LLVM: lib/Transforms/Vectorize/VPlan.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
46#include
47#include
48
49using namespace llvm;
51
52namespace llvm {
54}
56
58 "vplan-print-in-dot-format", cl::Hidden,
59 cl::desc("Use dot format instead of plain text when dumping VPlans"));
60
61#define DEBUG_TYPE "loop-vectorize"
62
63#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
65 const VPInstruction *Instr = dyn_cast(&V);
67 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
69 return OS;
70}
71#endif
72
75 switch (LaneKind) {
77
81 return Builder.getInt32(Lane);
82 }
84}
85
87 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
89 Def->addDefinedValue(this);
90}
91
93 assert(Users.empty() && "trying to delete a VPValue with remaining users");
95 Def->removeDefinedValue(this);
96}
97
98#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
100 if (const VPRecipeBase *R = dyn_cast_or_null(Def))
102 else
104}
105
107 const VPRecipeBase *Instr = dyn_cast_or_null(this->Def);
109 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
111 dbgs() << "\n";
112}
113
115 const VPRecipeBase *Instr = dyn_cast_or_null(this);
117 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
119 dbgs() << "\n";
120}
121#endif
122
124 return cast_or_null(Def);
125}
126
128 return cast_or_null(Def);
129}
130
131
132
134 T *Next = Start;
135 T *Current = Start;
136 while ((Next = Next->getParent()))
137 Current = Next;
138
140 WorkList.insert(Current);
141
142 for (unsigned i = 0; i < WorkList.size(); i++) {
143 T *Current = WorkList[i];
144 if (Current->getNumPredecessors() == 0)
145 return Current;
146 auto &Predecessors = Current->getPredecessors();
147 WorkList.insert(Predecessors.begin(), Predecessors.end());
148 }
149
150 llvm_unreachable("VPlan without any entry node without predecessors");
151}
152
154
156
157
162 return cast(Block);
163}
164
169 return cast(Block);
170}
171
173 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
174 Plan = ParentPlan;
175}
176
177
182 return cast(Block);
183}
184
189 return cast(Block);
190}
191
193 if (!Successors.empty() || !Parent)
194 return this;
196 "Block w/o successors not the exiting block of its parent.");
198}
199
201 if (!Predecessors.empty() || !Parent)
202 return this;
204 "Block w/o predecessors not the entry of its parent.");
206}
207
210 while (It != end() && It->isPhi())
211 It++;
212 return It;
213}
214
219 Loop *CurrentParentLoop, Type *CanonicalIVTy)
220 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
221 CurrentParentLoop(CurrentParentLoop), LVer(nullptr),
222 TypeAnalysis(CanonicalIVTy) {}
223
225 if (Def->isLiveIn())
226 return Def->getLiveInIRValue();
227
230
234 }
235
238 if (!VecPart->getType()->isVectorTy()) {
239 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240 return VecPart;
241 }
242
245
246 return Extract;
247}
248
250 if (NeedsScalar) {
255 "Trying to access a single scalar per part but has multiple scalars "
256 "per part.");
258 }
259
260
263
264 auto GetBroadcastInstrs = [this, Def](Value *V) {
265 bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
267 return V;
268
270 if (SafeToHoist) {
273 if (LoopVectorPreHeader)
275 }
276
277
278
280
281 return Shuf;
282 };
283
285 assert(Def->isLiveIn() && "expected a live-in");
286 Value *IRV = Def->getLiveInIRValue();
287 Value *B = GetBroadcastInstrs(IRV);
289 return B;
290 }
291
293
294
296 set(Def, ScalarValue);
297 return ScalarValue;
298 }
299
301
303
305
306
309 "unexpected recipe found to be invariant");
310 IsUniform = true;
311 LastLane = 0;
312 }
313
314 auto *LastInst = cast(get(Def, LastLane));
315
316
317
319 auto NewIP = isa(LastInst)
320 ? LastInst->getParent()->getFirstNonPHIIt()
323
324
325
326
327
328
329
330 Value *VectorValue = nullptr;
331 if (IsUniform) {
332 VectorValue = GetBroadcastInstrs(ScalarValue);
333 set(Def, VectorValue);
334 } else {
335
338 set(Def, Undef);
341 VectorValue = get(Def);
342 }
344 return VectorValue;
345}
346
348 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
350}
351
354
355
356 if (LVer && isa<LoadInst, StoreInst>(Orig))
358}
359
361
363 return;
364
365 if (Instruction *ToI = dyn_cast(To)) {
368 }
369}
370
373
374
375 if (DIL &&
380
382 auto NewDIL =
384 if (NewDIL)
386 else
387 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
388 << DIL->getFilename() << " Line: " << DIL->getLine());
389 } else
391}
392
396 Value *VectorValue = get(Def);
399 set(Def, VectorValue);
400}
401
404
405
410
411 return NewBB;
412}
413
416
417 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
421
422 assert(PredBB && "Predecessor basic-block not found building successor.");
423 auto *PredBBTerminator = PredBB->getTerminator();
425
426 auto *TermBr = dyn_cast(PredBBTerminator);
427 if (isa(PredBBTerminator)) {
428 assert(PredVPSuccessors.size() == 1 &&
429 "Predecessor ending w/o branch must have single successor.");
430 DebugLoc DL = PredBBTerminator->getDebugLoc();
433 Br->setDebugLoc(DL);
434 } else if (TermBr && !TermBr->isConditional()) {
435 TermBr->setSuccessor(0, NewBB);
436 } else {
437
438
439 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
440 assert((TermBr && (!TermBr->getSuccessor(idx) ||
441 (isa(this) &&
442 TermBr->getSuccessor(idx) == NewBB))) &&
443 "Trying to reset an existing successor block.");
444 TermBr->setSuccessor(idx, NewBB);
445 }
447 }
448}
449
451 assert(getHierarchicalSuccessors().size() <= 2 &&
452 "VPIRBasicBlock can have at most two successors at the moment!");
456 executeRecipes(State, IRBB);
457
458
459 if (getSingleSuccessor() && isa(IRBB->getTerminator())) {
462 IRBB->getTerminator()->eraseFromParent();
463 } else {
465 (getNumSuccessors() == 0 || isa(IRBB->getTerminator())) &&
466 "other blocks must be terminated by a branch");
467 }
468
469 connectToPredecessors(State->CFG);
470}
471
473 auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
476 return NewBlock;
477}
478
480 bool Replica = bool(State->Lane);
482
483 auto IsReplicateRegion = [](VPBlockBase *BB) {
484 auto *R = dyn_cast_or_null(BB);
485 return R && R->isReplicator();
486 };
487
488
489 if ((Replica && this == getParent()->getEntry()) ||
490 IsReplicateRegion(getSingleHierarchicalPredecessor())) {
491
492
493
495 } else {
496 NewBB = createEmptyBasicBlock(State->CFG);
497
499
501
502
506
509 connectToPredecessors(State->CFG);
510 }
511
512
513 executeRecipes(State, NewBB);
514}
515
517 auto *NewBlock = getPlan()->createVPBasicBlock(getName());
520 return NewBlock;
521}
522
525 << " in BB:" << BB->getName() << '\n');
526
528
531
533}
534
536 assert((SplitAt == end() || SplitAt->getParent() == this) &&
537 "can only split at a position in the same block");
538
540
541 auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
543
544
548
550}
551
552
553
555 if (P && P->isReplicator()) {
557
558
559 assert(( || !cast(P)->isReplicator()) &&
560 "unexpected nested replicate regions");
561 }
562 return P;
563}
564
567}
568
571}
572
574 if (VPBB->empty()) {
577 "block with multiple successors doesn't have a recipe as terminator");
578 return false;
579 }
580
582 bool IsCondBranch = isa(R) ||
586
589 assert(IsCondBranch && "block with multiple successors not terminated by "
590 "conditional branch recipe");
591
592 return true;
593 }
594
597 "block with 0 or 1 successors terminated by conditional branch recipe");
598 return false;
599}
600
603 return &back();
604 return nullptr;
605}
606
609 return &back();
610 return nullptr;
611}
612
615}
616
617#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
619 if (getSuccessors().empty()) {
620 O << Indent << "No successors\n";
621 } else {
622 O << Indent << "Successor(s): ";
623 ListSeparator LS;
624 for (auto *Succ : getSuccessors())
625 O << LS << Succ->getName();
626 O << '\n';
627 }
628}
629
632 O << Indent << getName() << ":\n";
633
634 auto RecipeIndent = Indent + " ";
637 O << '\n';
638 }
639
640 printSuccessors(O, Indent);
641}
642#endif
643
645
646
647
648
649
650
654 bool InRegion = Entry->getParent();
655
658 Old2NewVPBlocks[BB] = NewBB;
659 if (InRegion && BB->getNumSuccessors() == 0) {
660 assert(!Exiting && "Multiple exiting blocks?");
661 Exiting = BB;
662 }
663 }
664 assert((!InRegion || Exiting) && "regions must have a single exiting block");
665
666
668 VPBlockBase *NewBB = Old2NewVPBlocks[BB];
671 NewPreds.push_back(Old2NewVPBlocks[Pred]);
672 }
676 NewSuccs.push_back(Old2NewVPBlocks[Succ]);
677 }
679 }
680
681#if !defined(NDEBUG)
682
683
684 for (const auto &[OldBB, NewBB] :
687 for (const auto &[OldPred, NewPred] :
688 zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
689 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
690
691 for (const auto &[OldSucc, NewSucc] :
692 zip(OldBB->successors(), NewBB->successors()))
693 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
694 }
695#endif
696
697 return std::make_pair(Old2NewVPBlocks[Entry],
698 Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
699}
700
702 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
703 auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
704 getName(), isReplicator());
706 Block->setParent(NewRegion);
707 return NewRegion;
708}
709
712 RPOT(Entry);
713
714 if (!isReplicator()) {
715
720
721
722
723 if (ParentLoop)
725 else
727
728
731 Block->execute(State);
732 }
733
735 return;
736 }
737
738 assert(!State->Lane && "Replicating a Region with non-null instance.");
739
740
741 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
746
749 Block->execute(State);
750 }
751 }
752
753
754 State->Lane.reset();
755}
756
762}
763
765 if (!isReplicator()) {
773 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
774 << ": vector loop backedge\n");
775 Cost += BackedgeCost;
777 }
778
779
780
781
782
785
786
787
788
790 VPBasicBlock *Then = cast(getEntry()->getSuccessors()[0]);
792
793
794
797
798 return ThenCost;
799}
800
801#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
804 O << Indent << (isReplicator() ? " " : " ") << getName() << ": {";
805 auto NewIndent = Indent + " ";
807 O << '\n';
808 BlockBase->print(O, NewIndent, SlotTracker);
809 }
810 O << Indent << "}\n";
811
812 printSuccessors(O, Indent);
813}
814#endif
815
817 setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
818 ScalarHeader = createVPIRBasicBlock(L->getHeader());
819}
820
823
824 for (auto *VPB : CreatedBlocks) {
825 if (auto *VPBB = dyn_cast(VPB)) {
826
827
829 for (auto *Def : R.definedValues())
830 Def->replaceAllUsesWith(&DummyValue);
831
832 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
833 R.setOperand(I, &DummyValue);
834 }
835 }
836 delete VPB;
837 }
838 for (VPValue *VPV : VPLiveInsToFree)
839 delete VPV;
840 if (BackedgeTakenCount)
841 delete BackedgeTakenCount;
842}
843
846 bool RequiresScalarEpilogueCheck,
847 bool TailFolded, Loop *TheLoop) {
848 auto Plan = std::make_unique(TheLoop);
850
851
852
853
854
855
856
859
860
861
862
864 assert(!isa(BackedgeTakenCountSCEV) &&
865 "Invalid loop count");
868 InductionTy, TheLoop);
869 Plan->TripCount =
871
872
873
878 HeaderVPBB, LatchVPBB, "vector loop", false );
879
883
886 if (!RequiresScalarEpilogueCheck) {
889 }
890
891
892
893
894
895
896
897
898
901
904
906
907
908
909
912 TailFolded
917 ScalarLatchTerm->getDebugLoc(), "cmp.n");
919 ScalarLatchTerm->getDebugLoc());
921}
922
926
927 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
929 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
930 "trip.count.minus.1");
931 BackedgeTakenCount->setUnderlyingValue(TCMO);
932 }
933
934 VectorTripCount.setUnderlyingValue(VectorTripCountV);
935
937
938 assert((!getVectorLoopRegion() || VFxUF.getNumUsers()) &&
939 "VFxUF expected to always have users");
940 unsigned UF = getUF();
941 if (VF.getNumUsers()) {
943 VF.setUnderlyingValue(RuntimeVF);
944 VFxUF.setUnderlyingValue(
945 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
946 : RuntimeVF);
947 } else {
949 }
950}
951
952
953
954
956
959
960
962 cast(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
965
966 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
967 << ", UF=" << getUF() << '\n');
968 setName("Final VPlan");
970
971
972
973
980
981
982
985
987 Entry);
988
989
991 Block->execute(State);
992
994
995 auto *LoopRegion = getVectorLoopRegion();
996 if (!LoopRegion)
997 return;
998
1001
1002
1003
1004 VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
1006
1007 if (isa(&R))
1008 continue;
1009
1010 if (isa(&R)) {
1012 if (isa(&R)) {
1013 Phi = cast(State->get(R.getVPSingleValue()));
1014 } else {
1015 auto *WidenPhi = cast(&R);
1017 "recipe generating only scalars should have been replaced");
1018 auto *GEP = cast(State->get(WidenPhi));
1019 Phi = cast(GEP->getPointerOperand());
1020 }
1021
1022 Phi->setIncomingBlock(1, VectorLatchBB);
1023
1024
1025
1026 Instruction *Inc = cast(Phi->getIncomingValue(1));
1028
1029
1030 if (auto *IV = dyn_cast(&R))
1031 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1032 continue;
1033 }
1034
1035 auto *PhiR = cast(&R);
1036 bool NeedsScalar = isa(PhiR) ||
1037 (isa(PhiR) &&
1038 cast(PhiR)->isInLoop());
1039 Value *Phi = State->get(PhiR, NeedsScalar);
1040 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1041 cast(Phi)->addIncoming(Val, VectorLatchBB);
1042 }
1043}
1044
1046
1047
1048 return getVectorLoopRegion()->cost(VF, Ctx);
1049}
1050
1052
1054 if (auto *R = dyn_cast(B))
1055 return R->isReplicator() ? nullptr : R;
1056 return nullptr;
1057}
1058
1061 if (auto *R = dyn_cast(B))
1062 return R->isReplicator() ? nullptr : R;
1063 return nullptr;
1064}
1065
1066#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1069
1070 if (VF.getNumUsers() > 0) {
1071 O << "\nLive-in ";
1073 O << " = VF";
1074 }
1075
1076 if (VFxUF.getNumUsers() > 0) {
1077 O << "\nLive-in ";
1079 O << " = VF * UF";
1080 }
1081
1082 if (VectorTripCount.getNumUsers() > 0) {
1083 O << "\nLive-in ";
1084 VectorTripCount.printAsOperand(O, SlotTracker);
1085 O << " = vector-trip-count";
1086 }
1087
1088 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1089 O << "\nLive-in ";
1090 BackedgeTakenCount->printAsOperand(O, SlotTracker);
1091 O << " = backedge-taken count";
1092 }
1093
1094 O << "\n";
1095 if (TripCount->isLiveIn())
1096 O << "Live-in ";
1097 TripCount->printAsOperand(O, SlotTracker);
1098 O << " = original trip-count";
1099 O << "\n";
1100}
1101
1105
1106 O << "VPlan '" << getName() << "' {";
1107
1108 printLiveIns(O);
1109
1111 RPOT(getEntry());
1113 O << '\n';
1115 }
1116
1117 O << "}\n";
1118}
1119
1121 std::string Out;
1123 RSO << Name << " for ";
1124 if (!VFs.empty()) {
1125 RSO << "VF={" << VFs[0];
1127 RSO << "," << VF;
1128 RSO << "},";
1129 }
1130
1131 if (UFs.empty()) {
1132 RSO << "UF>=1";
1133 } else {
1134 RSO << "UF={" << UFs[0];
1136 RSO << "," << UF;
1137 RSO << "}";
1138 }
1139
1140 return Out;
1141}
1142
1147}
1148
1151#endif
1152
1155
1156
1157
1159 OldDeepRPOT(Entry);
1161 NewDeepRPOT(NewEntry);
1162
1163
1164 for (const auto &[OldBB, NewBB] :
1165 zip(VPBlockUtils::blocksOnly(OldDeepRPOT),
1166 VPBlockUtils::blocksOnly(NewDeepRPOT))) {
1167 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1168 "blocks must have the same number of recipes");
1169 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1170 assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1171 "recipes must have the same number of operands");
1172 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1173 "recipes must define the same number of operands");
1174 for (const auto &[OldV, NewV] :
1175 zip(OldR.definedValues(), NewR.definedValues()))
1176 Old2NewVPValues[OldV] = NewV;
1177 }
1178 }
1179
1180
1182 VPBlockUtils::blocksOnly(NewDeepRPOT)) {
1184 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1185 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1186 NewR.setOperand(I, NewOp);
1187 }
1188 }
1189}
1190
1192 unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
1193
1194 const auto &[NewEntry, __] = cloneFrom(Entry);
1195
1196 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1199 auto *VPIRBB = dyn_cast(VPB);
1200 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1201 }));
1202
1203 auto *NewPlan = new VPlan(cast(NewEntry), NewScalarHeader);
1205 for (VPValue *OldLiveIn : VPLiveInsToFree) {
1206 Old2NewVPValues[OldLiveIn] =
1207 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1208 }
1209 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1210 Old2NewVPValues[&VF] = &NewPlan->VF;
1211 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1212 if (BackedgeTakenCount) {
1213 NewPlan->BackedgeTakenCount = new VPValue();
1214 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1215 }
1216 assert(TripCount && "trip count must be set");
1217 if (TripCount->isLiveIn())
1218 Old2NewVPValues[TripCount] =
1219 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1220
1221
1222
1223 remapOperands(Entry, NewEntry, Old2NewVPValues);
1224
1225
1226 NewPlan->VFs = VFs;
1227 NewPlan->UFs = UFs;
1228
1229 NewPlan->Name = Name;
1231 "TripCount must have been added to Old2NewVPValues");
1232 NewPlan->TripCount = Old2NewVPValues[TripCount];
1233
1234
1235
1236 unsigned NumBlocksAfterCloning = CreatedBlocks.size();
1237 for (unsigned I :
1238 seq(NumBlocksBeforeCloning, NumBlocksAfterCloning))
1239 NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
1240 CreatedBlocks.truncate(NumBlocksBeforeCloning);
1241
1242 return NewPlan;
1243}
1244
1247 CreatedBlocks.push_back(VPIRBB);
1248 return VPIRBB;
1249}
1250
1252 auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
1256 return VPIRBB;
1257}
1258
1259#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1260
1262 return (isa(Block) ? "cluster_N" : "N") +
1264}
1265
1267 const std::string &Name = Block->getName();
1268 if (.empty())
1269 return Name;
1270 return "VPB" + Twine(getOrCreateBID(Block));
1271}
1272
1275 bumpIndent(0);
1276 OS << "digraph VPlan {\n";
1277 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1280
1281 {
1282
1283 std::string Str;
1288 for (auto Line : Lines)
1290 }
1291
1292 OS << "\"]\n";
1293 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1294 OS << "edge [fontname=Courier, fontsize=30]\n";
1295 OS << "compound=true\n";
1296
1298 dumpBlock(Block);
1299
1300 OS << "}\n";
1301}
1302
1308 else
1310}
1311
1313 bool Hidden, const Twine &Label) {
1314
1315
1318 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1319 OS << " [ label=\"" << Label << '\"';
1321 OS << " ltail=" << getUID(From);
1322 if (Head != To)
1323 OS << " lhead=" << getUID(To);
1324 if (Hidden)
1325 OS << "; splines=none";
1326 OS << "]\n";
1327}
1328
1330 auto &Successors = Block->getSuccessors();
1331 if (Successors.size() == 1)
1332 drawEdge(Block, Successors.front(), false, "");
1333 else if (Successors.size() == 2) {
1334 drawEdge(Block, Successors.front(), false, "T");
1335 drawEdge(Block, Successors.back(), false, "F");
1336 } else {
1337 unsigned SuccessorNumber = 0;
1338 for (auto *Successor : Successors)
1340 }
1341}
1342
1344
1345
1346 OS << Indent << getUID(BasicBlock) << " [label =\n";
1347 bumpIndent(1);
1348 std::string Str;
1350
1352
1353
1354
1357
1360 };
1361
1362
1364 EmitLine(Line, " +\n");
1365 EmitLine(Lines.back(), "\n");
1366
1367 bumpIndent(-1);
1368 OS << Indent << "]\n";
1369
1371}
1372
1374 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1375 bumpIndent(1);
1376 OS << Indent << "fontname=Courier\n"
1377 << Indent << "label=\""
1380
1383 dumpBlock(Block);
1384 bumpIndent(-1);
1385 OS << Indent << "}\n";
1387}
1388
1390 if (auto *Inst = dyn_cast(V)) {
1391 if (!Inst->getType()->isVoidTy()) {
1392 Inst->printAsOperand(O, false);
1393 O << " = ";
1394 }
1395 O << Inst->getOpcodeName() << " ";
1396 unsigned E = Inst->getNumOperands();
1397 if (E > 0) {
1398 Inst->getOperand(0)->printAsOperand(O, false);
1399 for (unsigned I = 1; I < E; ++I)
1400 Inst->getOperand(I)->printAsOperand(O << ", ", false);
1401 }
1402 } else
1403 V->printAsOperand(O, false);
1404}
1405
1406#endif
1407
1408
1409
1414}
1415
1418}
1420 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1421}
1422
1426
1427
1428
1429 if (this == New)
1430 return;
1431
1432 for (unsigned J = 0; J < getNumUsers();) {
1434 bool RemovedUser = false;
1437 continue;
1438
1439 RemovedUser = true;
1441 }
1442
1443
1444
1445 if (!RemovedUser)
1446 J++;
1447 }
1448}
1449
1450#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453}
1454
1458 });
1459}
1460#endif
1461
1463 Old2NewTy &Old2New,
1468 visitBlock(Base, Old2New, IAI);
1469 }
1470}
1471
1472void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1476 if (isa(&VPI))
1477 continue;
1478 assert(isa(&VPI) && "Can only handle VPInstructions");
1479 auto *VPInst = cast(&VPI);
1480
1481 auto *Inst = dyn_cast_or_null(VPInst->getUnderlyingValue());
1482 if (!Inst)
1483 continue;
1485 if (!IG)
1486 continue;
1487
1488 auto NewIGIter = Old2New.find(IG);
1489 if (NewIGIter == Old2New.end())
1491 IG->getFactor(), IG->isReverse(), IG->getAlign());
1492
1493 if (Inst == IG->getInsertPos())
1494 Old2New[IG]->setInsertPos(VPInst);
1495
1496 InterleaveGroupMap[VPInst] = Old2New[IG];
1497 InterleaveGroupMap[VPInst]->insertMember(
1498 VPInst, IG->getIndex(Inst),
1499 Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1500 : IG->getFactor()));
1501 }
1503 visitRegion(Region, Old2New, IAI);
1504 else
1506}
1507
1512}
1513
1514void VPSlotTracker::assignName(const VPValue *V) {
1515 assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1516 auto *UV = V->getUnderlyingValue();
1517 auto *VPI = dyn_cast_or_null(V->getDefiningRecipe());
1518 if (!UV && !(VPI && !VPI->getName().empty())) {
1519 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1520 NextSlot++;
1521 return;
1522 }
1523
1524
1525
1526 std::string Name;
1527 if (UV) {
1529 UV->printAsOperand(S, false);
1530 } else
1531 Name = VPI->getName();
1532
1533 assert(.empty() && "Name cannot be empty.");
1535 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1536
1537
1538 const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1539
1540
1541 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1542 return;
1543
1544
1545
1546 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1547 if (!UseInserted) {
1548 C->second++;
1549 A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1550 }
1551}
1552
1553void VPSlotTracker::assignNames(const VPlan &Plan) {
1555 assignName(&Plan.VF);
1557 assignName(&Plan.VFxUF);
1558 assignName(&Plan.VectorTripCount);
1559 if (Plan.BackedgeTakenCount)
1560 assignName(Plan.BackedgeTakenCount);
1562 assignName(LI);
1563
1567 VPBlockUtils::blocksOnly(RPOT))
1568 assignNames(VPBB);
1569}
1570
1571void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1573 for (VPValue *Def : Recipe.definedValues())
1574 assignName(Def);
1575}
1576
1578 std::string Name = VPValue2Name.lookup(V);
1579 if (.empty())
1580 return Name;
1581
1582
1583
1584
1585
1586
1587
1588
1589 const VPRecipeBase *DefR = V->getDefiningRecipe();
1590 (void)DefR;
1592 "VPValue defined by a recipe in a VPlan?");
1593
1594
1595 if (auto *UV = V->getUnderlyingValue()) {
1596 std::string Name;
1598 UV->printAsOperand(S, false);
1599 return (Twine("ir<") + Name + ">").str();
1600 }
1601
1602 return "";
1603}
1604
1607 assert(.isEmpty() && "Trying to test an empty VF range.");
1608 bool PredicateAtRangeStart = Predicate(Range.Start);
1609
1611 if (Predicate(TmpVF) != PredicateAtRangeStart) {
1612 Range.End = TmpVF;
1613 break;
1614 }
1615
1616 return PredicateAtRangeStart;
1617}
1618
1619
1620
1621
1622
1623
1626 auto MaxVFTimes2 = MaxVF * 2;
1628 VFRange SubRange = {VF, MaxVFTimes2};
1629 auto Plan = buildVPlan(SubRange);
1631
1632
1634 VPlans.push_back(std::move(Plan));
1636 }
1637}
1638
1642 1 &&
1643 "Multiple VPlans for VF.");
1644
1647 return *Plan.get();
1648 }
1650}
1651
1652#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1654 if (VPlans.empty()) {
1655 O << "LV: No VPlans built.\n";
1656 return;
1657 }
1658 for (const auto &Plan : VPlans)
1661 else
1663}
1664#endif
1665
1668 if (!V->isLiveIn())
1669 return {};
1670
1672}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
dxil pretty DXIL Metadata Pretty Printer
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static void dumpEdges(CFGMST< Edge, BBInfo > &MST, GCOVFunction &GF)
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
iv Induction Variable Users
This file provides a LoopVectorizationPlanner class.
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static StringRef getName(Value *V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file provides utility VPlan to VPlan transformations.
static T * getPlanEntry(T *Start)
static T * getEnclosingLoopRegionForRegion(T *P)
Return the enclosing loop region for region P.
static bool isDefinedInsideLoopRegions(const VPValue *VPV)
Returns true if there is a vector loop region and VPV is defined in a loop region.
cl::opt< unsigned > ForceTargetInstructionCost
static bool hasConditionalTerminator(const VPBasicBlock *VPBB)
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap< VPValue *, VPValue * > &Old2NewVPValues)
static std::pair< VPBlockBase *, VPBlockBase * > cloneFrom(VPBlockBase *Entry)
static cl::opt< bool > PrintVPlansInDotFormat("vplan-print-in-dot-format", cl::Hidden, cl::desc("Use dot format instead of plain text when dumping VPlans"))
This file contains the declarations of the Vectorization Plan base classes:
static bool IsCondBranch(unsigned BrOpc)
static const uint32_t IV[8]
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
static ConstantInt * getTrue(LLVMContext &Context)
std::optional< const DILocation * > cloneByMultiplyingDuplicationFactor(unsigned DF) const
Returns a new DILocation with duplication factor DF * current duplication factor encoded in the discr...
This class represents an Operation in the Expression.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isScalar() const
Exactly one element.
bool shouldEmitDebugInfoForProfiling() const
Returns true if we should emit debug info for profiling.
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
UnreachableInst * CreateUnreachable()
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
BasicBlock * GetInsertBlock() const
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
InsertPoint saveIP() const
Returns the current insert point.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
void restoreIP(InsertPoint IP)
Sets the current insert point to a previously-saved location.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
static InstructionCost getInvalid(CostType Val=0)
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
The group of interleaved loads/stores sharing the same stride and close to each other.
Drive the analysis of interleaved memory accesses in the loop.
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void annotateInstWithNoAlias(Instruction *VersionedInst, const Instruction *OrigInst)
Add the noalias annotations to VersionedInst.
Represents a single loop in the control flow graph.
void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
BlockT * getEntry() const
Get the entry BasicBlock of the Region.
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
This class provides computation of slot numbers for LLVM Assembly writing.
A SetVector that performs no allocations if smaller than a certain size.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
StringRef rtrim(char Char) const
Return string with consecutive Char characters starting from the right removed.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static IntegerType * getInt1Ty(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
This function has undefined behavior.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
void connectToPredecessors(VPTransformState::CFGState &CFG)
Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block generated for this VPBB.
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
iterator begin()
Recipe iterator methods.
VPBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
void executeRecipes(VPTransformState *State, BasicBlock *BB)
Execute the recipes in the IR basic block BB.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPBsicBlock to O, prefixing all lines with Indent.
bool isExiting() const
Returns true if the block is exiting it's parent region.
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
const VPRecipeBase & back() const
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
void setSuccessors(ArrayRef< VPBlockBase * > NewSuccs)
Set each VPBasicBlock in NewSuccss as successor of this VPBlockBase.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
iterator_range< VPBlockBase ** > successors()
void printSuccessors(raw_ostream &O, const Twine &Indent) const
Print the successors of this block to O, prefixing all lines with Indent.
void setPredecessors(ArrayRef< VPBlockBase * > NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
VPBlockBase * getEnclosingBlockWithPredecessors()
const VPBlocksTy & getPredecessors() const
void setPlan(VPlan *ParentPlan)
Sets the pointer of the plan containing the block.
const VPBlocksTy & getHierarchicalSuccessors()
VPBlockBase * getEnclosingBlockWithSuccessors()
An Enclosing Block of a block B is any block containing B, including B itself.
const VPBasicBlock * getEntryBasicBlock() const
Helper for GraphTraits specialization that traverses through VPRegionBlocks.
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
VPlan-based builder utility analogous to IRBuilder.
This class augments a recipe with a set of VPValues defined by the recipe.
void dump() const
Dump the VPDef to stderr (for debugging).
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPDef prints itself.
Recipe to expand a SCEV expression.
A special type of VPBasicBlock that wraps an existing IR basic block.
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
VPIRBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
A recipe to wrap on original IR instruction not to be modified during execution, execept for PHIs.
This is a concrete Recipe that models a single VPlan-level instruction.
VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI)
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Value * getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const
Returns an expression describing the lane index that can be used at runtime.
static VPLane getFirstLane()
@ ScalableLast
For ScalableLast, Lane is the offset from the start of the last N-element subvector in a scalable vec...
@ First
For First, Lane is the index into the first N elements of a fixed-vector <N x > or a scalable v...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
VPRegionBlock * clone() override
Clone all blocks in the single-entry single-exit region of the block and their recipes without updati...
const VPBlockBase * getEntry() const
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of the block.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPRegionBlock to O (recursively), prefixing all lines with Indent.
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPRegionBlock,...
const VPBlockBase * getExiting() const
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
This class can be used to assign names to VPValues.
std::string getOrCreateName(const VPValue *V) const
Returns the name assigned to V, if there is one, otherwise try to construct one from the underlying v...
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop region.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
void dump() const
Dump the value to stderr (for debugging).
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void print(raw_ostream &OS, VPSlotTracker &Tracker) const
void replaceAllUsesWith(VPValue *New)
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
VPDef * Def
Pointer to the VPDef that defines this VPValue.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
VPlanPrinter prints a given VPlan to a given output stream.
LLVM_DUMP_METHOD void dump()
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
void printDOT(raw_ostream &O) const
Print this VPlan in DOT format to O.
std::string getName() const
Return a string with the name of the plan and the applicable VFs and UFs.
void prepareToExecute(Value *TripCount, Value *VectorTripCount, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
VPBasicBlock * getEntry()
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
VPValue & getVectorTripCount()
The vector trip count.
VPValue * getTripCount() const
The trip count of the original loop.
static VPlanPtr createInitialVPlan(Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header) which cont...
VPIRBasicBlock * createEmptyVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock wrapping IRBB, but do not create VPIRInstructions wrapping the instructions i...
bool hasVF(ElementCount VF)
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
LLVM_DUMP_METHOD void dump() const
Dump the plan to stderr (for debugging).
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
void print(raw_ostream &O) const
Print this VPlan to O.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
void printLiveIns(raw_ostream &O) const
Print the live-ins of this VPlan to O.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
StringRef getName() const
Return a constant reference to the value's name.
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
std::string EscapeString(const std::string &Label)
bool match(Val *V, const Pattern &P)
BinaryVPInstruction_match< Op0_t, Op1_t, VPInstruction::BranchOnCount > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
UnaryVPInstruction_match< Op0_t, VPInstruction::BranchOnCond > m_BranchOnCond(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
auto successors(const MachineBasicBlock *BB)
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Instruction * propagateMetadata(Instruction *I, ArrayRef< Value * > VL)
Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, MD_nontemporal,...
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr)
cl::opt< bool > EnableFSDiscriminator
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
std::unique_ptr< VPlan > VPlanPtr
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
TargetTransformInfo::TargetCostKind CostKind
const TargetTransformInfo & TTI
Hold state information used when constructing the CFG of the output IR, traversing the VPBasicBlocks ...
BasicBlock * PrevBB
The previous IR BasicBlock created or used.
SmallDenseMap< VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
VPBasicBlock * PrevVPBB
The previous VPBasicBlock visited. Initially set to null.
BasicBlock * ExitBB
The last IR BasicBlock in the output IR.
BasicBlock * getPreheaderBBFor(VPRecipeBase *R)
Returns the BasicBlock* mapped to the pre-header of the loop region containing R.
DomTreeUpdater DTU
Updater for the DominatorTree.
DenseMap< VPValue *, Value * > VPV2Vector
DenseMap< VPValue *, SmallVector< Value *, 4 > > VPV2Scalars
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
bool hasScalarValue(VPValue *Def, VPLane Lane)
bool hasVectorValue(VPValue *Def)
LoopInfo * LI
Hold a pointer to LoopInfo to register new basic blocks in the loop.
struct llvm::VPTransformState::DataState Data
void addMetadata(Value *To, Instruction *From)
Add metadata from one instruction to another.
void packScalarIntoVectorValue(VPValue *Def, const VPLane &Lane)
Construct the vector value of a scalarized value V one lane at a time.
Value * get(VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
struct llvm::VPTransformState::CFGState CFG
LoopVersioning * LVer
LoopVersioning.
void addNewMetadata(Instruction *To, const Instruction *Orig)
Add additional metadata to To that was not present on Orig.
std::optional< VPLane > Lane
Hold the index to generate specific scalar instructions.
VPTransformState(const TargetTransformInfo *TTI, ElementCount VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, IRBuilderBase &Builder, InnerLoopVectorizer *ILV, VPlan *Plan, Loop *CurrentParentLoop, Type *CanonicalIVTy)
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
VPlan * Plan
Pointer to the VPlan code is generated for.
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
void setDebugLocFrom(DebugLoc DL)
Set the debug location in the builder using the debug location DL.
Loop * CurrentParentLoop
The parent loop object for the current scope, or nullptr.
void set(VPValue *Def, Value *V, bool IsScalar=false)
Set the generated vector Value for a given VPValue, if IsScalar is false.
void print(raw_ostream &O) const
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...