM_ABI void update(ArrayRef< uint8_t > Data)

Digest more data.

Definition SHA256.cpp:187

LLVM_ABI std::array< uint8_t, 32 > result()

Return the current raw 256-bits SHA256 for the digested data since the last call to init().

Definition SHA256.cpp:268

StringRef - Represent a constant reference to a string, i.e.

@ C

The default llvm calling convention, compatible with C.

uint32_t read32be(const void *P)

constexpr bool IsBigEndianHost

This is an optimization pass for GlobalISel generic memory operations.

constexpr T byteswap(T V) noexcept

Reverses the bytes in the given integer value V.

FunctionAddr VTableAddr uintptr_t uintptr_t Data