LLVM: lib/Transforms/Vectorize/VPlanRecipes.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
39#include
40
41using namespace llvm;
43
45
46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
48
51 case VPExpressionSC:
53 case VPInstructionSC: {
55
56 if (VPI->getOpcode() == Instruction::Load)
57 return false;
58 return VPI->opcodeMayReadOrWriteFromMemory();
59 }
60 case VPInterleaveEVLSC:
61 case VPInterleaveSC:
63 case VPWidenStoreEVLSC:
64 case VPWidenStoreSC:
65 return true;
66 case VPReplicateSC:
68 ->mayWriteToMemory();
69 case VPWidenCallSC:
71 ->getCalledScalarFunction()
72 ->onlyReadsMemory();
73 case VPWidenIntrinsicSC:
75 case VPCanonicalIVPHISC:
76 case VPBranchOnMaskSC:
77 case VPDerivedIVSC:
78 case VPFirstOrderRecurrencePHISC:
79 case VPReductionPHISC:
80 case VPScalarIVStepsSC:
81 case VPPredInstPHISC:
82 return false;
83 case VPBlendSC:
84 case VPReductionEVLSC:
85 case VPReductionSC:
86 case VPVectorPointerSC:
87 case VPWidenCanonicalIVSC:
88 case VPWidenCastSC:
89 case VPWidenGEPSC:
90 case VPWidenIntOrFpInductionSC:
91 case VPWidenLoadEVLSC:
92 case VPWidenLoadSC:
93 case VPWidenPHISC:
94 case VPWidenPointerInductionSC:
95 case VPWidenSC:
96 case VPWidenSelectSC: {
99 (void)I;
100 assert(( ||
->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
102 return false;
103 }
104 default:
105 return true;
106 }
107}
108
111 case VPExpressionSC:
113 case VPInstructionSC:
115 case VPWidenLoadEVLSC:
116 case VPWidenLoadSC:
117 return true;
118 case VPReplicateSC:
120 ->mayReadFromMemory();
121 case VPWidenCallSC:
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
127 case VPBranchOnMaskSC:
128 case VPDerivedIVSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
133 case VPWidenStoreSC:
134 return false;
135 case VPBlendSC:
136 case VPReductionEVLSC:
137 case VPReductionSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
140 case VPWidenCastSC:
141 case VPWidenGEPSC:
142 case VPWidenIntOrFpInductionSC:
143 case VPWidenPHISC:
144 case VPWidenPointerInductionSC:
145 case VPWidenSC:
146 case VPWidenSelectSC: {
149 (void)I;
150 assert(( ||
->mayReadFromMemory()) &&
151 "underlying instruction may read from memory");
152 return false;
153 }
154 default:
155
156 return true;
157 }
158}
159
162 case VPExpressionSC:
164 case VPDerivedIVSC:
165 case VPFirstOrderRecurrencePHISC:
166 case VPPredInstPHISC:
167 case VPVectorEndPointerSC:
168 return false;
169 case VPInstructionSC: {
174 }
175 case VPWidenCallSC: {
178 }
179 case VPWidenIntrinsicSC:
181 case VPBlendSC:
182 case VPReductionEVLSC:
183 case VPReductionSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
187 case VPWidenCastSC:
188 case VPWidenGEPSC:
189 case VPWidenIntOrFpInductionSC:
190 case VPWidenPHISC:
191 case VPWidenPointerInductionSC:
192 case VPWidenSC:
193 case VPWidenSelectSC: {
196 (void)I;
197 assert(( ||
->mayHaveSideEffects()) &&
198 "underlying instruction has side-effects");
199 return false;
200 }
201 case VPInterleaveEVLSC:
202 case VPInterleaveSC:
204 case VPWidenLoadEVLSC:
205 case VPWidenLoadSC:
206 case VPWidenStoreEVLSC:
207 case VPWidenStoreSC:
211 "mayHaveSideffects result for ingredient differs from this "
212 "implementation");
214 case VPReplicateSC: {
216 return R->getUnderlyingInstr()->mayHaveSideEffects();
217 }
218 default:
219 return true;
220 }
221}
222
224 assert(!Parent && "Recipe already in some VPBasicBlock");
226 "Insertion position not in any VPBasicBlock");
228}
229
232 assert(!Parent && "Recipe already in some VPBasicBlock");
233 assert(I == BB.end() || I->getParent() == &BB);
235}
236
238 assert(!Parent && "Recipe already in some VPBasicBlock");
240 "Insertion position not in any VPBasicBlock");
242}
243
247 Parent = nullptr;
248}
249
254
259
265
267
268
269
270
275 UI = IG->getInsertPos();
277 UI = &WidenMem->getIngredient();
278
280 if (UI && Ctx.skipCostComputation(UI, VF.isVector())) {
281 RecipeCost = 0;
282 } else {
286 if (UI)
288 else
290 }
291 }
292
294 dbgs() << "Cost of " << RecipeCost << " for VF " << VF << ": ";
296 });
297 return RecipeCost;
298}
299
304
309
314
316 assert(OpType == Other.OpType && "OpType must match");
317 switch (OpType) {
318 case OperationType::OverflowingBinOp:
319 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
320 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
321 break;
322 case OperationType::Trunc:
323 TruncFlags.HasNUW &= Other.TruncFlags.HasNUW;
324 TruncFlags.HasNSW &= Other.TruncFlags.HasNSW;
325 break;
326 case OperationType::DisjointOp:
327 DisjointFlags.IsDisjoint &= Other.DisjointFlags.IsDisjoint;
328 break;
329 case OperationType::PossiblyExactOp:
330 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
331 break;
332 case OperationType::GEPOp:
334 break;
335 case OperationType::FPMathOp:
336 case OperationType::FCmp:
337 assert((OpType != OperationType::FCmp ||
338 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
339 "Cannot drop CmpPredicate");
340 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
341 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
342 break;
343 case OperationType::NonNegOp:
344 NonNegFlags.NonNeg &= Other.NonNegFlags.NonNeg;
345 break;
346 case OperationType::Cmp:
347 assert(CmpPredicate == Other.CmpPredicate && "Cannot drop CmpPredicate");
348 break;
349 case OperationType::Other:
350 assert(AllFlags == Other.AllFlags && "Cannot drop other flags");
351 break;
352 }
353}
354
356 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp) &&
357 "recipe doesn't have fast math flags");
358 const FastMathFlagsTy &F = getFMFsRef();
367 return Res;
368}
369
370#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
372
377 O << ", !dbg ";
378 DL.print(O);
379 }
380
383}
384#endif
385
386template
389 if (U.getNumOperands() == PartOpIdx + 1)
390 return U.getOperand(PartOpIdx);
391 return nullptr;
392}
393
394template
397 return cast(UnrollPartOp->getLiveInIRValue())->getZExtValue();
398 return 0;
399}
400
401namespace llvm {
405}
406
411 VPIRMetadata(MD), Opcode(Opcode), Name(Name.str()) {
413 "Set flags not supported for the provided opcode");
414 assert((getNumOperandsForOpcode(Opcode) == -1u ||
415 getNumOperandsForOpcode(Opcode) == getNumOperands()) &&
416 "number of operands does not match opcode");
417}
418
419#ifndef NDEBUG
420unsigned VPInstruction::getNumOperandsForOpcode(unsigned Opcode) {
422 return 1;
423
425 return 2;
426
427 switch (Opcode) {
430 return 0;
431 case Instruction::Alloca:
432 case Instruction::ExtractValue:
433 case Instruction::Freeze:
434 case Instruction::Load:
448 return 1;
449 case Instruction::ICmp:
450 case Instruction::FCmp:
451 case Instruction::ExtractElement:
452 case Instruction::Store:
461 return 2;
462 case Instruction::Select:
466 return 3;
468 return 4;
469 case Instruction::Call:
470 case Instruction::GetElementPtr:
471 case Instruction::PHI:
472 case Instruction::Switch:
478
479 return -1u;
480 }
482}
483#endif
484
488
489bool VPInstruction::canGenerateScalarForFirstLane() const {
491 return true;
493 return true;
494 switch (Opcode) {
495 case Instruction::Freeze:
496 case Instruction::ICmp:
497 case Instruction::PHI:
498 case Instruction::Select:
507 return true;
508 default:
509 return false;
510 }
511}
512
513
514
515
516
519
520
521
522
524 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
525 BasicBlock *IRBB = State.CFG.VPBB2IRBB[VPBB];
526 BranchInst *CondBr = State.Builder.CreateCondBr(Cond, IRBB, SecondIRSucc);
527
530 return CondBr;
531}
532
534 IRBuilderBase &Builder = State.Builder;
535
540 auto *Res =
544 return Res;
545 }
546
552 }
553 case Instruction::ExtractElement: {
554 assert(State.VF.isVector() && "Only extract elements from vectors");
556 unsigned IdxToExtract =
558 return State.get(getOperand(0), VPLane(IdxToExtract));
559 }
563 }
564 case Instruction::Freeze: {
567 }
568 case Instruction::FCmp:
569 case Instruction::ICmp: {
574 }
575 case Instruction::PHI: {
577 }
578 case Instruction::Select: {
586 }
588
590
592
593
594
597 Name);
598
602 return Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
603 {PredTy, ScalarTC->getType()},
604 {VIVElem0, ScalarTC}, nullptr, Name);
605 }
607
608
609
610
611
612
613
614
615
616
617
618
620 if (!V1->getType()->isVectorTy())
621 return V1;
624 }
633 }
635
636
638
640 "Requested vector length should be an integer.");
641
644
646 Builder.getInt32Ty(), Intrinsic::experimental_get_vector_length,
647 {AVL, VFArg, Builder.getTrue()});
648 return EVL;
649 }
653 assert(Part != 0 && "Must have a positive part");
654
655
659 }
664 return Br;
665 }
667
672 }
675 State.VF, State.get(getOperand(0), true), "broadcast");
676 }
678
679
680 auto *StructTy =
684 for (unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
685 FieldIndex++) {
686 Value *ScalarValue =
689 VectorValue =
692 }
693 }
694 return Res;
695 }
703 return Res;
704 }
708 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
710
711
717 }
719
720
722 auto *OrigPhi = cast(PhiR->getUnderlyingValue());
724 for (unsigned Idx = 3; Idx < getNumOperands(); ++Idx)
725 ReducedPartRdx =
727 ReducedPartRdx, "bin.rdx");
730 }
732
733
735
736 RecurKind RK = PhiR->getRecurrenceKind();
738 "Unexpected reduction kind");
739 assert(!PhiR->isInLoop() &&
740 "In-loop FindLastIV reduction is not supported yet");
741
742
743
750 else
752 for (unsigned Part = 1; Part < UF; ++Part)
753 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
755
760 }
762
763
765
766
767 RecurKind RK = PhiR->getRecurrenceKind();
769 "should be handled by ComputeFindIVResult");
770
771
772
775 for (unsigned Part = 0; Part < UF; ++Part)
776 RdxParts[Part] = State.get(getOperand(1 + Part), PhiR->isInLoop());
777
778 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
781
782
783 Value *ReducedPartRdx = RdxParts[0];
784 if (PhiR->isOrdered()) {
785 ReducedPartRdx = RdxParts[UF - 1];
786 } else {
787
788 for (unsigned Part = 1; Part < UF; ++Part) {
789 Value *RdxPart = RdxParts[Part];
791 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
792 else {
793
794
797 ? Instruction::Add
799 ReducedPartRdx =
800 Builder.CreateBinOp(Opcode, RdxPart, ReducedPartRdx, "bin.rdx");
801 }
802 }
803 }
804
805
806
807 if (State.VF.isVector() && !PhiR->isInLoop()) {
808
809
810
812 }
813
814 return ReducedPartRdx;
815 }
823 "invalid offset to extract from");
824
826 } else {
827
828 assert(Offset <= 1 && "invalid offset to extract from");
830 }
833 return Res;
834 }
839 }
842 "can only generate first lane for PtrAdd");
846 }
852 }
858 }
862 Value *Res = nullptr;
864
865 for (unsigned Idx = 1; Idx != getNumOperands(); ++Idx) {
866 Value *VectorStart =
867 Builder.CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
868 Value *VectorIdx = Idx == 1
869 ? LaneToExtract
870 : Builder.CreateSub(LaneToExtract, VectorStart);
875 if (Res) {
878 } else {
879 Res = Ext;
880 }
881 }
882 return Res;
883 }
888 false, Name);
889 }
890
891
892
895 Value *Res = nullptr;
896 for (int Idx = LastOpIdx; Idx >= 0; --Idx) {
897 Value *TrailingZeros =
905 false, Name);
907 Builder.CreateMul(RuntimeVF, Builder.getInt64(Idx)), TrailingZeros);
908 if (Res) {
910 Res = Builder.CreateSelect(Cmp, Current, Res);
911 } else {
912 Res = Current;
913 }
914 }
915
916 return Res;
917 }
920 default:
922 }
923}
924
927 Type *ScalarTy = Ctx.Types.inferScalarType(this);
929 switch (Opcode) {
930 case Instruction::FNeg:
931 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
932 case Instruction::UDiv:
933 case Instruction::SDiv:
934 case Instruction::SRem:
935 case Instruction::URem:
936 case Instruction::Add:
937 case Instruction::FAdd:
938 case Instruction::Sub:
939 case Instruction::FSub:
940 case Instruction::Mul:
941 case Instruction::FMul:
942 case Instruction::FDiv:
943 case Instruction::FRem:
944 case Instruction::Shl:
945 case Instruction::LShr:
946 case Instruction::AShr:
947 case Instruction::And:
948 case Instruction::Or:
949 case Instruction::Xor: {
952
954
955
957 RHSInfo = Ctx.getOperandInfo(RHS);
958
962 }
963
966 if (CtxI)
968 return Ctx.TTI.getArithmeticInstrCost(
969 Opcode, ResultTy, Ctx.CostKind,
970 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
971 RHSInfo, Operands, CtxI, &Ctx.TLI);
972 }
973 case Instruction::Freeze:
975 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
976 Ctx.CostKind);
977 case Instruction::ExtractValue:
978 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
979 Ctx.CostKind);
980 case Instruction::ICmp:
981 case Instruction::FCmp: {
982 Type *ScalarOpTy = Ctx.Types.inferScalarType(getOperand(0));
985 return Ctx.TTI.getCmpSelInstrCost(
987 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
988 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
989 }
990 }
992}
993
998
999
1000 return 0;
1001 }
1002
1004 "Should only generate a vector value or single scalar, not scalars "
1005 "for all lanes.");
1009 }
1010
1012 case Instruction::Select: {
1015 auto *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1016 auto *VecTy = Ctx.Types.inferScalarType(getOperand(1));
1020 }
1021 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1022 Ctx.CostKind);
1023 }
1024 case Instruction::ExtractElement:
1027
1028
1029 return 0;
1030 }
1031
1032
1034 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1035 Ctx.CostKind);
1036 }
1038 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1039 return Ctx.TTI.getArithmeticReductionCost(
1040 Instruction::Or, cast(VecTy), std::nullopt, Ctx.CostKind);
1041 }
1043 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1045 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1048
1049 auto *PredTy = toVectorTy(ScalarTy, VF);
1052 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1053 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1054 }
1056 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1058 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1061
1062 auto *PredTy = toVectorTy(ScalarTy, VF);
1065 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1066 InstructionCost Cost = Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1067
1068 Cost += Ctx.TTI.getArithmeticInstrCost(
1069 Instruction::Xor, PredTy, Ctx.CostKind,
1070 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1071 {TargetTransformInfo::OK_UniformConstantValue,
1072 TargetTransformInfo::OP_None});
1073
1074 Cost += Ctx.TTI.getArithmeticInstrCost(
1075 Instruction::Sub, Type::getInt64Ty(Ctx.LLVMCtx), Ctx.CostKind);
1076 return Cost;
1077 }
1079 assert(VF.isVector() && "Scalar FirstOrderRecurrenceSplice?");
1081 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
1082 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1083
1088 }
1090 Type *ArgTy = Ctx.Types.inferScalarType(getOperand(0));
1091 unsigned Multiplier =
1095 {ArgTy, ArgTy});
1096 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1097 }
1099 Type *Arg0Ty = Ctx.Types.inferScalarType(getOperand(0));
1103 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1104 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1105 }
1107
1109 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1110 VecTy, Ctx.CostKind, 0);
1111 }
1115 [[fallthrough]];
1116 default:
1117
1118
1120 "unexpected VPInstruction witht underlying value");
1121 return 0;
1122 }
1123}
1124
1128 getOpcode() == Instruction::ExtractElement ||
1136}
1137
1140 case Instruction::PHI:
1144 return true;
1145 default:
1147 }
1148}
1149
1151 assert(!State.Lane && "VPInstruction executing an Lane");
1154 "Set flags not supported for the provided opcode");
1157 Value *GeneratedValue = generate(State);
1159 return;
1160 assert(GeneratedValue && "generate must produce a value");
1161 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1166 !GeneratesPerFirstLaneOnly) ||
1167 State.VF.isScalar()) &&
1168 "scalar value but not only first lane defined");
1169 State.set(this, GeneratedValue,
1170 GeneratesPerFirstLaneOnly);
1171}
1172
1175 return false;
1177 case Instruction::GetElementPtr:
1178 case Instruction::ExtractElement:
1179 case Instruction::Freeze:
1180 case Instruction::FCmp:
1181 case Instruction::ICmp:
1182 case Instruction::Select:
1183 case Instruction::PHI:
1210 return false;
1211 default:
1212 return true;
1213 }
1214}
1215
1220
1222 default:
1223 return false;
1224 case Instruction::ExtractElement:
1226 case Instruction::PHI:
1227 return true;
1228 case Instruction::FCmp:
1229 case Instruction::ICmp:
1230 case Instruction::Select:
1231 case Instruction::Or:
1232 case Instruction::Freeze:
1234
1244 return true;
1247
1248
1249
1254
1255 return false;
1261 };
1263}
1264
1269
1271 default:
1272 return false;
1273 case Instruction::FCmp:
1274 case Instruction::ICmp:
1275 case Instruction::Select:
1280 return true;
1281 };
1283}
1284
1285#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1290
1293 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1294
1297 O << " = ";
1298 }
1299
1302 O << "not";
1303 break;
1305 O << "combined load";
1306 break;
1308 O << "combined store";
1309 break;
1311 O << "active lane mask";
1312 break;
1314 O << "EXPLICIT-VECTOR-LENGTH";
1315 break;
1317 O << "first-order splice";
1318 break;
1320 O << "branch-on-cond";
1321 break;
1323 O << "TC > VF ? TC - VF : 0";
1324 break;
1326 O << "VF * Part +";
1327 break;
1329 O << "branch-on-count";
1330 break;
1332 O << "broadcast";
1333 break;
1335 O << "buildstructvector";
1336 break;
1338 O << "buildvector";
1339 break;
1341 O << "extract-lane";
1342 break;
1344 O << "extract-last-lane";
1345 break;
1347 O << "extract-last-part";
1348 break;
1350 O << "extract-penultimate-element";
1351 break;
1353 O << "compute-anyof-result";
1354 break;
1356 O << "compute-find-iv-result";
1357 break;
1359 O << "compute-reduction-result";
1360 break;
1362 O << "logical-and";
1363 break;
1365 O << "ptradd";
1366 break;
1368 O << "wide-ptradd";
1369 break;
1371 O << "any-of";
1372 break;
1374 O << "first-active-lane";
1375 break;
1377 O << "last-active-lane";
1378 break;
1380 O << "reduction-start-vector";
1381 break;
1383 O << "resume-for-epilogue";
1384 break;
1386 O << "unpack";
1387 break;
1388 default:
1390 }
1391
1394}
1395#endif
1396
1402 Op, ResultTy);
1403 State.set(this, Cast, VPLane(0));
1404 return;
1405 }
1409 State.Builder.CreateStepVector(VectorType::get(ResultTy, State.VF));
1411 break;
1412 }
1414 Value *VScale = State.Builder.CreateVScale(ResultTy);
1415 State.set(this, VScale, true);
1416 break;
1417 }
1418
1419 default:
1421 }
1422}
1423
1424#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1427 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1429 O << " = ";
1430
1433 O << "wide-iv-step ";
1435 break;
1437 O << "step-vector " << *ResultTy;
1438 break;
1440 O << "vscale " << *ResultTy;
1441 break;
1442 default:
1446 O << " to " << *ResultTy;
1447 }
1448}
1449#endif
1450
1453 PHINode *NewPhi = State.Builder.CreatePHI(
1454 State.TypeAnalysis.inferScalarType(this), 2, getName());
1457
1458
1459 NumIncoming = 1;
1460 }
1461 for (unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1465 }
1466 State.set(this, NewPhi, VPLane(0));
1467}
1468
1469#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1472 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1474 O << " = phi ";
1476}
1477#endif
1478
1481 return new VPIRPhi(*Phi);
1483}
1484
1487 "PHINodes must be handled by VPIRPhi");
1488
1489
1490 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1491}
1492
1495
1496
1497 return 0;
1498}
1499
1503 "can only update exiting operands to phi nodes");
1507 return;
1508
1512}
1513
1514#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1517 O << Indent << "IR " << I;
1518}
1519#endif
1520
1529 auto *PredVPBB = Pred->getExitingBasicBlock();
1530 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1531
1532
1533 State.Builder.SetInsertPoint(PredBB, PredBB->getFirstNonPHIIt());
1534 Value *V = State.get(ExitValue, VPLane(Lane));
1535
1536
1537 if (Phi->getBasicBlockIndex(PredBB) == -1)
1538 Phi->addIncoming(V, PredBB);
1539 else
1540 Phi->setIncomingValueForBlock(PredBB, V);
1541 }
1542
1543
1544
1545 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1546}
1547
1550 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1551 "Number of phi operands must match number of predecessors");
1552 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1553 R->removeOperand(Position);
1554}
1555
1556#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1561 O << "[ ";
1563 O << ", ";
1565 O << " ]";
1566 });
1567}
1568#endif
1569
1570#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1574
1576 O << " (extra operand" << (getNumOperands() > 1 ? "s" : "") << ": ";
1579 std::get<0>(Op)->printAsOperand(O, SlotTracker);
1580 O << " from ";
1581 std::get<1>(Op)->printAsOperand(O);
1582 });
1583 O << ")";
1584 }
1585}
1586#endif
1587
1589 for (const auto &[Kind, Node] : Metadata)
1590 I.setMetadata(Kind, Node);
1591}
1592
1595 for (const auto &[KindA, MDA] : Metadata) {
1596 for (const auto &[KindB, MDB] : Other.Metadata) {
1597 if (KindA == KindB && MDA == MDB) {
1598 MetadataIntersection.emplace_back(KindA, MDA);
1599 break;
1600 }
1601 }
1602 }
1603 Metadata = std::move(MetadataIntersection);
1604}
1605
1606#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1609 if (Metadata.empty() || !M)
1610 return;
1611
1613 O << " (";
1614 interleaveComma(Metadata, O, [&](const auto &KindNodePair) {
1615 auto [Kind, Node] = KindNodePair;
1616 assert(Kind < MDNames.size() && !MDNames[Kind].empty() &&
1617 "Unexpected unnamed metadata kind");
1618 O << "!" << MDNames[Kind] << " ";
1620 });
1621 O << ")";
1622}
1623#endif
1624
1626 assert(State.VF.isVector() && "not widening");
1627 assert(Variant != nullptr && "Can't create vector function.");
1628
1629 FunctionType *VFTy = Variant->getFunctionType();
1630
1634
1635
1636
1638 Arg = State.get(I.value(), VPLane(0));
1639 else
1641 Args.push_back(Arg);
1642 }
1643
1646 if (CI)
1647 CI->getOperandBundlesAsDefs(OpBundles);
1648
1649 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1652 V->setCallingConv(Variant->getCallingConv());
1653
1654 if (!V->getType()->isVoidTy())
1655 State.set(this, V);
1656}
1657
1660 return Ctx.TTI.getCallInstrCost(nullptr, Variant->getReturnType(),
1661 Variant->getFunctionType()->params(),
1662 Ctx.CostKind);
1663}
1664
1665#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1668 O << Indent << "WIDEN-CALL ";
1669
1672 O << "void ";
1673 else {
1675 O << " = ";
1676 }
1677
1678 O << "call";
1680 O << " @" << CalledFn->getName() << "(";
1683 });
1684 O << ")";
1685
1686 O << " (using library function";
1687 if (Variant->hasName())
1688 O << ": " << Variant->getName();
1689 O << ")";
1690}
1691#endif
1692
1694 assert(State.VF.isVector() && "not widening");
1695
1697
1702
1703
1706 State.TTI))
1707 Arg = State.get(I.value(), VPLane(0));
1708 else
1711 State.TTI))
1713 Args.push_back(Arg);
1714 }
1715
1716
1717 Module *M = State.Builder.GetInsertBlock()->getModule();
1721 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1722
1725 if (CI)
1726 CI->getOperandBundlesAsDefs(OpBundles);
1727
1728 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1729
1732
1733 if (!V->getType()->isVoidTy())
1734 State.set(this, V);
1735}
1736
1737
1743
1744
1745
1746
1747
1749 for (const auto &[Idx, Op] : enumerate(Operands)) {
1750 auto *V = Op->getUnderlyingValue();
1751 if (!V) {
1753 Arguments.push_back(UI->getArgOperand(Idx));
1754 continue;
1755 }
1757 break;
1758 }
1760 }
1761
1762 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1765 for (const VPValue *Op : Operands) {
1767 ? toVectorTy(Ctx.Types.inferScalarType(Op), VF)
1768 : Ctx.Types.inferScalarType(Op));
1769 }
1770
1771
1773 R.hasFastMathFlags() ? R.getFastMathFlags() : FastMathFlags();
1778 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1779}
1780
1786
1790
1794 auto [Idx, V] = X;
1796 Idx, nullptr);
1797 });
1798}
1799
1800#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1803 O << Indent << "WIDEN-INTRINSIC ";
1804 if (ResultTy->isVoidTy()) {
1805 O << "void ";
1806 } else {
1808 O << " = ";
1809 }
1810
1811 O << "call";
1814
1817 });
1818 O << ")";
1819}
1820#endif
1821
1824
1826 Value *IncAmt = State.get(getOperand(1), true);
1828
1829
1830
1831
1832 Value *Mask = nullptr;
1834 Mask = State.get(VPMask);
1835 else
1836 Mask =
1837 Builder.CreateVectorSplat(VTy->getElementCount(), Builder.getInt1(1));
1838
1839
1840
1841 if (Opcode == Instruction::Sub)
1842 IncAmt = Builder.CreateNeg(IncAmt);
1843 else
1844 assert(Opcode == Instruction::Add && "only add or sub supported for now");
1845
1846 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1847 {VTy, IncAmt->getType()},
1848 {Address, IncAmt, Mask});
1849}
1850
1853
1854
1855
1856
1857
1858 assert(VF.isVector() && "Invalid VF for histogram cost");
1859 Type *AddressTy = Ctx.Types.inferScalarType(getOperand(0));
1861 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1863
1864
1865
1867 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1870
1873 }
1874
1875
1880 {PtrTy, IncTy, MaskTy});
1881
1882
1883 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1884 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1885}
1886
1887#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1890 O << Indent << "WIDEN-HISTOGRAM buckets: ";
1892
1893 if (Opcode == Instruction::Sub)
1894 O << ", dec: ";
1895 else {
1896 assert(Opcode == Instruction::Add);
1897 O << ", inc: ";
1898 }
1900
1902 O << ", mask: ";
1904 }
1905}
1906
1909 O << Indent << "WIDEN-SELECT ";
1911 O << " = select ";
1914 O << ", ";
1916 O << ", ";
1919 : "");
1920}
1921#endif
1922
1925
1928 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
1929 State.set(this, Sel);
1934 }
1935}
1936
1941 Type *ScalarTy = Ctx.Types.inferScalarType(this);
1942 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1943
1948
1949
1950 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1951 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1952
1955 [](VPValue *Op) { return Op->getUnderlyingValue(); }))
1956 Operands.append(SI->op_begin(), SI->op_end());
1958 return Ctx.TTI.getArithmeticInstrCost(
1959 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1960 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1961 }
1962
1963 Type *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1964 if (!ScalarCond)
1966
1969 Pred = Cmp->getPredicate();
1970 return Ctx.TTI.getCmpSelInstrCost(
1971 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1972 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1973}
1974
1975VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(const FastMathFlags &FMF) {
1977 NoNaNs = FMF.noNaNs();
1978 NoInfs = FMF.noInfs();
1983}
1984
1985#if !defined(NDEBUG)
1987 switch (OpType) {
1988 case OperationType::OverflowingBinOp:
1989 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
1990 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
1991 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
1992 case OperationType::Trunc:
1993 return Opcode == Instruction::Trunc;
1994 case OperationType::DisjointOp:
1995 return Opcode == Instruction::Or;
1996 case OperationType::PossiblyExactOp:
1997 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
1998 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
1999 case OperationType::GEPOp:
2000 return Opcode == Instruction::GetElementPtr ||
2003 case OperationType::FPMathOp:
2004 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2005 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2006 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2007 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2008 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2012 case OperationType::FCmp:
2013 return Opcode == Instruction::FCmp;
2014 case OperationType::NonNegOp:
2015 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2016 case OperationType::Cmp:
2017 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2018 case OperationType::Other:
2019 return true;
2020 }
2022}
2023#endif
2024
2025#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2027 switch (OpType) {
2028 case OperationType::Cmp:
2030 break;
2031 case OperationType::FCmp:
2034 break;
2035 case OperationType::DisjointOp:
2037 O << " disjoint";
2038 break;
2039 case OperationType::PossiblyExactOp:
2041 O << " exact";
2042 break;
2043 case OperationType::OverflowingBinOp:
2045 O << " nuw";
2047 O << " nsw";
2048 break;
2049 case OperationType::Trunc:
2051 O << " nuw";
2053 O << " nsw";
2054 break;
2055 case OperationType::FPMathOp:
2057 break;
2058 case OperationType::GEPOp:
2060 O << " inbounds";
2061 else if (GEPFlags.hasNoUnsignedSignedWrap())
2062 O << " nusw";
2063 if (GEPFlags.hasNoUnsignedWrap())
2064 O << " nuw";
2065 break;
2066 case OperationType::NonNegOp:
2068 O << " nneg";
2069 break;
2070 case OperationType::Other:
2071 break;
2072 }
2073 O << " ";
2074}
2075#endif
2076
2078 auto &Builder = State.Builder;
2079 switch (Opcode) {
2080 case Instruction::Call:
2081 case Instruction::Br:
2082 case Instruction::PHI:
2083 case Instruction::GetElementPtr:
2084 case Instruction::Select:
2085 llvm_unreachable("This instruction is handled by a different recipe.");
2086 case Instruction::UDiv:
2087 case Instruction::SDiv:
2088 case Instruction::SRem:
2089 case Instruction::URem:
2090 case Instruction::Add:
2091 case Instruction::FAdd:
2092 case Instruction::Sub:
2093 case Instruction::FSub:
2094 case Instruction::FNeg:
2095 case Instruction::Mul:
2096 case Instruction::FMul:
2097 case Instruction::FDiv:
2098 case Instruction::FRem:
2099 case Instruction::Shl:
2100 case Instruction::LShr:
2101 case Instruction::AShr:
2102 case Instruction::And:
2103 case Instruction::Or:
2104 case Instruction::Xor: {
2105
2108 Ops.push_back(State.get(VPOp));
2109
2110 Value *V = Builder.CreateNAryOp(Opcode, Ops);
2111
2115 }
2116
2117
2118 State.set(this, V);
2119 break;
2120 }
2121 case Instruction::ExtractValue: {
2125 Value *Extract = Builder.CreateExtractValue(Op, CI->getZExtValue());
2126 State.set(this, Extract);
2127 break;
2128 }
2129 case Instruction::Freeze: {
2131 Value *Freeze = Builder.CreateFreeze(Op);
2132 State.set(this, Freeze);
2133 break;
2134 }
2135 case Instruction::ICmp:
2136 case Instruction::FCmp: {
2137
2138 bool FCmp = Opcode == Instruction::FCmp;
2142 if (FCmp) {
2144 } else {
2146 }
2150 }
2151 State.set(this, C);
2152 break;
2153 }
2154 default:
2155
2156 LLVM_DEBUG(dbgs() << "LV: Found an unhandled opcode : "
2159 }
2160
2161#if !defined(NDEBUG)
2162
2163
2165 State.get(this)->getType() &&
2166 "inferred type and type from generated instructions do not match");
2167#endif
2168}
2169
2172 switch (Opcode) {
2173 case Instruction::UDiv:
2174 case Instruction::SDiv:
2175 case Instruction::SRem:
2176 case Instruction::URem:
2177
2178
2179
2180
2181 case Instruction::FNeg:
2182 case Instruction::Add:
2183 case Instruction::FAdd:
2184 case Instruction::Sub:
2185 case Instruction::FSub:
2186 case Instruction::Mul:
2187 case Instruction::FMul:
2188 case Instruction::FDiv:
2189 case Instruction::FRem:
2190 case Instruction::Shl:
2191 case Instruction::LShr:
2192 case Instruction::AShr:
2193 case Instruction::And:
2194 case Instruction::Or:
2195 case Instruction::Xor:
2196 case Instruction::Freeze:
2197 case Instruction::ExtractValue:
2198 case Instruction::ICmp:
2199 case Instruction::FCmp:
2201 default:
2203 }
2204}
2205
2206#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2209 O << Indent << "WIDEN ";
2214}
2215#endif
2216
2218 auto &Builder = State.Builder;
2219
2220 assert(State.VF.isVector() && "Not vectorizing?");
2225 State.set(this, Cast);
2229 }
2230}
2231
2234
2235
2236
2238 return 0;
2239
2249 if (WidenMemoryRecipe == nullptr)
2251 if (!WidenMemoryRecipe->isConsecutive())
2253 if (WidenMemoryRecipe->isReverse())
2255 if (WidenMemoryRecipe->isMasked())
2258 };
2259
2262
2263 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2266 CCH = ComputeCCH(StoreRecipe);
2267 }
2268
2269 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2270 Opcode == Instruction::FPExt) {
2275 }
2276
2277 auto *SrcTy =
2280
2281 return Ctx.TTI.getCastInstrCost(
2282 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2284}
2285
2286#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2289 O << Indent << "WIDEN-CAST ";
2295}
2296#endif
2297
2300 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2301}
2302
2303
2304
2307 : ConstantFP::get(Ty, C);
2308}
2309
2310#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2313 O << Indent;
2315 O << " = WIDEN-INDUCTION";
2317 O << " ";
2319
2321 O << " (truncated to " << *TI->getType() << ")";
2322}
2323#endif
2324
2326
2327
2328
2330 return false;
2333 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2335}
2336
2337#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2340 O << Indent;
2342 O << " = DERIVED-IV ";
2344 O << " + ";
2346 O << " * ";
2348}
2349#endif
2350
2352
2356
2357
2358
2359
2363
2364
2366 assert(BaseIVTy == Step->getType() && "Types of BaseIV and Step must match!");
2367
2368
2369
2373 AddOp = Instruction::Add;
2374 MulOp = Instruction::Mul;
2375 } else {
2376 AddOp = InductionOpcode;
2377 MulOp = Instruction::FMul;
2378 }
2379
2380
2381
2383
2384 Type *IntStepTy =
2386
2387 unsigned StartLane = 0;
2388 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2389 if (State.Lane) {
2390 StartLane = State.Lane->getKnownLane();
2391 EndLane = StartLane + 1;
2392 }
2393 Value *StartIdx0;
2395 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2396 else {
2397 StartIdx0 = State.get(getOperand(2), true);
2399 StartIdx0 =
2400 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->getType(),
2402 }
2403 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2404 }
2405
2407 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2408
2409 for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2410 Value *StartIdx = Builder.CreateBinOp(
2412
2413
2415 "Expected StartIdx to be folded to a constant when VF is not "
2416 "scalable");
2417 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2418 auto *Add = Builder.CreateBinOp(AddOp, BaseIV, Mul);
2419 State.set(this, Add, VPLane(Lane));
2420 }
2421}
2422
2423#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2426 O << Indent;
2428 O << " = SCALAR-STEPS ";
2430}
2431#endif
2432
2437
2439 assert(State.VF.isVector() && "not widening");
2440
2441
2442
2443
2444
2445
2448 [](VPValue *Op) { return ->isDefinedOutsideLoopRegions(); }) &&
2449 "Expected at least one loop-variant operand");
2450
2451
2452
2453
2454
2455 auto *Ptr = State.get(getOperand(0), isPointerLoopInvariant());
2456
2457
2458
2462 Indices.push_back(State.get(Operand, isIndexLoopInvariant(I - 1)));
2463 }
2464
2465
2466
2467 auto *NewGEP = State.Builder.CreateGEP(getSourceElementType(), Ptr, Indices,
2469 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2470 "NewGEP is not a pointer vector");
2471 State.set(this, NewGEP);
2472}
2473
2474#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2477 O << Indent << "WIDEN-GEP ";
2478 O << (isPointerLoopInvariant() ? "Inv" : "Var");
2480 O << "[" << (isIndexLoopInvariant(I) ? "Inv" : "Var") << "]";
2481
2482 O << " ";
2484 O << " = getelementptr";
2487}
2488#endif
2489
2491 auto &Builder = State.Builder;
2493 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2494 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(this));
2495
2496
2498 if (IndexTy != RunTimeVF->getType())
2499 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2500
2501 Value *NumElt = Builder.CreateMul(
2502 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2503
2504 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2505 if (Stride != 1)
2506 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2508 Value *ResultPtr =
2509 Builder.CreateGEP(IndexedTy, Ptr, NumElt, "", getGEPNoWrapFlags());
2510 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane, "",
2512
2513 State.set(this, ResultPtr, true);
2514}
2515
2516#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2519 O << Indent;
2521 O << " = vector-end-pointer";
2524}
2525#endif
2526
2528 auto &Builder = State.Builder;
2530 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2531 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(this));
2533
2537
2538 State.set(this, ResultPtr, true);
2539}
2540
2541#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2544 O << Indent;
2546 O << " = vector-pointer";
2549}
2550#endif
2551
2554
2555
2557 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2558
2559 Type *ResultTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
2562 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2564}
2565
2566#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2569 O << Indent << "BLEND ";
2571 O << " =";
2573
2574
2575 O << " ";
2577 } else {
2579 O << " ";
2581 if (I == 0)
2582 continue;
2583 O << "/";
2585 }
2586 }
2587}
2588#endif
2589
2591 assert(!State.Lane && "Reduction being replicated.");
2594 "In-loop AnyOf reductions aren't currently supported");
2595
2600 Value *NewCond = State.get(Cond, State.VF.isScalar());
2603
2605 if (State.VF.isVector())
2606 Start = State.Builder.CreateVectorSplat(VecTy->getElementCount(), Start);
2607
2608 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2610 }
2612 Value *NextInChain;
2614 Value *PrevInChain = State.get(getChainOp(), true);
2615 if (State.VF.isVector())
2616 NewRed =
2618 else
2619 NewRed = State.Builder.CreateBinOp(
2621 PrevInChain, NewVecOp);
2622 PrevInChain = NewRed;
2623 NextInChain = NewRed;
2626 Value *PrevInChain = State.get(getChainOp(), false);
2627 NewRed = State.Builder.CreateIntrinsic(
2628 PrevInChain->getType(), Intrinsic::vector_partial_reduce_add,
2629 {PrevInChain, NewVecOp}, nullptr, "partial.reduce");
2630 PrevInChain = NewRed;
2631 NextInChain = NewRed;
2632 } else {
2634 "The reduction must either be ordered, partial or in-loop");
2635 Value *PrevInChain = State.get(getChainOp(), true);
2638 NextInChain = createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2639 else
2640 NextInChain = State.Builder.CreateBinOp(
2642 PrevInChain, NewRed);
2643 }
2645}
2646
2648 assert(!State.Lane && "Reduction being replicated.");
2649
2650 auto &Builder = State.Builder;
2651
2654
2656 Value *Prev = State.get(getChainOp(), true);
2659
2662 Mask = State.get(CondOp);
2663 else
2664 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2665
2669 } else {
2672 NewRed = createMinMaxOp(Builder, Kind, NewRed, Prev);
2673 else
2674 NewRed = Builder.CreateBinOp(
2676 Prev);
2677 }
2678 State.set(this, NewRed, true);
2679}
2680
2684 Type *ElementTy = Ctx.Types.inferScalarType(this);
2688 std::optional OptionalFMF =
2690
2697 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2698 CondTy, Pred, Ctx.CostKind);
2699 }
2700 return CondCost + Ctx.TTI.getPartialReductionCost(
2701 Opcode, ElementTy, ElementTy, ElementTy, VF,
2704 Ctx.CostKind);
2705 }
2706
2707
2711 "Any-of reduction not implemented in VPlan-based cost model currently.");
2712
2713
2714
2717 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy, FMFs, Ctx.CostKind);
2718 }
2719
2720
2721
2722 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2723 Ctx.CostKind);
2724}
2725
2727 ExpressionTypes ExpressionType,
2730 ExpressionRecipes(ExpressionRecipes), ExpressionType(ExpressionType) {
2731 assert(!ExpressionRecipes.empty() && "Nothing to combine?");
2733 none_of(ExpressionRecipes,
2735 "expression cannot contain recipes with side-effects");
2736
2737
2739 for (auto *R : ExpressionRecipes)
2740 ExpressionRecipesAsSetOfUsers.insert(R);
2741
2742
2743
2744
2746 if (R != ExpressionRecipes.back() &&
2747 any_of(R->users(), [&ExpressionRecipesAsSetOfUsers](VPUser *U) {
2748 return !ExpressionRecipesAsSetOfUsers.contains(U);
2749 })) {
2750
2751
2753 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2754 VPUser &U, unsigned) {
2755 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2756 });
2758 }
2759 if (R->getParent())
2760 R->removeFromParent();
2761 }
2762
2763
2764
2765
2766
2767 for (auto *R : ExpressionRecipes) {
2768 for (const auto &[Idx, Op] : enumerate(R->operands())) {
2769 auto *Def = Op->getDefiningRecipe();
2770 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2771 continue;
2773 LiveInPlaceholders.push_back(new VPValue());
2774 }
2775 }
2776
2777
2778
2779 for (auto *R : ExpressionRecipes)
2780 for (auto const &[LiveIn, Tmp] : zip(operands(), LiveInPlaceholders))
2781 R->replaceUsesOfWith(LiveIn, Tmp);
2782}
2783
2785 for (auto *R : ExpressionRecipes)
2786
2787
2788 if (!R->getParent())
2789 R->insertBefore(this);
2790
2792 LiveInPlaceholders[Idx]->replaceAllUsesWith(Op);
2793
2795 ExpressionRecipes.clear();
2796}
2797
2800 Type *RedTy = Ctx.Types.inferScalarType(this);
2804 "VPExpressionRecipe only supports integer types currently.");
2807 switch (ExpressionType) {
2808 case ExpressionTypes::ExtendedReduction: {
2812
2814 ->isPartialReduction()
2815 ? Ctx.TTI.getPartialReductionCost(
2816 Opcode, Ctx.Types.inferScalarType(getOperand(0)), nullptr,
2817 RedTy, VF,
2819 ExtR->getOpcode()),
2821 : Ctx.TTI.getExtendedReductionCost(
2822 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2823 SrcVecTy, std::nullopt, Ctx.CostKind);
2824 }
2825 case ExpressionTypes::MulAccReduction:
2826 return Ctx.TTI.getMulAccReductionCost(false, Opcode, RedTy, SrcVecTy,
2827 Ctx.CostKind);
2828
2829 case ExpressionTypes::ExtNegatedMulAccReduction:
2830 assert(Opcode == Instruction::Add && "Unexpected opcode");
2831 Opcode = Instruction::Sub;
2832 [[fallthrough]];
2833 case ExpressionTypes::ExtMulAccReduction: {
2835 if (RedR->isPartialReduction()) {
2839 return Ctx.TTI.getPartialReductionCost(
2840 Opcode, Ctx.Types.inferScalarType(getOperand(0)),
2841 Ctx.Types.inferScalarType(getOperand(1)), RedTy, VF,
2843 Ext0R->getOpcode()),
2845 Ext1R->getOpcode()),
2846 Mul->getOpcode(), Ctx.CostKind);
2847 }
2848 return Ctx.TTI.getMulAccReductionCost(
2850 Instruction::ZExt,
2851 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2852 }
2853 }
2854 llvm_unreachable("Unknown VPExpressionRecipe::ExpressionTypes enum");
2855}
2856
2859 return R->mayReadFromMemory() || R->mayWriteToMemory();
2860 });
2861}
2862
2865 none_of(ExpressionRecipes,
2866 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2867 "expression cannot contain recipes with side-effects");
2868 return false;
2869}
2870
2872
2873
2875 return RR && !RR->isPartialReduction();
2876}
2877
2878#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2879
2882 O << Indent << "EXPRESSION ";
2884 O << " = ";
2887
2888 switch (ExpressionType) {
2889 case ExpressionTypes::ExtendedReduction: {
2891 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2894 Red->printFlags(O);
2895
2898 << *Ext0->getResultType();
2899 if (Red->isConditional()) {
2900 O << ", ";
2901 Red->getCondOp()->printAsOperand(O, SlotTracker);
2902 }
2903 O << ")";
2904 break;
2905 }
2906 case ExpressionTypes::ExtNegatedMulAccReduction: {
2908 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2911 << " (sub (0, mul";
2913 Mul->printFlags(O);
2914 O << "(";
2918 << *Ext0->getResultType() << "), (";
2922 << *Ext1->getResultType() << ")";
2923 if (Red->isConditional()) {
2924 O << ", ";
2925 Red->getCondOp()->printAsOperand(O, SlotTracker);
2926 }
2927 O << "))";
2928 break;
2929 }
2930 case ExpressionTypes::MulAccReduction:
2931 case ExpressionTypes::ExtMulAccReduction: {
2933 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2936 << " (";
2937 O << "mul";
2938 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2940 : ExpressionRecipes[0]);
2941 Mul->printFlags(O);
2942 if (IsExtended)
2943 O << "(";
2945 if (IsExtended) {
2948 << *Ext0->getResultType() << "), (";
2949 } else {
2950 O << ", ";
2951 }
2953 if (IsExtended) {
2956 << *Ext1->getResultType() << ")";
2957 }
2958 if (Red->isConditional()) {
2959 O << ", ";
2960 Red->getCondOp()->printAsOperand(O, SlotTracker);
2961 }
2962 O << ")";
2963 break;
2964 }
2965 }
2966}
2967
2971 O << Indent << "PARTIAL-REDUCE ";
2972 else
2973 O << Indent << "REDUCE ";
2975 O << " = ";
2977 O << " +";
2979 O << " reduce."
2982 << " (";
2985 O << ", ";
2987 }
2988 O << ")";
2989}
2990
2993 O << Indent << "REDUCE ";
2995 O << " = ";
2997 O << " +";
2999 O << " vp.reduce."
3002 << " (";
3004 O << ", ";
3007 O << ", ";
3009 }
3010 O << ")";
3011}
3012
3013#endif
3014
3015
3016
3017
3021 assert((!Instr->getType()->isAggregateType() ||
3023 "Expected vectorizable or non-aggregate type.");
3024
3025
3026 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3027
3029 if (!IsVoidRetTy) {
3030 Cloned->setName(Instr->getName() + ".cloned");
3031 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3032
3033
3034
3035 if (ResultTy != Cloned->getType())
3037 }
3038
3041
3044
3046 State.setDebugLocFrom(DL);
3047
3048
3049
3051 auto InputLane = Lane;
3052 VPValue *Operand = I.value();
3055 Cloned->setOperand(I.index(), State.get(Operand, InputLane));
3056 }
3057
3058
3059 State.Builder.Insert(Cloned);
3060
3061 State.set(RepRecipe, Cloned, Lane);
3062
3063
3065 State.AC->registerAssumption(II);
3066
3071 [](VPValue *Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3072 "Expected a recipe is either within a region or all of its operands "
3073 "are defined outside the vectorized region.");
3074}
3075
3078
3079 if (!State.Lane) {
3080 assert(IsSingleScalar && "VPReplicateRecipes outside replicate regions "
3081 "must have already been unrolled");
3083 return;
3084 }
3085
3087 "uniform recipe shouldn't be predicated");
3088 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
3090
3091 if (State.VF.isVector() && shouldPack()) {
3092 Value *WideValue =
3093 State.Lane->isFirstLane()
3095 : State.get(this);
3096 State.set(this, State.packScalarIntoVectorizedValue(this, WideValue,
3097 *State.Lane));
3098 }
3099}
3100
3102
3103
3107 return false;
3108 });
3109}
3110
3111
3112
3113
3114
3115
3117 const Loop *L) {
3121 Instruction::GetElementPtr) ||
3124 return nullptr;
3125
3126
3127
3129 if (!Opd->isDefinedOutsideLoopRegions() &&
3131 return nullptr;
3132 }
3133
3135}
3136
3137
3138
3142
3143 while (!WorkList.empty()) {
3145 if (!Cur || !Seen.insert(Cur).second)
3146 continue;
3147
3149
3150
3152 [&](unsigned I) {
3153 return Seen.contains(
3154 Blend->getIncomingValue(I)->getDefiningRecipe());
3155 }))
3156 continue;
3157
3158 for (VPUser *U : Cur->users()) {
3160 if (InterleaveR->getAddr() == Cur)
3161 return true;
3163 if (RepR->getOpcode() == Instruction::Load &&
3164 RepR->getOperand(0) == Cur)
3165 return true;
3166 if (RepR->getOpcode() == Instruction::Store &&
3167 RepR->getOperand(1) == Cur)
3168 return true;
3169 }
3171 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3172 return true;
3173 }
3174 }
3175
3176
3177
3178
3179 if (Blend)
3180 continue;
3181
3183 }
3184 return false;
3185}
3186
3190
3191
3192 Ctx.SkipCostComputation.insert(UI);
3193
3196
3198 case Instruction::GetElementPtr:
3199
3200
3201
3202
3203 return 0;
3204 case Instruction::Call: {
3205 auto *CalledFn =
3207
3210 for (const VPValue *ArgOp : ArgOps)
3211 Tys.push_back(Ctx.Types.inferScalarType(ArgOp));
3212
3213 if (CalledFn->isIntrinsic())
3214
3215
3216 switch (CalledFn->getIntrinsicID()) {
3217 case Intrinsic::assume:
3218 case Intrinsic::lifetime_end:
3219 case Intrinsic::lifetime_start:
3220 case Intrinsic::sideeffect:
3221 case Intrinsic::pseudoprobe:
3222 case Intrinsic::experimental_noalias_scope_decl: {
3225 "scalarizing intrinsic should be free");
3227 }
3228 default:
3229 break;
3230 }
3231
3232 Type *ResultTy = Ctx.Types.inferScalarType(this);
3234 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3236 if (CalledFn->isIntrinsic())
3237 ScalarCallCost = std::min(
3238 ScalarCallCost,
3241 return ScalarCallCost;
3242 }
3243
3245 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3246 }
3247 case Instruction::Add:
3248 case Instruction::Sub:
3249 case Instruction::FAdd:
3250 case Instruction::FSub:
3251 case Instruction::Mul:
3252 case Instruction::FMul:
3253 case Instruction::FDiv:
3254 case Instruction::FRem:
3255 case Instruction::Shl:
3256 case Instruction::LShr:
3257 case Instruction::AShr:
3258 case Instruction::And:
3259 case Instruction::Or:
3260 case Instruction::Xor:
3261 case Instruction::ICmp:
3262 case Instruction::FCmp:
3264 Ctx) *
3266 case Instruction::SDiv:
3267 case Instruction::UDiv:
3268 case Instruction::SRem:
3269 case Instruction::URem: {
3273 return ScalarCost;
3274
3276 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(this),
3278
3279
3280 if (()->isReplicator())
3281 return ScalarCost;
3282
3283
3285 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3286
3287
3288
3289 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->getParent());
3290 return ScalarCost;
3291 }
3292 case Instruction::Load:
3293 case Instruction::Store: {
3294
3295
3297 if (ParentRegion && ParentRegion->isReplicator())
3298 break;
3299
3300 bool IsLoad = UI->getOpcode() == Instruction::Load;
3304 break;
3305
3306 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ? this : getOperand(0));
3307 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3309 unsigned AS = cast(ScalarPtrTy)->getAddressSpace();
3311 InstructionCost ScalarMemOpCost = Ctx.TTI.getMemoryOpCost(
3312 UI->getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3313
3315 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3316 bool UsedByLoadStoreAddress =
3319 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3320 PtrTy, UsedByLoadStoreAddress ? nullptr : &Ctx.SE,
3321 PtrSCEV, Ctx.CostKind);
3323 return ScalarCost;
3324
3327
3328
3329
3330
3331 if (!UsedByLoadStoreAddress) {
3332 bool EfficientVectorLoadStore =
3333 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3334 if (!(IsLoad && !PreferVectorizedAddressing) &&
3335 !(!IsLoad && EfficientVectorLoadStore))
3337
3338 if (!EfficientVectorLoadStore)
3339 ResultTy = Ctx.Types.inferScalarType(this);
3340 }
3341
3343 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF, true);
3344 }
3345 }
3346
3347 return Ctx.getLegacyCost(UI, VF);
3348}
3349
3350#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3353 O << Indent << (IsSingleScalar ? "CLONE " : "REPLICATE ");
3354
3357 O << " = ";
3358 }
3360 O << "call";
3362 O << "@" << CB->getCalledFunction()->getName() << "(";
3366 });
3367 O << ")";
3368 } else {
3372 }
3373
3375 O << " (S->V)";
3376}
3377#endif
3378
3380 assert(State.Lane && "Branch on Mask works only on single instance.");
3381
3383 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3384
3385
3386
3387 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3389 "Expected to replace unreachable terminator with conditional branch.");
3390 auto CondBr =
3391 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB, nullptr);
3392 CondBr->setSuccessor(0, nullptr);
3393 CurrentTerminator->eraseFromParent();
3394}
3395
3398
3399
3400
3401 return 0;
3402}
3403
3405 assert(State.Lane && "Predicated instruction PHI works per instance.");
3410 assert(PredicatingBB && "Predicated block has no single predecessor.");
3412 "operand must be VPReplicateRecipe");
3413
3414
3415
3416
3417
3418
3419
3420 if (State.hasVectorValue(getOperand(0))) {
3423 "Packed operands must generate an insertelement or insertvalue");
3424
3425
3426
3427
3428
3429
3431 for (unsigned I = 0; I < StructTy->getNumContainedTypes() - 1; I++)
3433
3434 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3435 VPhi->addIncoming(VecI->getOperand(0), PredicatingBB);
3436 VPhi->addIncoming(VecI, PredicatedBB);
3437 if (State.hasVectorValue(this))
3438 State.reset(this, VPhi);
3439 else
3440 State.set(this, VPhi);
3441
3442
3444 } else {
3446 return;
3447
3448 Type *PredInstType = State.TypeAnalysis.inferScalarType(getOperand(0));
3449 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3451 PredicatingBB);
3452 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3453 if (State.hasScalarValue(this, *State.Lane))
3454 State.reset(this, Phi, *State.Lane);
3455 else
3456 State.set(this, Phi, *State.Lane);
3457
3458
3459 State.reset(getOperand(0), Phi, *State.Lane);
3460 }
3461}
3462
3463#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3466 O << Indent << "PHI-PREDICATED-INSTRUCTION ";
3468 O << " = ";
3470}
3471#endif
3472
3477 ->getAddressSpace();
3479 ? Instruction::Load
3480 : Instruction::Store;
3481
3483
3484
3485
3487 "Inconsecutive memory access should not have the order.");
3488
3491
3492
3493
3496
3500 : Intrinsic::vp_scatter;
3501 return Ctx.TTI.getAddressComputationCost(PtrTy, nullptr, nullptr,
3502 Ctx.CostKind) +
3503 Ctx.TTI.getMemIntrinsicInstrCost(
3506 Ctx.CostKind);
3507 }
3508
3512 : Intrinsic::masked_store;
3513 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3515 } else {
3519 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3521 }
3523 return Cost;
3524
3525 return Cost += Ctx.TTI.getShuffleCost(
3528}
3529
3534
3535 auto &Builder = State.Builder;
3536 Value *Mask = nullptr;
3537 if (auto *VPMask = getMask()) {
3538
3539
3540 Mask = State.get(VPMask);
3542 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3543 }
3544
3545 Value *Addr = State.get(getAddr(), !CreateGather);
3547 if (CreateGather) {
3548 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask, nullptr,
3549 "wide.masked.gather");
3550 } else if (Mask) {
3551 NewLI =
3552 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3554 } else {
3555 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment, "wide.load");
3556 }
3559 NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
3560 State.set(this, NewLI);
3561}
3562
3563#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3566 O << Indent << "WIDEN ";
3568 O << " = load ";
3570}
3571#endif
3572
3573
3574
3578 Value *AllTrueMask =
3579 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3580 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3581 {Operand, AllTrueMask, EVL}, nullptr, Name);
3582}
3583
3588
3589 auto &Builder = State.Builder;
3592 Value *Addr = State.get(getAddr(), !CreateGather);
3593 Value *Mask = nullptr;
3595 Mask = State.get(VPMask);
3597 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3598 } else {
3599 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3600 }
3601
3602 if (CreateGather) {
3603 NewLI =
3604 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3605 nullptr, "wide.masked.gather");
3606 } else {
3607 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3608 {Addr, Mask, EVL}, nullptr, "vp.op.load");
3609 }
3616 State.set(this, Res);
3617}
3618
3623
3624
3625
3626
3627
3628
3631 ->getAddressSpace();
3634 Ctx.CostKind);
3636 return Cost;
3637
3638 return Cost + Ctx.TTI.getShuffleCost(
3641}
3642
3643#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3646 O << Indent << "WIDEN ";
3648 O << " = vp.load ";
3650}
3651#endif
3652
3656
3657 auto &Builder = State.Builder;
3658
3659 Value *Mask = nullptr;
3660 if (auto *VPMask = getMask()) {
3661
3662
3663 Mask = State.get(VPMask);
3665 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3666 }
3667
3668 Value *StoredVal = State.get(StoredVPValue);
3670
3671
3672 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
3673
3674
3675 }
3676 Value *Addr = State.get(getAddr(), !CreateScatter);
3678 if (CreateScatter)
3679 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3680 else if (Mask)
3681 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3682 else
3683 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3685}
3686
3687#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3690 O << Indent << "WIDEN store ";
3692}
3693#endif
3694
3698
3699 auto &Builder = State.Builder;
3700
3702 Value *StoredVal = State.get(StoredValue);
3705 StoredVal = createReverseEVL(Builder, StoredVal, EVL, "vp.reverse");
3706 Value *Mask = nullptr;
3708 Mask = State.get(VPMask);
3710 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3711 } else {
3712 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3713 }
3714 Value *Addr = State.get(getAddr(), !CreateScatter);
3715 if (CreateScatter) {
3717 Intrinsic::vp_scatter,
3718 {StoredVal, Addr, Mask, EVL});
3719 } else {
3721 Intrinsic::vp_store,
3722 {StoredVal, Addr, Mask, EVL});
3723 }
3727}
3728
3733
3734
3735
3736
3737
3738
3741 ->getAddressSpace();
3744 Ctx.CostKind);
3746 return Cost;
3747
3748 return Cost + Ctx.TTI.getShuffleCost(
3751}
3752
3753#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3756 O << Indent << "WIDEN vp.store ";
3758}
3759#endif
3760
3763
3764 auto VF = DstVTy->getElementCount();
3766 assert(VF == SrcVecTy->getElementCount() && "Vector dimensions do not match");
3767 Type *SrcElemTy = SrcVecTy->getElementType();
3768 Type *DstElemTy = DstVTy->getElementType();
3769 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3770 "Vector elements must have same size");
3771
3772
3774 return Builder.CreateBitOrPointerCast(V, DstVTy);
3775 }
3776
3777
3778
3779
3781 "Only one type should be a pointer type");
3783 "Only one type should be a floating point type");
3784 Type *IntTy =
3787 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3788 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3789}
3790
3791
3792
3794 const Twine &Name) {
3795 unsigned Factor = Vals.size();
3796 assert(Factor > 1 && "Tried to interleave invalid number of vectors");
3797
3799#ifndef NDEBUG
3800 for (Value *Val : Vals)
3801 assert(Val->getType() == VecTy && "Tried to interleave mismatched types");
3802#endif
3803
3804
3805
3806 if (VecTy->isScalableTy()) {
3807 assert(Factor <= 8 && "Unsupported interleave factor for scalable vectors");
3808 return Builder.CreateVectorInterleave(Vals, Name);
3809 }
3810
3811
3813
3814
3815 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3816 return Builder.CreateShuffleVector(
3818}
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3849 assert(!State.Lane && "Interleave group being replicated.");
3851 "Masking gaps for scalable vectors is not yet supported.");
3854
3855
3857 unsigned InterleaveFactor = Group->getFactor();
3858 auto *VecTy = VectorType::get(ScalarTy, State.VF * InterleaveFactor);
3859
3862 Value *ResAddr = State.get(Addr, VPLane(0));
3863
3864 auto CreateGroupMask = [&BlockInMask, &State,
3865 &InterleaveFactor](Value *MaskForGaps) -> Value * {
3866 if (State.VF.isScalable()) {
3867 assert(!MaskForGaps && "Interleaved groups with gaps are not supported.");
3868 assert(InterleaveFactor <= 8 &&
3869 "Unsupported deinterleave factor for scalable vectors");
3870 auto *ResBlockInMask = State.get(BlockInMask);
3873 }
3874
3875 if (!BlockInMask)
3876 return MaskForGaps;
3877
3878 Value *ResBlockInMask = State.get(BlockInMask);
3879 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3880 ResBlockInMask,
3882 "interleaved.mask");
3883 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3884 ShuffledMask, MaskForGaps)
3885 : ShuffledMask;
3886 };
3887
3888 const DataLayout &DL = Instr->getDataLayout();
3889
3891 Value *MaskForGaps = nullptr;
3893 MaskForGaps =
3895 assert(MaskForGaps && "Mask for Gaps is required but it is null");
3896 }
3897
3899 if (BlockInMask || MaskForGaps) {
3900 Value *GroupMask = CreateGroupMask(MaskForGaps);
3902 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3903 Group->getAlign(), GroupMask,
3904 PoisonVec, "wide.masked.vec");
3905 } else
3906 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3907 Group->getAlign(), "wide.vec");
3909
3911
3913 if (VecTy->isScalableTy()) {
3914
3915
3916 assert(InterleaveFactor <= 8 &&
3917 "Unsupported deinterleave factor for scalable vectors");
3918 NewLoad = State.Builder.CreateIntrinsic(
3920 NewLoad->getType(), NewLoad,
3921 nullptr, "strided.vec");
3922 }
3923
3924 auto CreateStridedVector = [&InterleaveFactor, &State,
3925 &NewLoad](unsigned Index) -> Value * {
3926 assert(Index < InterleaveFactor && "Illegal group index");
3927 if (State.VF.isScalable())
3928 return State.Builder.CreateExtractValue(NewLoad, Index);
3929
3930
3931
3932 auto StrideMask =
3933 createStrideMask(Index, InterleaveFactor, State.VF.getFixedValue());
3934 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3935 "strided.vec");
3936 };
3937
3938 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
3940
3941
3942 if (!Member)
3943 continue;
3944
3945 Value *StridedVec = CreateStridedVector(I);
3946
3947
3948 if (Member->getType() != ScalarTy) {
3950 StridedVec =
3952 }
3953
3955 StridedVec = State.Builder.CreateVectorReverse(StridedVec, "reverse");
3956
3957 State.set(VPDefs[J], StridedVec);
3958 ++J;
3959 }
3960 return;
3961 }
3962
3963
3965
3966
3967 Value *MaskForGaps =
3970 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3972
3974 unsigned StoredIdx = 0;
3975 for (unsigned i = 0; i < InterleaveFactor; i++) {
3977 "Fail to get a member from an interleaved store group");
3979
3980
3981 if (!Member) {
3984 continue;
3985 }
3986
3987 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3988 ++StoredIdx;
3989
3991 StoredVec = State.Builder.CreateVectorReverse(StoredVec, "reverse");
3992
3993
3994
3995 if (StoredVec->getType() != SubVT)
3997
3998 StoredVecs.push_back(StoredVec);
3999 }
4000
4001
4004 if (BlockInMask || MaskForGaps) {
4005 Value *GroupMask = CreateGroupMask(MaskForGaps);
4006 NewStoreInstr = State.Builder.CreateMaskedStore(
4007 IVec, ResAddr, Group->getAlign(), GroupMask);
4008 } else
4009 NewStoreInstr =
4010 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->getAlign());
4011
4013
4015}
4016
4017#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4021 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4022 IG->getInsertPos()->printAsOperand(O, false);
4023 O << ", ";
4026 if (Mask) {
4027 O << ", ";
4029 }
4030
4031 unsigned OpIdx = 0;
4032 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4033 if (!IG->getMember(i))
4034 continue;
4036 O << "\n" << Indent << " store ";
4038 O << " to index " << i;
4039 } else {
4040 O << "\n" << Indent << " ";
4042 O << " = load from index " << i;
4043 }
4045 }
4046}
4047#endif
4048
4050 assert(!State.Lane && "Interleave group being replicated.");
4051 assert(State.VF.isScalable() &&
4052 "Only support scalable VF for EVL tail-folding.");
4054 "Masking gaps for scalable vectors is not yet supported.");
4057
4058
4060 unsigned InterleaveFactor = Group->getFactor();
4061 assert(InterleaveFactor <= 8 &&
4062 "Unsupported deinterleave/interleave factor for scalable vectors");
4063 ElementCount WideVF = State.VF * InterleaveFactor;
4065
4067 Value *ResAddr = State.get(Addr, VPLane(0));
4069 Value *InterleaveEVL = State.Builder.CreateMul(
4070 EVL, ConstantInt::get(EVL->getType(), InterleaveFactor), "interleave.evl",
4071 true, true);
4072 LLVMContext &Ctx = State.Builder.getContext();
4073
4074 Value *GroupMask = nullptr;
4078 } else {
4079 GroupMask =
4080 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4081 }
4082
4083
4085 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4086 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL}, nullptr,
4087 "wide.vp.load");
4090
4092
4094
4095
4096
4097 NewLoad = State.Builder.CreateIntrinsic(
4099 NewLoad->getType(), NewLoad,
4100 nullptr, "strided.vec");
4101
4102 const DataLayout &DL = Instr->getDataLayout();
4103 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
4105
4106 if (!Member)
4107 continue;
4108
4109 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad, I);
4110
4111 if (Member->getType() != ScalarTy) {
4113 StridedVec =
4115 }
4116
4117 State.set(getVPValue(J), StridedVec);
4118 ++J;
4119 }
4120 return;
4121 }
4122
4123
4125
4127
4129 const DataLayout &DL = Instr->getDataLayout();
4130 for (unsigned I = 0, StoredIdx = 0; I < InterleaveFactor; I++) {
4132
4133 if (!Member) {
4135 continue;
4136 }
4137
4138 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4139
4140 if (StoredVec->getType() != SubVT)
4142
4143 StoredVecs.push_back(StoredVec);
4144 ++StoredIdx;
4145 }
4146
4147
4150 State.Builder.CreateIntrinsic(Type::getVoidTy(Ctx), Intrinsic::vp_store,
4151 {IVec, ResAddr, GroupMask, InterleaveEVL});
4154
4156
4158}
4159
4160#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4164 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4165 IG->getInsertPos()->printAsOperand(O, false);
4166 O << ", ";
4168 O << ", ";
4171 O << ", ";
4173 }
4174
4175 unsigned OpIdx = 0;
4176 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4177 if (!IG->getMember(i))
4178 continue;
4180 O << "\n" << Indent << " vp.store ";
4182 O << " to index " << i;
4183 } else {
4184 O << "\n" << Indent << " ";
4186 O << " = vp.load from index " << i;
4187 }
4189 }
4190}
4191#endif
4192
4196
4197 unsigned InsertPosIdx = 0;
4198 for (unsigned Idx = 0; IG->getFactor(); ++Idx)
4199 if (auto *Member = IG->getMember(Idx)) {
4200 if (Member == InsertPos)
4201 break;
4202 InsertPosIdx++;
4203 }
4204 Type *ValTy = Ctx.Types.inferScalarType(
4209 ->getAddressSpace();
4210
4211 unsigned InterleaveFactor = IG->getFactor();
4212 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
4213
4214
4216 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
4217 if (IG->getMember(IF))
4219
4220
4222 InsertPos->getOpcode(), WideVecTy, IG->getFactor(), Indices,
4223 IG->getAlign(), AS, Ctx.CostKind, getMask(), NeedsMaskForGaps);
4224
4225 if (!IG->isReverse())
4226 return Cost;
4227
4228 return Cost + IG->getNumMembers() *
4230 VectorTy, VectorTy, {}, Ctx.CostKind,
4231 0);
4232}
4233
4234#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4237 O << Indent << "EMIT ";
4239 O << " = CANONICAL-INDUCTION ";
4241}
4242#endif
4243
4248
4249#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4253 "unexpected number of operands");
4254 O << Indent << "EMIT ";
4256 O << " = WIDEN-POINTER-INDUCTION ";
4258 O << ", ";
4260 O << ", ";
4263 O << ", ";
4265 O << ", ";
4267 }
4268}
4269
4272 O << Indent << "EMIT ";
4274 O << " = EXPAND SCEV " << *Expr;
4275}
4276#endif
4277
4279 Value *CanonicalIV = State.get(getOperand(0), true);
4281 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4284 ? CanonicalIV
4285 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
4288 VStep = Builder.CreateVectorSplat(VF, VStep);
4289 VStep =
4290 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
4291 }
4292 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
4293 State.set(this, CanonicalVectorIV);
4294}
4295
4296#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4299 O << Indent << "EMIT ";
4301 O << " = WIDEN-CANONICAL-INDUCTION ";
4303}
4304#endif
4305
4307 auto &Builder = State.Builder;
4308
4310
4311 Type *VecTy = State.VF.isScalar()
4312 ? VectorInit->getType()
4314
4316 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4317 if (State.VF.isVector()) {
4319 auto *One = ConstantInt::get(IdxTy, 1);
4321 Builder.SetInsertPoint(VectorPH->getTerminator());
4322 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
4323 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4324 VectorInit = Builder.CreateInsertElement(
4325 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
4326 }
4327
4328
4330 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4331 Phi->addIncoming(VectorInit, VectorPH);
4332 State.set(this, Phi);
4333}
4334
4339 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4340
4341 return 0;
4342}
4343
4344#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4347 O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
4349 O << " = phi ";
4351}
4352#endif
4353
4355
4356
4358
4359
4360
4361
4362
4364 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4365 bool ScalarPHI = State.VF.isScalar() || isInLoop();
4366 Value *StartV = State.get(StartVPV, ScalarPHI);
4368
4369 BasicBlock *HeaderBB = State.CFG.PrevBB;
4370 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4371 "recipe must be in the vector loop header");
4374 State.set(this, Phi, isInLoop());
4375
4376 Phi->addIncoming(StartV, VectorPH);
4377}
4378
4379#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4382 O << Indent << "WIDEN-REDUCTION-PHI ";
4383
4385 O << " = phi ";
4389}
4390#endif
4391
4395 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4396 State.set(this, VecPhi);
4397}
4398
4399#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4402 O << Indent << "WIDEN-PHI ";
4403
4405 O << " = phi ";
4407}
4408#endif
4409
4410
4411
4414 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4417 State.Builder.CreatePHI(StartMask->getType(), 2, "active.lane.mask");
4418 Phi->addIncoming(StartMask, VectorPH);
4419 State.set(this, Phi);
4420}
4421
4422#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4425 O << Indent << "ACTIVE-LANE-MASK-PHI ";
4426
4428 O << " = phi ";
4430}
4431#endif
4432
4433#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4436 O << Indent << "EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
4437
4439 O << " = phi ";
4441}
4442#endif
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
Definition VPlanRecipes.cpp:3575
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
Definition VPlanRecipes.cpp:3793
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
Definition VPlanRecipes.cpp:1738
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
Definition VPlanRecipes.cpp:3761
SmallVector< Value *, 2 > VectorParts
Definition VPlanRecipes.cpp:44
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
Definition VPlanRecipes.cpp:3139
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
Definition VPlanRecipes.cpp:3018
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
Definition VPlanRecipes.cpp:2305
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
Definition VPlanRecipes.cpp:517
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
@ TCC_Free
Expected to fold away in lowering.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Reverse
Reverse the order of the vector.
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
Definition VPlanRecipes.cpp:4412
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4423
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
Definition VPlanRecipes.cpp:2552
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2567
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
const VPBlocksTy & getSuccessors() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
Definition VPlanRecipes.cpp:3396
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
Definition VPlanRecipes.cpp:3379
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4235
This class augments a recipe with a set of VPValues defined by the recipe.
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2338
VPValue * getStartValue() const
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4434
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4270
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
Definition VPlanRecipes.cpp:2784
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
Definition VPlanRecipes.cpp:2871
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
Definition VPlanRecipes.cpp:2863
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
Definition VPlanRecipes.cpp:2798
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
Definition VPlanRecipes.cpp:2857
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2880
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
Definition VPlanRecipes.cpp:1822
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
Definition VPlanRecipes.cpp:1851
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:1888
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Class to record and manage LLVM IR flags.
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
Definition VPlanRecipes.cpp:1986
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
Definition VPlanRecipes.cpp:2026
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
Definition VPlanRecipes.cpp:355
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
Definition VPlanRecipes.cpp:315
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
Definition VPlanRecipes.cpp:1500
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Definition VPlanRecipes.cpp:1485
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
Definition VPlanRecipes.cpp:1493
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:1515
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:1425
void execute(VPTransformState &State) override
Generate the instruction.
Definition VPlanRecipes.cpp:1397
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
Definition VPlanRecipes.cpp:994
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
Definition VPlanRecipes.cpp:485
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
Definition VPlanRecipes.cpp:1173
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
Definition VPlanRecipes.cpp:1286
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
Definition VPlanRecipes.cpp:1291
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Definition VPlanRecipes.cpp:407
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
Definition VPlanRecipes.cpp:1216
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
Definition VPlanRecipes.cpp:1125
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
Definition VPlanRecipes.cpp:1138
void execute(VPTransformState &State) override
Generate the instruction.
Definition VPlanRecipes.cpp:1150
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
Definition VPlanRecipes.cpp:1265
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Definition VPlanRecipes.cpp:4193
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4161
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
Definition VPlanRecipes.cpp:4049
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4018
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
Definition VPlanRecipes.cpp:3848
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
Definition VPlanRecipes.cpp:1548
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
Definition VPlanRecipes.cpp:1557
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
Definition VPlanRecipes.cpp:3404
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:3464
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
Definition VPlanRecipes.cpp:109
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
Definition VPlanRecipes.cpp:160
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
Definition VPlanRecipes.cpp:373
bool isPhi() const
Returns true for PHI-like recipes.
Definition VPlanRecipes.cpp:305
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
Definition VPlanRecipes.cpp:49
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
Definition VPlanRecipes.cpp:300
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
Definition VPlanRecipes.cpp:260
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
Definition VPlanRecipes.cpp:223
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
Definition VPlanRecipes.cpp:237
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition VPlanRecipes.cpp:250
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
Definition VPlanRecipes.cpp:266
bool isScalarCast() const
Return true if the recipe is a scalar cast.
Definition VPlanRecipes.cpp:310
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
Definition VPlanRecipes.cpp:244
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
Definition VPlanRecipes.cpp:255
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
Definition VPlanRecipes.cpp:2647
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2991
VPValue * getEVL() const
The VPValue of the explicit vector length.
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4380
void execute(VPTransformState &State) override
Generate the phi/select nodes.
Definition VPlanRecipes.cpp:4354
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
Definition VPlanRecipes.cpp:2681
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
bool isInLoop() const
Returns true if the reduction is in-loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2968
void execute(VPTransformState &State) override
Generate the reduction in the loop.
Definition VPlanRecipes.cpp:2590
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
Definition VPlanRecipes.cpp:3076
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
Definition VPlanRecipes.cpp:3187
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:3351
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
Definition VPlanRecipes.cpp:3101
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2424
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
Definition VPlanRecipes.cpp:2351
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
Definition VPlanRecipes.cpp:371
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
Definition VPlanRecipes.cpp:388
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
Definition VPlanRecipes.cpp:395
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Definition VPlanRecipes.cpp:2490
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2517
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2542
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Definition VPlanRecipes.cpp:2527
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
Definition VPlanRecipes.cpp:1658
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
Definition VPlanRecipes.cpp:1625
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:1666
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
Definition VPlanRecipes.cpp:4278
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4297
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2287
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
Definition VPlanRecipes.cpp:2217
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
Definition VPlanRecipes.cpp:2232
void execute(VPTransformState &State) override
Generate the gep nodes.
Definition VPlanRecipes.cpp:2438
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2475
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
Definition VPlanRecipes.cpp:2433
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
Definition VPlanRecipes.cpp:2325
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2311
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:1801
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
Definition VPlanRecipes.cpp:1787
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Definition VPlanRecipes.cpp:1791
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
Definition VPlanRecipes.cpp:1693
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
Definition VPlanRecipes.cpp:1781
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
Definition VPlanRecipes.cpp:3473
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4400
void execute(VPTransformState &State) override
Generate the phi/select nodes.
Definition VPlanRecipes.cpp:4392
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
Definition VPlanRecipes.cpp:4244
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4250
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
Definition VPlanRecipes.cpp:2170
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
Definition VPlanRecipes.cpp:2077
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:2207
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
@ Increment
Incrementally increasing token ID.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
Definition VPlanRecipes.cpp:4306
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
Definition VPlanRecipes.cpp:4336
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:4345
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:1571
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Definition VPlanRecipes.cpp:1521
void execute(VPTransformState &State) override
Generate the instruction.
Definition VPlanRecipes.cpp:1451
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:1470
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
Definition VPlanRecipes.cpp:925
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
VPTypeAnalysis TypeAnalysis
VPlan-based type analysis.
Value * get(const VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
void execute(VPTransformState &State) override
Generate the wide load or gather.
Definition VPlanRecipes.cpp:3584
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:3644
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
Definition VPlanRecipes.cpp:3619
VPValue * getEVL() const
Return the EVL operand.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:3564
void execute(VPTransformState &State) override
Generate a wide load or gather.
Definition VPlanRecipes.cpp:3530
VPValue * getCond() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
Definition VPlanRecipes.cpp:1937
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
Definition VPlanRecipes.cpp:1923
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:1907
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
Definition VPlanRecipes.cpp:3695
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:3754
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
Definition VPlanRecipes.cpp:3729
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
Definition VPlanRecipes.cpp:3653
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Definition VPlanRecipes.cpp:3688
VPValue * getStoredValue() const
Return the value stored by this recipe.