LLVM: lib/CodeGen/TargetLoweringBase.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
57#include
58#include
59#include
60#include
61#include
62#include
63#include
64#include
65
66using namespace llvm;
67
69 "jump-is-expensive", cl::init(false),
70 cl::desc("Do not create extra branches to split comparison logic."),
72
75 cl::desc("Set minimum number of entries to use a jump table."));
76
79 cl::desc("Set maximum size of jump tables."));
80
81
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
86
87
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
92
93
94
95
96
98 cl::desc("Don't mutate strict-float node to a legalize node"),
100
101
102
109 return
110 VT == MVT::f32 ? Call_F32 :
111 VT == MVT::f64 ? Call_F64 :
112 VT == MVT::f80 ? Call_F80 :
113 VT == MVT::f128 ? Call_F128 :
114 VT == MVT::ppcf128 ? Call_PPCF128 :
115 RTLIB::UNKNOWN_LIBCALL;
116}
117
118
119
121 if (OpVT == MVT::f16) {
122 if (RetVT == MVT::f32)
123 return FPEXT_F16_F32;
124 if (RetVT == MVT::f64)
125 return FPEXT_F16_F64;
126 if (RetVT == MVT::f80)
127 return FPEXT_F16_F80;
128 if (RetVT == MVT::f128)
129 return FPEXT_F16_F128;
130 } else if (OpVT == MVT::f32) {
131 if (RetVT == MVT::f64)
132 return FPEXT_F32_F64;
133 if (RetVT == MVT::f128)
134 return FPEXT_F32_F128;
135 if (RetVT == MVT::ppcf128)
136 return FPEXT_F32_PPCF128;
137 } else if (OpVT == MVT::f64) {
138 if (RetVT == MVT::f128)
139 return FPEXT_F64_F128;
140 else if (RetVT == MVT::ppcf128)
141 return FPEXT_F64_PPCF128;
142 } else if (OpVT == MVT::f80) {
143 if (RetVT == MVT::f128)
144 return FPEXT_F80_F128;
145 } else if (OpVT == MVT::bf16) {
146 if (RetVT == MVT::f32)
147 return FPEXT_BF16_F32;
148 }
149
150 return UNKNOWN_LIBCALL;
151}
152
153
154
156 if (RetVT == MVT::f16) {
157 if (OpVT == MVT::f32)
158 return FPROUND_F32_F16;
159 if (OpVT == MVT::f64)
160 return FPROUND_F64_F16;
161 if (OpVT == MVT::f80)
162 return FPROUND_F80_F16;
163 if (OpVT == MVT::f128)
164 return FPROUND_F128_F16;
165 if (OpVT == MVT::ppcf128)
166 return FPROUND_PPCF128_F16;
167 } else if (RetVT == MVT::bf16) {
168 if (OpVT == MVT::f32)
169 return FPROUND_F32_BF16;
170 if (OpVT == MVT::f64)
171 return FPROUND_F64_BF16;
172 if (OpVT == MVT::f80)
173 return FPROUND_F80_BF16;
174 if (OpVT == MVT::f128)
175 return FPROUND_F128_BF16;
176 } else if (RetVT == MVT::f32) {
177 if (OpVT == MVT::f64)
178 return FPROUND_F64_F32;
179 if (OpVT == MVT::f80)
180 return FPROUND_F80_F32;
181 if (OpVT == MVT::f128)
182 return FPROUND_F128_F32;
183 if (OpVT == MVT::ppcf128)
184 return FPROUND_PPCF128_F32;
185 } else if (RetVT == MVT::f64) {
186 if (OpVT == MVT::f80)
187 return FPROUND_F80_F64;
188 if (OpVT == MVT::f128)
189 return FPROUND_F128_F64;
190 if (OpVT == MVT::ppcf128)
191 return FPROUND_PPCF128_F64;
192 } else if (RetVT == MVT::f80) {
193 if (OpVT == MVT::f128)
194 return FPROUND_F128_F80;
195 }
196
197 return UNKNOWN_LIBCALL;
198}
199
200
201
203 if (OpVT == MVT::f16) {
204 if (RetVT == MVT::i32)
205 return FPTOSINT_F16_I32;
206 if (RetVT == MVT::i64)
207 return FPTOSINT_F16_I64;
208 if (RetVT == MVT::i128)
209 return FPTOSINT_F16_I128;
210 } else if (OpVT == MVT::f32) {
211 if (RetVT == MVT::i32)
212 return FPTOSINT_F32_I32;
213 if (RetVT == MVT::i64)
214 return FPTOSINT_F32_I64;
215 if (RetVT == MVT::i128)
216 return FPTOSINT_F32_I128;
217 } else if (OpVT == MVT::f64) {
218 if (RetVT == MVT::i32)
219 return FPTOSINT_F64_I32;
220 if (RetVT == MVT::i64)
221 return FPTOSINT_F64_I64;
222 if (RetVT == MVT::i128)
223 return FPTOSINT_F64_I128;
224 } else if (OpVT == MVT::f80) {
225 if (RetVT == MVT::i32)
226 return FPTOSINT_F80_I32;
227 if (RetVT == MVT::i64)
228 return FPTOSINT_F80_I64;
229 if (RetVT == MVT::i128)
230 return FPTOSINT_F80_I128;
231 } else if (OpVT == MVT::f128) {
232 if (RetVT == MVT::i32)
233 return FPTOSINT_F128_I32;
234 if (RetVT == MVT::i64)
235 return FPTOSINT_F128_I64;
236 if (RetVT == MVT::i128)
237 return FPTOSINT_F128_I128;
238 } else if (OpVT == MVT::ppcf128) {
239 if (RetVT == MVT::i32)
240 return FPTOSINT_PPCF128_I32;
241 if (RetVT == MVT::i64)
242 return FPTOSINT_PPCF128_I64;
243 if (RetVT == MVT::i128)
244 return FPTOSINT_PPCF128_I128;
245 }
246 return UNKNOWN_LIBCALL;
247}
248
249
250
252 if (OpVT == MVT::f16) {
253 if (RetVT == MVT::i32)
254 return FPTOUINT_F16_I32;
255 if (RetVT == MVT::i64)
256 return FPTOUINT_F16_I64;
257 if (RetVT == MVT::i128)
258 return FPTOUINT_F16_I128;
259 } else if (OpVT == MVT::f32) {
260 if (RetVT == MVT::i32)
261 return FPTOUINT_F32_I32;
262 if (RetVT == MVT::i64)
263 return FPTOUINT_F32_I64;
264 if (RetVT == MVT::i128)
265 return FPTOUINT_F32_I128;
266 } else if (OpVT == MVT::f64) {
267 if (RetVT == MVT::i32)
268 return FPTOUINT_F64_I32;
269 if (RetVT == MVT::i64)
270 return FPTOUINT_F64_I64;
271 if (RetVT == MVT::i128)
272 return FPTOUINT_F64_I128;
273 } else if (OpVT == MVT::f80) {
274 if (RetVT == MVT::i32)
275 return FPTOUINT_F80_I32;
276 if (RetVT == MVT::i64)
277 return FPTOUINT_F80_I64;
278 if (RetVT == MVT::i128)
279 return FPTOUINT_F80_I128;
280 } else if (OpVT == MVT::f128) {
281 if (RetVT == MVT::i32)
282 return FPTOUINT_F128_I32;
283 if (RetVT == MVT::i64)
284 return FPTOUINT_F128_I64;
285 if (RetVT == MVT::i128)
286 return FPTOUINT_F128_I128;
287 } else if (OpVT == MVT::ppcf128) {
288 if (RetVT == MVT::i32)
289 return FPTOUINT_PPCF128_I32;
290 if (RetVT == MVT::i64)
291 return FPTOUINT_PPCF128_I64;
292 if (RetVT == MVT::i128)
293 return FPTOUINT_PPCF128_I128;
294 }
295 return UNKNOWN_LIBCALL;
296}
297
298
299
301 if (OpVT == MVT::i32) {
302 if (RetVT == MVT::f16)
303 return SINTTOFP_I32_F16;
304 if (RetVT == MVT::f32)
305 return SINTTOFP_I32_F32;
306 if (RetVT == MVT::f64)
307 return SINTTOFP_I32_F64;
308 if (RetVT == MVT::f80)
309 return SINTTOFP_I32_F80;
310 if (RetVT == MVT::f128)
311 return SINTTOFP_I32_F128;
312 if (RetVT == MVT::ppcf128)
313 return SINTTOFP_I32_PPCF128;
314 } else if (OpVT == MVT::i64) {
315 if (RetVT == MVT::f16)
316 return SINTTOFP_I64_F16;
317 if (RetVT == MVT::f32)
318 return SINTTOFP_I64_F32;
319 if (RetVT == MVT::f64)
320 return SINTTOFP_I64_F64;
321 if (RetVT == MVT::f80)
322 return SINTTOFP_I64_F80;
323 if (RetVT == MVT::f128)
324 return SINTTOFP_I64_F128;
325 if (RetVT == MVT::ppcf128)
326 return SINTTOFP_I64_PPCF128;
327 } else if (OpVT == MVT::i128) {
328 if (RetVT == MVT::f16)
329 return SINTTOFP_I128_F16;
330 if (RetVT == MVT::f32)
331 return SINTTOFP_I128_F32;
332 if (RetVT == MVT::f64)
333 return SINTTOFP_I128_F64;
334 if (RetVT == MVT::f80)
335 return SINTTOFP_I128_F80;
336 if (RetVT == MVT::f128)
337 return SINTTOFP_I128_F128;
338 if (RetVT == MVT::ppcf128)
339 return SINTTOFP_I128_PPCF128;
340 }
341 return UNKNOWN_LIBCALL;
342}
343
344
345
347 if (OpVT == MVT::i32) {
348 if (RetVT == MVT::f16)
349 return UINTTOFP_I32_F16;
350 if (RetVT == MVT::f32)
351 return UINTTOFP_I32_F32;
352 if (RetVT == MVT::f64)
353 return UINTTOFP_I32_F64;
354 if (RetVT == MVT::f80)
355 return UINTTOFP_I32_F80;
356 if (RetVT == MVT::f128)
357 return UINTTOFP_I32_F128;
358 if (RetVT == MVT::ppcf128)
359 return UINTTOFP_I32_PPCF128;
360 } else if (OpVT == MVT::i64) {
361 if (RetVT == MVT::f16)
362 return UINTTOFP_I64_F16;
363 if (RetVT == MVT::f32)
364 return UINTTOFP_I64_F32;
365 if (RetVT == MVT::f64)
366 return UINTTOFP_I64_F64;
367 if (RetVT == MVT::f80)
368 return UINTTOFP_I64_F80;
369 if (RetVT == MVT::f128)
370 return UINTTOFP_I64_F128;
371 if (RetVT == MVT::ppcf128)
372 return UINTTOFP_I64_PPCF128;
373 } else if (OpVT == MVT::i128) {
374 if (RetVT == MVT::f16)
375 return UINTTOFP_I128_F16;
376 if (RetVT == MVT::f32)
377 return UINTTOFP_I128_F32;
378 if (RetVT == MVT::f64)
379 return UINTTOFP_I128_F64;
380 if (RetVT == MVT::f80)
381 return UINTTOFP_I128_F80;
382 if (RetVT == MVT::f128)
383 return UINTTOFP_I128_F128;
384 if (RetVT == MVT::ppcf128)
385 return UINTTOFP_I128_PPCF128;
386 }
387 return UNKNOWN_LIBCALL;
388}
389
391 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
392 POWI_PPCF128);
393}
394
396 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
397 LDEXP_PPCF128);
398}
399
401 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
402 FREXP_PPCF128);
403}
404
406 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
407 SINCOS_PPCF128);
408}
409
413 unsigned ModeN, ModelN;
414 switch (MemSize) {
415 case 1:
416 ModeN = 0;
417 break;
418 case 2:
419 ModeN = 1;
420 break;
421 case 4:
422 ModeN = 2;
423 break;
424 case 8:
425 ModeN = 3;
426 break;
427 case 16:
428 ModeN = 4;
429 break;
430 default:
431 return RTLIB::UNKNOWN_LIBCALL;
432 }
433
434 switch (Order) {
435 case AtomicOrdering::Monotonic:
436 ModelN = 0;
437 break;
438 case AtomicOrdering::Acquire:
439 ModelN = 1;
440 break;
441 case AtomicOrdering::Release:
442 ModelN = 2;
443 break;
444 case AtomicOrdering::AcquireRelease:
445 case AtomicOrdering::SequentiallyConsistent:
446 ModelN = 3;
447 break;
448 default:
449 return UNKNOWN_LIBCALL;
450 }
451
452 return LC[ModeN][ModelN];
453}
454
456 MVT VT) {
458 return UNKNOWN_LIBCALL;
460
461#define LCALLS(A, B) \
462 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
463#define LCALL5(A) \
464 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
465 switch (Opc) {
467 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
469 }
471 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
473 }
475 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
477 }
479 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
481 }
483 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
485 }
487 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
489 }
490 default:
491 return UNKNOWN_LIBCALL;
492 }
493#undef LCALLS
494#undef LCALL5
495}
496
498#define OP_TO_LIBCALL(Name, Enum) \
499 case Name: \
500 switch (VT.SimpleTy) { \
501 default: \
502 return UNKNOWN_LIBCALL; \
503 case MVT::i8: \
504 return Enum##_1; \
505 case MVT::i16: \
506 return Enum##_2; \
507 case MVT::i32: \
508 return Enum##_4; \
509 case MVT::i64: \
510 return Enum##_8; \
511 case MVT::i128: \
512 return Enum##_16; \
513 }
514
515 switch (Opc) {
528 }
529
530#undef OP_TO_LIBCALL
531
532 return UNKNOWN_LIBCALL;
533}
534
536 switch (ElementSize) {
537 case 1:
538 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
539 case 2:
540 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
541 case 4:
542 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
543 case 8:
544 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
545 case 16:
546 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
547 default:
548 return UNKNOWN_LIBCALL;
549 }
550}
551
553 switch (ElementSize) {
554 case 1:
555 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
556 case 2:
557 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
558 case 4:
559 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
560 case 8:
561 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
562 case 16:
563 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
564 default:
565 return UNKNOWN_LIBCALL;
566 }
567}
568
570 switch (ElementSize) {
571 case 1:
572 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
573 case 2:
574 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
575 case 4:
576 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
577 case 8:
578 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
579 case 16:
580 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
581 default:
582 return UNKNOWN_LIBCALL;
583 }
584}
585
587 std::fill(CmpLibcallCCs, CmpLibcallCCs + RTLIB::UNKNOWN_LIBCALL,
589 CmpLibcallCCs[RTLIB::OEQ_F32] = ISD::SETEQ;
590 CmpLibcallCCs[RTLIB::OEQ_F64] = ISD::SETEQ;
591 CmpLibcallCCs[RTLIB::OEQ_F128] = ISD::SETEQ;
592 CmpLibcallCCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
593 CmpLibcallCCs[RTLIB::UNE_F32] = ISD::SETNE;
594 CmpLibcallCCs[RTLIB::UNE_F64] = ISD::SETNE;
595 CmpLibcallCCs[RTLIB::UNE_F128] = ISD::SETNE;
596 CmpLibcallCCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
597 CmpLibcallCCs[RTLIB::OGE_F32] = ISD::SETGE;
598 CmpLibcallCCs[RTLIB::OGE_F64] = ISD::SETGE;
599 CmpLibcallCCs[RTLIB::OGE_F128] = ISD::SETGE;
600 CmpLibcallCCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
601 CmpLibcallCCs[RTLIB::OLT_F32] = ISD::SETLT;
602 CmpLibcallCCs[RTLIB::OLT_F64] = ISD::SETLT;
603 CmpLibcallCCs[RTLIB::OLT_F128] = ISD::SETLT;
604 CmpLibcallCCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
605 CmpLibcallCCs[RTLIB::OLE_F32] = ISD::SETLE;
606 CmpLibcallCCs[RTLIB::OLE_F64] = ISD::SETLE;
607 CmpLibcallCCs[RTLIB::OLE_F128] = ISD::SETLE;
608 CmpLibcallCCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
609 CmpLibcallCCs[RTLIB::OGT_F32] = ISD::SETGT;
610 CmpLibcallCCs[RTLIB::OGT_F64] = ISD::SETGT;
611 CmpLibcallCCs[RTLIB::OGT_F128] = ISD::SETGT;
612 CmpLibcallCCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
613 CmpLibcallCCs[RTLIB::UO_F32] = ISD::SETNE;
614 CmpLibcallCCs[RTLIB::UO_F64] = ISD::SETNE;
615 CmpLibcallCCs[RTLIB::UO_F128] = ISD::SETNE;
616 CmpLibcallCCs[RTLIB::UO_PPCF128] = ISD::SETNE;
617}
618
619
621 : TM(tm), Libcalls(TM.getTargetTriple()) {
623
624
630 HasMultipleConditionRegisters = false;
631 HasExtractBitsInsn = false;
635 StackPointerRegisterToSaveRestore = 0;
642 MaxBytesForAlignment = 0;
643 MaxAtomicSizeInBitsSupported = 0;
644
645
646
647 MaxDivRemBitWidthSupported = 128;
648
650
651 MinCmpXchgSizeInBits = 0;
652 SupportsUnalignedAtomics = false;
653
655}
656
658
659 memset(OpActions, 0, sizeof(OpActions));
660 memset(LoadExtActions, 0, sizeof(LoadExtActions));
661 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
662 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
663 memset(CondCodeActions, 0, sizeof(CondCodeActions));
664 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
665 std::fill(std::begin(TargetDAGCombineArray),
666 std::end(TargetDAGCombineArray), 0);
667
668
673
674
675
678 for (MVT VT : {MVT::i2, MVT::i4})
679 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
680 }
682 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
686 }
687 }
690 for (MVT VT : {MVT::i2, MVT::i4}) {
695 }
696 }
697
703 }
704 }
705
706
708
715 }
716
717
719
720
740
741
745
746
750
751
754
755
757
758
762
763
765
766
770
771
774
776
777
781
782
783 if (VT.isVector())
791
792
793#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
794 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
795#include "llvm/IR/ConstrainedOps.def"
796
797
799
800
809
810
812
813
815
816
817#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
818 setOperationAction(ISD::SDOPC, VT, Expand);
819#include "llvm/IR/VPIntrinsics.def"
820
821
823
824
828 }
829
830
832
833
835
836
838
839
840
841
843 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
845
846
853 {MVT::f32, MVT::f64, MVT::f128}, Expand);
854
855
857 {MVT::f32, MVT::f64, MVT::f128}, LibCall);
858
862
864
865
866
868
870
873
874 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
877 }
879
880
881
883}
884
886 EVT) const {
888}
889
892 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
894 return LHSTy;
896
897
899 ShiftVT = MVT::i32;
901 "ShiftVT is still too small!");
902 return ShiftVT;
903}
904
907 switch (Op) {
908 default:
909 return false;
914 return true;
915 }
916}
917
919 unsigned DestAS) const {
921}
922
926
928 if (EC.isScalable())
929 CR = CR.umul_sat(*VScaleRange);
930
931 if (ZeroIsPoison)
933
934 unsigned EltWidth = RetTy->getScalarSizeInBits();
935 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
936 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
937
938 return EltWidth;
939}
940
942
944 JumpIsExpensive = isExpensive;
945}
946
949
952 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
955
960 "Promote may not follow Expand or Promote");
961
963 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
967 }
968
969
973
976 assert(NVT != VT && "Unable to round integer VT");
978
980 return NextStep;
981
983 }
984
987 }
988
989
992
993
996
997
998
999
1001
1002
1007 }
1008
1009
1011
1012
1013
1019 }
1020
1021
1022
1023
1024
1025 EVT OldEltVT = EltVT;
1026 while (true) {
1027
1028
1031
1032
1033
1034
1035
1037 break;
1038
1039
1041
1045 }
1046
1047
1048
1049 EltVT = OldEltVT;
1050 }
1051
1052
1053
1054 while (true) {
1055
1057
1058
1059
1060
1062 break;
1064 if (LargerVector == MVT())
1065 break;
1066
1067
1070 }
1071
1072
1076 }
1077
1080
1081
1085}
1086
1088 unsigned &NumIntermediates,
1089 MVT &RegisterVT,
1091
1094
1095 unsigned NumVectorRegs = 1;
1096
1097
1098
1101 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1102
1103
1104
1106
1107 NumVectorRegs = EC.getKnownMinValue();
1109 }
1110
1111
1112
1113
1114 while (EC.getKnownMinValue() > 1 &&
1116 EC = EC.divideCoefficientBy(2);
1117 NumVectorRegs <<= 1;
1118 }
1119
1120 NumIntermediates = NumVectorRegs;
1121
1124 NewVT = EltTy;
1125 IntermediateVT = NewVT;
1126
1128
1129
1131
1133 RegisterVT = DestVT;
1134 if (EVT(DestVT).bitsLT(NewVT))
1136
1137
1138
1139 return NumVectorRegs;
1140}
1141
1142
1143
1146 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1148 return true;
1149 return false;
1150}
1151
1152
1153
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1174 [](MachineOperand &Operand) { return Operand.isFI(); }))
1175 return MBB;
1176
1178
1179
1181
1182 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1184 if (!MO.isFI()) {
1185
1186
1187
1188
1189 unsigned TiedTo = i;
1191 TiedTo = MI->findTiedOperandIdx(i);
1192 MIB.add(MO);
1193 if (TiedTo < i)
1195 continue;
1196 }
1197
1198
1199
1201
1202
1204
1205
1206
1207
1208 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1209 MIB.addImm(StackMaps::IndirectMemRefOp);
1211 MIB.add(MO);
1213 } else {
1214
1215
1216 MIB.addImm(StackMaps::DirectMemRefOp);
1217 MIB.add(MO);
1219 }
1220
1221 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1222
1223
1225
1226
1227
1228 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1234 }
1235 }
1237 MI->eraseFromParent();
1238 return MBB;
1239}
1240
1241
1242
1243
1244
1245
1246
1247std::pair<const TargetRegisterClass *, uint8_t>
1249 MVT VT) const {
1251 if (!RC)
1252 return std::make_pair(RC, 0);
1253
1254
1255 BitVector SuperRegRC(TRI->getNumRegClasses());
1258
1259
1261 for (unsigned i : SuperRegRC.set_bits()) {
1263
1264 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1265 continue;
1267 continue;
1268 BestRC = SuperRC;
1269 }
1270 return std::make_pair(BestRC, 1);
1271}
1272
1273
1274
1277
1279 NumRegistersForVT[i] = 1;
1281 }
1282
1283 NumRegistersForVT[MVT::isVoid] = 0;
1284
1285
1286 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1287 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1288 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1289
1290
1291
1292 for (unsigned ExpandedReg = LargestIntReg + 1;
1293 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1294 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1299 }
1300
1301
1302
1303 unsigned LegalIntReg = LargestIntReg;
1304 for (unsigned IntReg = LargestIntReg - 1;
1305 IntReg >= (unsigned)MVT::i1; --IntReg) {
1308 LegalIntReg = IntReg;
1309 } else {
1310 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1313 }
1314 }
1315
1316
1319 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1320 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1321 TransformToType[MVT::ppcf128] = MVT::f64;
1323 } else {
1324 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1325 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1326 TransformToType[MVT::ppcf128] = MVT::i128;
1328 }
1329 }
1330
1331
1332
1334 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1335 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1336 TransformToType[MVT::f128] = MVT::i128;
1338 }
1339
1340
1341
1343 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1344 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1345 TransformToType[MVT::f80] = MVT::i32;
1347 }
1348
1349
1350
1352 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1353 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1354 TransformToType[MVT::f64] = MVT::i64;
1356 }
1357
1358
1359
1361 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1362 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1363 TransformToType[MVT::f32] = MVT::i32;
1365 }
1366
1367
1368
1369
1371
1374
1375 if (!UseFPRegsForHalfType) {
1376 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1377 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1378 } else {
1379 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1380 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1381 }
1382 TransformToType[MVT::f16] = MVT::f32;
1383 if (SoftPromoteHalfType) {
1385 } else {
1387 }
1388 }
1389
1390
1391
1392
1394 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1395 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1396 TransformToType[MVT::bf16] = MVT::f32;
1398 }
1399
1400
1401 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1402 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1405 continue;
1406
1409 bool IsLegalWiderType = false;
1412 switch (PreferredAction) {
1415 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1416 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1417
1418
1419 for (unsigned nVT = i + 1;
1422
1423
1426 TransformToType[i] = SVT;
1427 RegisterTypeForVT[i] = SVT;
1428 NumRegistersForVT[i] = 1;
1430 IsLegalWiderType = true;
1431 break;
1432 }
1433 }
1434 if (IsLegalWiderType)
1435 break;
1436 [[fallthrough]];
1437 }
1438
1441
1442 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1447 EC.getKnownMinValue() &&
1449 TransformToType[i] = SVT;
1450 RegisterTypeForVT[i] = SVT;
1451 NumRegistersForVT[i] = 1;
1453 IsLegalWiderType = true;
1454 break;
1455 }
1456 }
1457 if (IsLegalWiderType)
1458 break;
1459 } else {
1460
1463 TransformToType[i] = NVT;
1465 RegisterTypeForVT[i] = NVT;
1466 NumRegistersForVT[i] = 1;
1467 break;
1468 }
1469 }
1470 [[fallthrough]];
1471
1474 MVT IntermediateVT;
1475 MVT RegisterVT;
1476 unsigned NumIntermediates;
1478 NumIntermediates, RegisterVT, this);
1479 NumRegistersForVT[i] = NumRegisters;
1480 assert(NumRegistersForVT[i] == NumRegisters &&
1481 "NumRegistersForVT size cannot represent NumRegisters!");
1482 RegisterTypeForVT[i] = RegisterVT;
1483
1485 if (NVT == VT) {
1486
1487 TransformToType[i] = MVT::Other;
1492 else if (EC.getKnownMinValue() > 1)
1494 else
1495 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1498 } else {
1499 TransformToType[i] = NVT;
1501 }
1502 break;
1503 }
1504 default:
1506 }
1507 }
1508
1509
1510
1511
1512
1513
1518 RepRegClassForVT[i] = RRC;
1519 RepRegClassCostForVT[i] = Cost;
1520 }
1521}
1522
1524 EVT VT) const {
1525 assert(!VT.isVector() && "No default SetCC type for vectors!");
1527}
1528
1530 return MVT::i32;
1531}
1532
1533
1534
1535
1536
1537
1538
1539
1540
1542 EVT VT, EVT &IntermediateVT,
1543 unsigned &NumIntermediates,
1544 MVT &RegisterVT) const {
1546
1547
1548
1549
1550
1551
1557 IntermediateVT = RegisterEVT;
1559 NumIntermediates = 1;
1560 return 1;
1561 }
1562 }
1563
1564
1566
1567 unsigned NumVectorRegs = 1;
1568
1569
1570
1573 EVT PartVT = VT;
1574 do {
1575
1577 PartVT = LK.second;
1578 } while (LK.first != TypeLegal);
1579
1582 "Don't know how to legalize this scalable vector type");
1583 }
1584
1585 NumIntermediates =
1588 IntermediateVT = PartVT;
1590 return NumIntermediates;
1591 }
1592
1593
1594
1598 }
1599
1600
1601
1605 NumVectorRegs <<= 1;
1606 }
1607
1608 NumIntermediates = NumVectorRegs;
1609
1612 NewVT = EltTy;
1613 IntermediateVT = NewVT;
1614
1616 RegisterVT = DestVT;
1617
1618 if (EVT(DestVT).bitsLT(NewVT)) {
1620
1621 if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1623 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1624 }
1625
1626
1627
1628 return NumVectorRegs;
1629}
1630
1636
1637
1638
1639
1640
1641 const bool OptForSize =
1645
1646
1647
1648 return (OptForSize || Range <= MaxJumpTableSize) &&
1649 (NumCases * 100 >= Range * MinDensity);
1650}
1651
1653 EVT ConditionVT) const {
1655}
1656
1657
1658
1659
1660
1667 unsigned NumValues = ValueVTs.size();
1668 if (NumValues == 0) return;
1669
1670 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1671 EVT VT = ValueVTs[j];
1673
1674 if (attr.hasRetAttr(Attribute::SExt))
1676 else if (attr.hasRetAttr(Attribute::ZExt))
1678
1681
1682 unsigned NumParts =
1684 MVT PartVT =
1686
1687
1689 if (attr.hasRetAttr(Attribute::InReg))
1690 Flags.setInReg();
1691
1692
1693 if (attr.hasRetAttr(Attribute::SExt))
1694 Flags.setSExt();
1695 else if (attr.hasRetAttr(Attribute::ZExt))
1696 Flags.setZExt();
1697
1698 for (unsigned i = 0; i < NumParts; ++i)
1700 }
1701}
1702
1705 return DL.getABITypeAlign(Ty);
1706}
1707
1711
1712
1713
1714
1715
1717 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1718
1719 if (Fast != nullptr)
1721 return true;
1722 }
1723
1724
1726}
1727
1733}
1734
1737 unsigned AddrSpace, Align Alignment,
1739 unsigned *Fast) const {
1741 Flags, Fast);
1742}
1743
1747 unsigned *Fast) const {
1750}
1751
1755 unsigned *Fast) const {
1759}
1760
1761
1762
1763
1764
1766 enum InstructionOpcodes {
1767#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1768#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1769#include "llvm/IR/Instruction.def"
1770 };
1771 switch (static_cast<InstructionOpcodes>(Opcode)) {
1772 case Ret: return 0;
1773 case Br: return 0;
1774 case Switch: return 0;
1775 case IndirectBr: return 0;
1776 case Invoke: return 0;
1777 case CallBr: return 0;
1778 case Resume: return 0;
1779 case Unreachable: return 0;
1780 case CleanupRet: return 0;
1781 case CatchRet: return 0;
1782 case CatchPad: return 0;
1783 case CatchSwitch: return 0;
1784 case CleanupPad: return 0;
1804 case Alloca: return 0;
1807 case GetElementPtr: return 0;
1808 case Fence: return 0;
1809 case AtomicCmpXchg: return 0;
1810 case AtomicRMW: return 0;
1826 case PHI: return 0;
1827 case Call: return 0;
1829 case UserOp1: return 0;
1830 case UserOp2: return 0;
1831 case VAArg: return 0;
1837 case LandingPad: return 0;
1839 }
1840
1842}
1843
1846 bool UseTLS) const {
1847
1848
1850 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1851 auto UnsafeStackPtr =
1852 dyn_cast_or_null(M->getNamedValue(UnsafeStackPtrVar));
1853
1855 PointerType *StackPtrTy = DL.getAllocaPtrType(M->getContext());
1856
1857 if (!UnsafeStackPtr) {
1858 auto TLSModel = UseTLS ?
1861
1862
1863
1866 UnsafeStackPtrVar, nullptr, TLSModel);
1867 } else {
1868
1869
1870
1871 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1873 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1875 (UseTLS ? "" : "not ") + "be thread-local");
1876 }
1877 return UnsafeStackPtr;
1878}
1879
1884
1885
1886
1890 M->getOrInsertFunction("__safestack_pointer_address", PtrTy);
1892}
1893
1894
1895
1896
1897
1898
1899
1903
1904
1905
1906
1908 return false;
1909
1910
1911 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1912 return false;
1913
1914
1916 return false;
1917
1918
1919 switch (AM.Scale) {
1920 case 0:
1921 break;
1922 case 1:
1924 return false;
1925
1926 break;
1927 case 2:
1929 return false;
1930
1931 break;
1932 default:
1933 return false;
1934 }
1935
1936 return true;
1937}
1938
1939
1940
1941
1942
1943
1944
1949 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1950 if (GlobalVariable *G = dyn_cast_or_null(C))
1952 return C;
1953 }
1954 return nullptr;
1955}
1956
1957
1958
1960 if (!M.getNamedValue("__stack_chk_guard")) {
1963 nullptr, "__stack_chk_guard");
1964
1965
1966 if (M.getDirectAccessExternalData() &&
1972 GV->setDSOLocal(true);
1973 }
1974}
1975
1976
1977
1979 return M.getNamedValue("__stack_chk_guard");
1980}
1981
1983 return nullptr;
1984}
1985
1988}
1989
1992}
1993
1996}
1997
2000}
2001
2004}
2005
2008}
2009
2013 return PrefLoopAlignment;
2014}
2015
2018 return MaxBytesForAlignment;
2019}
2020
2021
2022
2023
2024
2025
2026
2029 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2030}
2031
2032
2033
2034
2035
2037 std::string Name = VT.isVector() ? "vec-" : "";
2038
2039 Name += IsSqrt ? "sqrt" : "div";
2040
2041
2043 Name += "d";
2045 Name += "h";
2046 } else {
2048 "Unexpected FP type for reciprocal estimate");
2049 Name += "f";
2050 }
2051
2052 return Name;
2053}
2054
2055
2056
2057
2060 const char RefStepToken = ':';
2061 Position = In.find(RefStepToken);
2063 return false;
2064
2065 StringRef RefStepString = In.substr(Position + 1);
2066
2067
2068 if (RefStepString.size() == 1) {
2069 char RefStepChar = RefStepString[0];
2070 if (isDigit(RefStepChar)) {
2071 Value = RefStepChar - '0';
2072 return true;
2073 }
2074 }
2076}
2077
2078
2079
2080
2082 if (Override.empty())
2084
2086 Override.split(OverrideVector, ',');
2087 unsigned NumArgs = OverrideVector.size();
2088
2089
2090 if (NumArgs == 1) {
2091
2092
2093 size_t RefPos;
2096
2097 Override = Override.substr(0, RefPos);
2098 }
2099
2100
2101 if (Override == "all")
2103
2104
2105 if (Override == "none")
2107
2108
2109 if (Override == "default")
2111 }
2112
2113
2115 std::string VTNameNoSize = VTName;
2116 VTNameNoSize.pop_back();
2117 static const char DisabledPrefix = '!';
2118
2119 for (StringRef RecipType : OverrideVector) {
2120 size_t RefPos;
2123 RecipType = RecipType.substr(0, RefPos);
2124
2125
2126 bool IsDisabled = RecipType[0] == DisabledPrefix;
2127 if (IsDisabled)
2128 RecipType = RecipType.substr(1);
2129
2130 if (RecipType == VTName || RecipType == VTNameNoSize)
2133 }
2134
2136}
2137
2138
2139
2140
2142 if (Override.empty())
2144
2146 Override.split(OverrideVector, ',');
2147 unsigned NumArgs = OverrideVector.size();
2148
2149
2150 if (NumArgs == 1) {
2151
2152
2153 size_t RefPos;
2157
2158
2159 Override = Override.substr(0, RefPos);
2160 assert(Override != "none" &&
2161 "Disabled reciprocals, but specifed refinement steps?");
2162
2163
2164 if (Override == "all" || Override == "default")
2165 return RefSteps;
2166 }
2167
2168
2170 std::string VTNameNoSize = VTName;
2171 VTNameNoSize.pop_back();
2172
2173 for (StringRef RecipType : OverrideVector) {
2174 size_t RefPos;
2177 continue;
2178
2179 RecipType = RecipType.substr(0, RefPos);
2180 if (RecipType == VTName || RecipType == VTNameNoSize)
2181 return RefSteps;
2182 }
2183
2185}
2186
2190}
2191
2195}
2196
2200}
2201
2205}
2206
2210
2211
2214 return false;
2215
2216
2217
2219 return true;
2220
2222
2223
2224
2227 return false;
2228
2229 unsigned Fast = 0;
2231 MMO, &Fast) &&
2233}
2234
2237}
2238
2245
2246 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2248
2249 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2251
2254 nullptr, LibInfo))
2256
2258 return Flags;
2259}
2260
2265
2266 if (SI.isVolatile())
2268
2269 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2271
2272
2274 return Flags;
2275}
2276
2281
2282 if (const AtomicRMWInst *RMW = dyn_cast(&AI)) {
2283 if (RMW->isVolatile())
2285 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast(&AI)) {
2286 if (CmpX->isVolatile())
2288 } else
2290
2291
2293 return Flags;
2294}
2295
2301 else
2302 return nullptr;
2303}
2304
2310 else
2311 return nullptr;
2312}
2313
2314
2315
2316
2317
2320 auto &MF = *MI.getMF();
2321 auto &MRI = MF.getRegInfo();
2322
2323
2324
2325
2326
2327
2328 auto maxUses = [](unsigned RematCost) {
2329
2330 if (RematCost == 1)
2331 return std::numeric_limits::max();
2332 if (RematCost == 2)
2333 return 2U;
2334
2335
2336 if (RematCost > 2)
2337 return 1U;
2339 };
2340
2341 switch (MI.getOpcode()) {
2342 default:
2343 return false;
2344
2345
2346 case TargetOpcode::G_CONSTANT:
2347 case TargetOpcode::G_FCONSTANT:
2348 case TargetOpcode::G_FRAME_INDEX:
2349 case TargetOpcode::G_INTTOPTR:
2350 return true;
2351 case TargetOpcode::G_GLOBAL_VALUE: {
2353 Register Reg = MI.getOperand(0).getReg();
2354 unsigned MaxUses = maxUses(RematCost);
2355 if (MaxUses == UINT_MAX)
2356 return true;
2357 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2358 }
2359 }
2360}
unsigned const MachineRegisterInfo * MRI
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
Module.h This file contains the declarations for the Module class.
unsigned const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
bool hasRetAttr(Attribute::AttrKind Kind) const
Return true if the attribute exists for the return value.
const Function * getParent() const
Return the enclosing method, or null if none.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
iterator_range< const_set_bits_iterator > set_bits() const
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
This is an important base class in LLVM.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSize(unsigned AS=0) const
Layout pointer size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
@ ExternalLinkage
Externally visible function.
Common base class shared among various IRBuilders.
FenceInst * CreateFence(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, const Twine &Name="")
BasicBlock * GetInsertBlock() const
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
static constexpr size_t npos
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Provides information about what library functions are available for the current target.
LegalizeTypeAction getTypeAction(MVT VT) const
void setTypeAction(MVT VT, LegalizeTypeAction Action)
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
virtual Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool EnableExtLdPromotion
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ UndefinedBooleanContent
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
Reloc::Model getRelocationModel() const
Returns the code generation relocation model.
unsigned LoopAlignment
If greater than 0, override TargetLoweringBase::PrefLoopAlignment.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
unsigned getGISelRematGlobalCost() const
bool isWindowsGNUEnvironment() const
bool isAndroid() const
Tests whether the target is Android.
bool isPPC64() const
Tests whether the target is 64-bit PowerPC (little and big endian).
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, XROS, or DriverKit).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
int getNumOccurrences() const
constexpr LeafTy coefficientNextPowerOf2() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SET_FPENV
Sets the current floating-point environment.
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ RESET_FPENV
Set floating-point environment to default state.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ VECTOR_FIND_LAST_ACTIVE
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
Libcall getFSINCOS(EVT RetVT)
getFSINCOS - Return the FSINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
void initCmpLibcallCCs(ISD::CondCode *CmpLibcallCCs)
Initialize the default condition code on the libcalls.
Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
bool isReleaseOrStronger(AtomicOrdering AO)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
AtomicOrdering
Atomic ordering for LLVM's memory model.
EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...