LLVM: lib/Analysis/ValueTracking.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
59#include "llvm/IR/IntrinsicsAArch64.h"
60#include "llvm/IR/IntrinsicsAMDGPU.h"
61#include "llvm/IR/IntrinsicsRISCV.h"
62#include "llvm/IR/IntrinsicsX86.h"
79#include
80#include
81#include
82#include
83#include
84
85using namespace llvm;
87
88
89
92
93
94
96
97
98
100 if (unsigned BitWidth = Ty->getScalarSizeInBits())
102
103 return DL.getPointerTypeSizeInBits(Ty);
104}
105
106
107
109
110
112 return CxtI;
113
114
117 return CxtI;
118
119 return nullptr;
120}
121
123 const APInt &DemandedElts,
124 APInt &DemandedLHS, APInt &DemandedRHS) {
127 DemandedLHS = DemandedRHS = DemandedElts;
128 return true;
129 }
130
131 int NumElts =
134 DemandedElts, DemandedLHS, DemandedRHS);
135}
136
140
143
144
145
147 APInt DemandedElts =
150}
151
155 bool UseInstrInfo, unsigned Depth) {
159}
160
164 unsigned Depth) {
167}
168
173 unsigned Depth) {
175 V, DemandedElts,
177}
178
181
182 {
187 return true;
188 }
189
190
193 return true;
194
195
196
202 return true;
203
204
205
209 return true;
210
211
212 {
218 return true;
219 }
220
221
222
223 {
230 R->uge(LHS->getType()->getScalarSizeInBits()))
231 return true;
232 }
233
234 return false;
235}
236
242
243 assert(LHS->getType() == RHS->getType() &&
244 "LHS and RHS should have the same type");
245 assert(LHS->getType()->isIntOrIntVectorTy() &&
246 "LHS and RHS should be integers");
247
250 return true;
251
254}
255
257 return ->user_empty() &&
259}
260
262 return ->user_empty() && all_of(I->users(), [](const User *U) {
263 CmpPredicate P;
264 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
265 });
266}
267
272 unsigned Depth) {
273 return ::isKnownToBeAPowerOfTwo(
276}
277
280
282 unsigned Depth) {
284}
285
287 unsigned Depth) {
289 return CI->getValue().isStrictlyPositive();
290
291
292
296}
297
299 unsigned Depth) {
301}
302
306
309
311 return false;
313 APInt DemandedElts =
315 return ::isKnownNonEqual(V1, V2, DemandedElts, Q, Depth);
316}
317
320 KnownBits Known(Mask.getBitWidth());
322 return Mask.isSubsetOf(Known.Zero);
323}
324
327
329 unsigned Depth = 0) {
331 APInt DemandedElts =
334}
335
339 unsigned Depth) {
340 return ::ComputeNumSignBits(
342}
343
348 unsigned Depth) {
350 return V->getType()->getScalarSizeInBits() - SignBits + 1;
351}
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
373 const APInt &DemandedElts,
376 unsigned Depth) {
377
379 const unsigned BitWidth = Ty->getScalarSizeInBits();
380
381
382 if (Ty->isVectorTy())
383 return;
384
385
386
387 const Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
389
390 const auto MatchSubBC = [&]() {
391
392
393
394
395
396
397
398
399
400
401
402
405 };
406
407 const auto MatchASubBC = [&]() {
408
409
410
411
413 };
414
415 const auto MatchCD = [&]() {
416
417
418
419
421 };
422
424
425
426
427
428
430 };
431
432 if (!Match(Op0, Op1) && !Match(Op1, Op0))
433 return;
434
435 const auto ComputeKnownBitsOrOne = [&](const Value *V) {
436
437
440 };
441
442
443 const KnownBits KnownA = ComputeKnownBitsOrOne(A);
445 return;
446
447 const KnownBits KnownD = ComputeKnownBitsOrOne(D);
449 return;
450
453 return;
454
457 return;
458
459
460
461
462
463
464 if (SubBC->getOpcode() == Instruction::Xor &&
466 return;
467
472
473
474 bool Overflow;
475 const APInt UpperBound = MaxAD.umul_ov(MaxB, Overflow);
476
477 if (Overflow)
478 return;
479
480
481
482 const unsigned MinimumNumberOfLeadingZeros = UpperBound.countl_zero();
484}
485
487 bool NSW, bool NUW,
488 const APInt &DemandedElts,
492
493
494
495 if (KnownOut.isUnknown() && !NSW && !NUW)
496 return;
497
500
503 .value_or(false))
505
507
509}
510
512 bool NUW, const APInt &DemandedElts,
517
520
521 if (NSW) {
522 if (Op0 == Op1) {
523
525 } else {
526 bool isKnownNonNegativeOp1 = Known.isNonNegative();
527 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
528 bool isKnownNegativeOp1 = Known.isNegative();
529 bool isKnownNegativeOp0 = Known2.isNegative();
530
532 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
534
538 }
539
540
541
544 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
546 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
547 }
548 }
549
550 bool SelfMultiply = Op0 == Op1;
551 if (SelfMultiply)
552 SelfMultiply &=
555
556 if (SelfMultiply) {
559 unsigned OutValidBits = 2 * (TyBits - SignBits + 1);
560
561 if (OutValidBits < TyBits) {
562 APInt KnownZeroMask =
564 Known.Zero |= KnownZeroMask;
565 }
566 }
567
568
569
570
571
572
577}
578
582 unsigned NumRanges = Ranges.getNumOperands() / 2;
583 assert(NumRanges >= 1);
584
586
587 for (unsigned i = 0; i < NumRanges; ++i) {
593
594
596 "Known bit width must match range bit width!");
597
598
599 unsigned CommonPrefixBits =
600 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countl_zero();
603 Known.One &= UnsignedMax & Mask;
604 Known.Zero &= ~UnsignedMax & Mask;
605 }
606}
607
612
613
614
615
617 return true;
618
619 while (!WorkSet.empty()) {
621 if (!Visited.insert(V).second)
622 continue;
623
624
625 if (all_of(V->users(), [&](const User *U) {
626 return EphValues.count(cast(U));
627 })) {
628 if (V == E)
629 return true;
630
631 if (V == I || (!V->mayHaveSideEffects() && !V->isTerminator())) {
633
635 for (const Use &U : U->operands()) {
638 }
639 }
640 }
641 }
642 }
643
644 return false;
645}
646
647
650 return CI->isAssumeLikeIntrinsic();
651
652 return false;
653}
654
658 bool AllowEphemerals) {
659
660
661
662
663
664
665
666
668
669
671 return true;
672
673
674
675
676 if (!AllowEphemerals && Inv == CxtI)
677 return false;
678
679
680
681
682
683
684
687 return false;
688
690 }
691
692
693 if (DT) {
695 return true;
696 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor() ||
697 Inv->getParent()->isEntryBlock()) {
698
699 return true;
700 }
701
702 return false;
703}
704
707
708 auto hasNoFreeCalls = [](auto Range) {
711 return false;
713 if (!CB->hasFnAttr(Attribute::NoFree))
714 return false;
715 }
716 return true;
717 };
718
719
720
722 return false;
723
724
726 const BasicBlock *AssumeBB = Assume->getParent();
728 if (CtxBB != AssumeBB) {
730 return false;
731
732 if (!hasNoFreeCalls(make_range(CtxBB->begin(), CtxIter)))
733 return false;
734
735 CtxIter = AssumeBB->end();
736 } else {
737
738 if (!Assume->comesBefore(CtxI))
739 return false;
740 }
741
742
743
744 return hasNoFreeCalls(make_range(Assume->getIterator(), CtxIter));
745}
746
747
748
749
750
751
753
755 return true;
756
757
760
761
763 auto Zero = APInt::getZero(RHS->getType()->getScalarSizeInBits());
766 return !TrueValues.contains(Zero);
767 }
768
770 if (VC == nullptr)
771 return false;
772
773 for (unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
774 ++ElemIdx) {
776 Pred, VC->getElementAsAPInt(ElemIdx));
777 if (TrueValues.contains(Zero))
778 return false;
779 }
780 return true;
781}
782
785 const PHINode **PhiOut = nullptr) {
786 ValOut = U->get();
787 if (ValOut == PHI)
788 return;
789 CtxIOut = PHI->getIncomingBlock(*U)->getTerminator();
790 if (PhiOut)
791 *PhiOut = PHI;
793
794
795
798 ValOut = V;
799
800
801
802
803
805 IncPhi && IncPhi->getNumIncomingValues() == 2) {
806 for (int Idx = 0; Idx < 2; ++Idx) {
807 if (IncPhi->getIncomingValue(Idx) == PHI) {
808 ValOut = IncPhi->getIncomingValue(1 - Idx);
809 if (PhiOut)
810 *PhiOut = IncPhi;
811 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator();
812 break;
813 }
814 }
815 }
816}
817
819
820
822 return false;
823
825 if (!Elem.Assume)
826 continue;
827
830 "Got assumption for the wrong function!");
831
833 if (!V->getType()->isPointerTy())
834 continue;
836 *I, I->bundle_op_info_begin()[Elem.Index])) {
837 if (RK.WasOn == V &&
838 (RK.AttrKind == Attribute::NonNull ||
839 (RK.AttrKind == Attribute::Dereferenceable &&
843 return true;
844 }
845 continue;
846 }
847
848
849
850
851
856 continue;
857
859 return true;
860 }
861
862 return false;
863}
864
868 if (RHS->getType()->isPointerTy()) {
869
870
872 switch (Pred) {
875 break;
879 break;
882 break;
883 default:
884 break;
885 }
886 }
887 return;
888 }
889
891 auto m_V =
893
897 return;
898
900 switch (Pred) {
902
905
907
910 Known.Zero |= ~*C & *Mask;
911
913
917
920
921
923 RHSKnown >>= ShAmt;
924 Known = Known.unionWith(RHSKnown);
925
928
929
931 RHSKnown <<= ShAmt;
932 Known = Known.unionWith(RHSKnown);
933 }
934 break;
936
937 const APInt *BPow2;
939 Known.One |= *BPow2;
940 break;
941 }
942 default: {
947 LHSRange = LHSRange.sub(*Offset);
949 }
951
952
957 }
959
960
965 }
966 }
967 } break;
968 }
969}
970
975 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
976 Value *LHS = Cmp->getOperand(0);
977 Value *RHS = Cmp->getOperand(1);
978
979
981 KnownBits DstKnown(LHS->getType()->getScalarSizeInBits());
985 else
987 return;
988 }
989
991}
992
995 bool Invert, unsigned Depth) {
1005 Known2 = Known2.unionWith(Known3);
1006 else
1008 Known = Known.unionWith(Known2);
1009 return;
1010 }
1011
1014 return;
1015 }
1016
1019 if (Invert) {
1021 } else {
1023 }
1026 return;
1027 }
1029 return;
1030 }
1031
1034}
1035
1038
1041
1042 if (!Q.CxtI)
1043 return;
1044
1046
1048 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
1051 false, Depth);
1052
1053 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
1056 true, Depth);
1057 }
1058
1061 }
1062
1063 if (!Q.AC)
1064 return;
1065
1067
1068
1069
1070
1072 if (!Elem.Assume)
1073 continue;
1074
1077 "Got assumption for the wrong function!");
1078
1080 if (!V->getType()->isPointerTy())
1081 continue;
1083 *I, I->bundle_op_info_begin()[Elem.Index])) {
1084
1085
1086
1087 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
1091 }
1092 continue;
1093 }
1094
1095
1096
1097
1098
1099 Value *Arg = I->getArgOperand(0);
1100
1102 assert(BitWidth == 1 && "assume operand is not i1?");
1105 return;
1106 }
1109 assert(BitWidth == 1 && "assume operand is not i1?");
1112 return;
1113 }
1115 if (Trunc && Trunc->getOperand(0) == V &&
1117 if (Trunc->hasNoUnsignedWrap()) {
1119 return;
1120 }
1122 return;
1123 }
1124
1125
1127 continue;
1128
1130 if (!Cmp)
1131 continue;
1132
1134 continue;
1135
1137 }
1138
1139
1140
1143}
1144
1145
1146
1147
1148
1149
1150
1151
1152
1159
1160
1161 bool ShAmtNonZero =
1165 Known = KF(Known2, Known, ShAmtNonZero);
1166}
1167
1174 bool IsAnd = false;
1175 bool HasKnownOne = !KnownLHS.One.isZero() || !KnownRHS.One.isZero();
1176 Value *X = nullptr, *Y = nullptr;
1177
1178 switch (I->getOpcode()) {
1179 case Instruction::And:
1180 KnownOut = KnownLHS & KnownRHS;
1181 IsAnd = true;
1182
1183
1184
1185
1186
1188
1190 KnownOut = KnownLHS.blsi();
1191 else
1192 KnownOut = KnownRHS.blsi();
1193 }
1194 break;
1195 case Instruction::Or:
1196 KnownOut = KnownLHS | KnownRHS;
1197 break;
1198 case Instruction::Xor:
1199 KnownOut = KnownLHS ^ KnownRHS;
1200
1201
1202
1203
1204
1205
1206
1207 if (HasKnownOne &&
1209 const KnownBits &XBits = I->getOperand(0) == X ? KnownLHS : KnownRHS;
1210 KnownOut = XBits.blsmsk();
1211 }
1212 break;
1213 default:
1214 llvm_unreachable("Invalid Op used in 'analyzeKnownBitsFromAndXorOr'");
1215 }
1216
1217
1218
1219
1220
1221
1222
1223 if (!KnownOut.Zero[0] && !KnownOut.One[0] &&
1230 if (IsAnd)
1232 else
1234 }
1235 }
1236 return KnownOut;
1237}
1238
1243 KnownBitsFunc) {
1244 APInt DemandedEltsLHS, DemandedEltsRHS;
1246 DemandedElts, DemandedEltsLHS,
1247 DemandedEltsRHS);
1248
1249 const auto ComputeForSingleOpFunc =
1250 [Depth, &Q, KnownBitsFunc](const Value *Op, APInt &DemandedEltsOp) {
1251 return KnownBitsFunc(
1254 };
1255
1256 if (DemandedEltsRHS.isZero())
1257 return ComputeForSingleOpFunc(I->getOperand(0), DemandedEltsLHS);
1258 if (DemandedEltsLHS.isZero())
1259 return ComputeForSingleOpFunc(I->getOperand(1), DemandedEltsRHS);
1260
1261 return ComputeForSingleOpFunc(I->getOperand(0), DemandedEltsLHS)
1262 .intersectWith(ComputeForSingleOpFunc(I->getOperand(1), DemandedEltsRHS));
1263}
1264
1265
1270 unsigned Depth) {
1272 APInt DemandedElts =
1274
1277}
1278
1280 Attribute Attr = F->getFnAttribute(Attribute::VScaleRange);
1281
1284
1286
1288 return ConstantRange::getEmpty(BitWidth);
1289
1294
1296}
1297
1299 Value *Arm, bool Invert,
1301
1303 return;
1304
1305
1308
1309
1311 return;
1312
1313
1314
1315
1316
1317
1318 CondRes = CondRes.unionWith(Known);
1320 return;
1321
1322
1323
1325 return;
1326
1327
1328
1329 Known = CondRes;
1330}
1331
1332
1333
1335 const APInt *&CLow, const APInt *&CHigh) {
1338 "Input should be a Select!");
1339
1340 const Value *LHS = nullptr, *RHS = nullptr;
1343 return false;
1344
1346 return false;
1347
1348 const Value *LHS2 = nullptr, *RHS2 = nullptr;
1351 return false;
1352
1354 return false;
1355
1358
1359 In = LHS2;
1360 return CLow->sle(*CHigh);
1361}
1362
1364 const APInt *&CLow,
1365 const APInt *&CHigh) {
1366 assert((II->getIntrinsicID() == Intrinsic::smin ||
1367 II->getIntrinsicID() == Intrinsic::smax) &&
1368 "Must be smin/smax");
1369
1372 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
1374 (InnerII->getArgOperand(1), m_APInt(CHigh)))
1375 return false;
1376
1377 if (II->getIntrinsicID() == Intrinsic::smin)
1379 return CLow->sle(*CHigh);
1380}
1381
1384 const APInt *CLow, *CHigh;
1388}
1389
1391 const APInt &DemandedElts,
1394 unsigned Depth) {
1396
1398 switch (I->getOpcode()) {
1399 default: break;
1400 case Instruction::Load:
1404 break;
1405 case Instruction::And:
1408
1410 break;
1411 case Instruction::Or:
1414
1416 break;
1417 case Instruction::Xor:
1420
1422 break;
1423 case Instruction::Mul: {
1427 DemandedElts, Known, Known2, Q, Depth);
1428 break;
1429 }
1430 case Instruction::UDiv: {
1433 Known =
1435 break;
1436 }
1437 case Instruction::SDiv: {
1440 Known =
1442 break;
1443 }
1444 case Instruction::Select: {
1445 auto ComputeForArm = [&](Value *Arm, bool Invert) {
1449 return Res;
1450 };
1451
1452 Known =
1453 ComputeForArm(I->getOperand(1), false)
1454 .intersectWith(ComputeForArm(I->getOperand(2), true));
1455 break;
1456 }
1457 case Instruction::FPTrunc:
1458 case Instruction::FPExt:
1459 case Instruction::FPToUI:
1460 case Instruction::FPToSI:
1461 case Instruction::SIToFP:
1462 case Instruction::UIToFP:
1463 break;
1464 case Instruction::PtrToInt:
1465 case Instruction::IntToPtr:
1466
1467 [[fallthrough]];
1468 case Instruction::ZExt:
1469 case Instruction::Trunc: {
1470 Type *SrcTy = I->getOperand(0)->getType();
1471
1472 unsigned SrcBitWidth;
1473
1474
1479
1480 assert(SrcBitWidth && "SrcBitWidth can't be zero");
1484 Inst && Inst->hasNonNeg() && !Known.isNegative())
1487 break;
1488 }
1489 case Instruction::BitCast: {
1490 Type *SrcTy = I->getOperand(0)->getType();
1491 if (SrcTy->isIntOrPtrTy() &&
1492
1493
1494 ->getType()->isVectorTy()) {
1496 break;
1497 }
1498
1500
1502 V->getType()->isFPOrFPVectorTy()) {
1503 Type *FPType = V->getType()->getScalarType();
1506 FPClassTest FPClasses = Result.KnownFPClasses;
1507
1508
1509 if (FPClasses == fcNone)
1510 break;
1511
1514
1515 if (FPClasses & fcInf)
1517 APFloat::getInf(FPType->getFltSemantics()).bitcastToAPInt()));
1518
1519 if (FPClasses & fcZero)
1522
1525 }
1526
1527 if (Result.SignBit) {
1528 if (*Result.SignBit)
1530 else
1532 }
1533
1534 break;
1535 }
1536
1537
1539 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1540 ->getType()->isIntOrIntVectorTy() ||
1542 break;
1543
1544 unsigned NumElts = DemandedElts.getBitWidth();
1546
1547
1548 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1549 if (BitWidth % SubBitWidth == 0) {
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564 unsigned SubScale = BitWidth / SubBitWidth;
1566 for (unsigned i = 0; i != NumElts; ++i) {
1567 if (DemandedElts[i])
1568 SubDemandedElts.setBit(i * SubScale);
1569 }
1570
1571 KnownBits KnownSrc(SubBitWidth);
1572 for (unsigned i = 0; i != SubScale; ++i) {
1575 unsigned ShiftElt = IsLE ? i : SubScale - 1 - i;
1576 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1577 }
1578 }
1579
1580
1581 if (SubBitWidth % BitWidth == 0) {
1582 unsigned SubScale = SubBitWidth / BitWidth;
1583 KnownBits KnownSrc(SubBitWidth);
1584 APInt SubDemandedElts =
1586 computeKnownBits(I->getOperand(0), SubDemandedElts, KnownSrc, Q,
1588
1590 for (unsigned i = 0; i != NumElts; ++i) {
1591 if (DemandedElts[i]) {
1592 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
1596 break;
1597 }
1598 }
1599 }
1600 break;
1601 }
1602 case Instruction::SExt: {
1603
1604 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1605
1606 Known = Known.trunc(SrcBitWidth);
1608
1609
1611 break;
1612 }
1613 case Instruction::Shl: {
1616 auto KF = [NUW, NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1617 bool ShAmtNonZero) {
1618 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1619 };
1621 KF);
1622
1626 break;
1627 }
1628 case Instruction::LShr: {
1630 auto KF = [Exact](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1631 bool ShAmtNonZero) {
1632 return KnownBits::lshr(KnownVal, KnownAmt, ShAmtNonZero, Exact);
1633 };
1635 KF);
1636
1640 break;
1641 }
1642 case Instruction::AShr: {
1644 auto KF = [Exact](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1645 bool ShAmtNonZero) {
1646 return KnownBits::ashr(KnownVal, KnownAmt, ShAmtNonZero, Exact);
1647 };
1649 KF);
1650 break;
1651 }
1652 case Instruction::Sub: {
1656 DemandedElts, Known, Known2, Q, Depth);
1657 break;
1658 }
1659 case Instruction::Add: {
1663 DemandedElts, Known, Known2, Q, Depth);
1664 break;
1665 }
1666 case Instruction::SRem:
1670 break;
1671
1672 case Instruction::URem:
1676 break;
1677 case Instruction::Alloca:
1679 break;
1680 case Instruction::GetElementPtr: {
1681
1682
1684
1685
1687 APInt AccConstIndices(IndexWidth, 0);
1688
1689 auto AddIndexToKnown = [&](KnownBits IndexBits) {
1690 if (IndexWidth == BitWidth) {
1691
1692
1694 } else {
1695
1696
1698 "Index width can't be larger than pointer width");
1700 }
1701 };
1702
1704 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1705
1707 break;
1708
1709 Value *Index = I->getOperand(i);
1710
1711
1714 continue;
1715
1717
1718
1720 "Access to structure field must be known at compile time");
1721
1724
1728 AccConstIndices += Offset;
1729 continue;
1730 }
1731
1732
1734 if (!IndexedTy->isSized()) {
1736 break;
1737 }
1738
1742
1744 AccConstIndices +=
1745 CI->getValue().sextOrTrunc(IndexWidth) * StrideInBytes;
1746 continue;
1747 }
1748 }
1749
1752 KnownBits ScalingFactor(IndexWidth);
1753
1754
1756
1757
1759 } else {
1760 ScalingFactor =
1762 }
1763 AddIndexToKnown(KnownBits::mul(IndexBits, ScalingFactor));
1764 }
1767 break;
1768 }
1769 case Instruction::PHI: {
1772 Value *R = nullptr, *L = nullptr;
1774
1775
1776
1777 unsigned Opcode = BO->getOpcode();
1778
1779 switch (Opcode) {
1780
1781
1782
1783
1784
1785 case Instruction::LShr:
1786 case Instruction::AShr:
1787 case Instruction::Shl:
1788 case Instruction::UDiv:
1790 break;
1791 [[fallthrough]];
1792
1793
1794
1795 case Instruction::URem: {
1796
1797
1798
1799
1800
1801
1802
1803
1807 switch (Opcode) {
1808 case Instruction::Shl:
1809
1811 break;
1812 case Instruction::LShr:
1813 case Instruction::UDiv:
1814 case Instruction::URem:
1815
1816
1818 break;
1819 case Instruction::AShr:
1820
1823 break;
1824 }
1825 break;
1826 }
1827
1828
1829
1830
1831 case Instruction::Add:
1832 case Instruction::Sub:
1833 case Instruction::And:
1834 case Instruction::Or:
1835 case Instruction::Mul: {
1836
1837
1838
1839
1841
1842 unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1843 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1844 Instruction *LInst = P->getIncomingBlock(1 - OpNum)->getTerminator();
1845
1846
1847
1848 RecQ.CxtI = RInst;
1850
1851
1853 RecQ.CxtI = LInst;
1855
1858
1861 break;
1862
1863 switch (Opcode) {
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873 case Instruction::Add: {
1878 break;
1879 }
1880
1881
1882
1883 case Instruction::Sub: {
1885 break;
1890 break;
1891 }
1892
1893
1894 case Instruction::Mul:
1897 break;
1898
1899 default:
1900 break;
1901 }
1902 break;
1903 }
1904
1905 default:
1906 break;
1907 }
1908 }
1909
1910
1911 if (P->getNumIncomingValues() == 0)
1912 break;
1913
1914
1915
1917
1919 break;
1920
1922 for (const Use &U : P->operands()) {
1923 Value *IncValue;
1927
1928 if (IncValue == P)
1929 continue;
1930
1931
1932
1933
1934
1936
1938
1939
1940
1941
1942
1945
1946
1947
1950 const APInt *RHSC;
1952
1956
1957 if ((TrueSucc == CxtPhi->getParent()) !=
1958 (FalseSucc == CxtPhi->getParent())) {
1959
1960 if (FalseSucc == CxtPhi->getParent())
1962
1965
1966
1968
1969
1970
1972 break;
1973 }
1974 Known2 = KnownUnion;
1975 }
1976 }
1977 }
1978
1980
1981
1983 break;
1984 }
1985 }
1986 break;
1987 }
1988 case Instruction::Call:
1989 case Instruction::Invoke: {
1990
1991
1992
1996
1998
1999 if (std::optional Range = CB->getRange())
2001
2002 if (const Value *RV = CB->getReturnedArgOperand()) {
2003 if (RV->getType() == I->getType()) {
2005 Known = Known.unionWith(Known2);
2006
2007
2008
2009
2012 }
2013 }
2015 switch (II->getIntrinsicID()) {
2016 default:
2017 break;
2018 case Intrinsic::abs: {
2020 bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
2021 Known = Known.unionWith(Known2.abs(IntMinIsPoison));
2022 break;
2023 }
2024 case Intrinsic::bitreverse:
2027 break;
2028 case Intrinsic::bswap:
2031 break;
2032 case Intrinsic::ctlz: {
2034
2036
2038 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
2041 break;
2042 }
2043 case Intrinsic::cttz: {
2045
2047
2049 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
2052 break;
2053 }
2054 case Intrinsic::ctpop: {
2056
2057
2061
2062
2063 break;
2064 }
2065 case Intrinsic::fshr:
2066 case Intrinsic::fshl: {
2067 const APInt *SA;
2069 break;
2070
2071
2073 if (II->getIntrinsicID() == Intrinsic::fshr)
2074 ShiftAmt = BitWidth - ShiftAmt;
2075
2079
2080 Known2 <<= ShiftAmt;
2081 Known3 >>= BitWidth - ShiftAmt;
2082 Known = Known2.unionWith(Known3);
2083 break;
2084 }
2085 case Intrinsic::uadd_sat:
2089 break;
2090 case Intrinsic::usub_sat:
2094 break;
2095 case Intrinsic::sadd_sat:
2099 break;
2100 case Intrinsic::ssub_sat:
2104 break;
2105
2106 case Intrinsic::vector_reverse:
2109 break;
2110
2111
2112 case Intrinsic::vector_reduce_and:
2113 case Intrinsic::vector_reduce_or:
2114 case Intrinsic::vector_reduce_umax:
2115 case Intrinsic::vector_reduce_umin:
2116 case Intrinsic::vector_reduce_smax:
2117 case Intrinsic::vector_reduce_smin:
2119 break;
2120 case Intrinsic::vector_reduce_xor: {
2122
2123
2124
2126
2127 bool EvenCnt = VecTy->getElementCount().isKnownEven();
2128 if (EvenCnt)
2130
2131 if (VecTy->isScalableTy() || EvenCnt)
2133 break;
2134 }
2135 case Intrinsic::umin:
2139 break;
2140 case Intrinsic::umax:
2144 break;
2145 case Intrinsic::smin:
2150 break;
2151 case Intrinsic::smax:
2156 break;
2157 case Intrinsic::ptrmask: {
2159
2160 const Value *Mask = I->getOperand(1);
2161 Known2 = KnownBits(Mask->getType()->getScalarSizeInBits());
2163
2165 break;
2166 }
2167 case Intrinsic::x86_sse2_pmulh_w:
2168 case Intrinsic::x86_avx2_pmulh_w:
2169 case Intrinsic::x86_avx512_pmulh_w_512:
2173 break;
2174 case Intrinsic::x86_sse2_pmulhu_w:
2175 case Intrinsic::x86_avx2_pmulhu_w:
2176 case Intrinsic::x86_avx512_pmulhu_w_512:
2180 break;
2181 case Intrinsic::x86_sse42_crc32_64_64:
2183 break;
2184 case Intrinsic::x86_ssse3_phadd_d_128:
2185 case Intrinsic::x86_ssse3_phadd_w_128:
2186 case Intrinsic::x86_avx2_phadd_d:
2187 case Intrinsic::x86_avx2_phadd_w: {
2189 I, DemandedElts, Q, Depth,
2192 });
2193 break;
2194 }
2195 case Intrinsic::x86_ssse3_phadd_sw_128:
2196 case Intrinsic::x86_avx2_phadd_sw: {
2199 break;
2200 }
2201 case Intrinsic::x86_ssse3_phsub_d_128:
2202 case Intrinsic::x86_ssse3_phsub_w_128:
2203 case Intrinsic::x86_avx2_phsub_d:
2204 case Intrinsic::x86_avx2_phsub_w: {
2206 I, DemandedElts, Q, Depth,
2209 });
2210 break;
2211 }
2212 case Intrinsic::x86_ssse3_phsub_sw_128:
2213 case Intrinsic::x86_avx2_phsub_sw: {
2216 break;
2217 }
2218 case Intrinsic::riscv_vsetvli:
2219 case Intrinsic::riscv_vsetvlimax: {
2220 bool HasAVL = II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
2229
2230
2231 if (HasAVL)
2233 MaxVL = std::min(MaxVL, CI->getZExtValue());
2234
2235 unsigned KnownZeroFirstBit = Log2_32(MaxVL) + 1;
2236 if (BitWidth > KnownZeroFirstBit)
2238 break;
2239 }
2240 case Intrinsic::vscale: {
2241 if (->getParent() ||
->getFunction())
2242 break;
2243
2245 break;
2246 }
2247 }
2248 }
2249 break;
2250 }
2251 case Instruction::ShuffleVector: {
2254 break;
2255 }
2256
2258
2259 if (!Shuf) {
2261 return;
2262 }
2263
2264
2265 APInt DemandedLHS, DemandedRHS;
2268 return;
2269 }
2271 if (!!DemandedLHS) {
2272 const Value *LHS = Shuf->getOperand(0);
2274
2276 break;
2277 }
2278 if (!!DemandedRHS) {
2279 const Value *RHS = Shuf->getOperand(1);
2282 }
2283 break;
2284 }
2285 case Instruction::InsertElement: {
2288 return;
2289 }
2290 const Value *Vec = I->getOperand(0);
2291 const Value *Elt = I->getOperand(1);
2293 unsigned NumElts = DemandedElts.getBitWidth();
2294 APInt DemandedVecElts = DemandedElts;
2295 bool NeedsElt = true;
2296
2297 if (CIdx && CIdx->getValue().ult(NumElts)) {
2298 DemandedVecElts.clearBit(CIdx->getZExtValue());
2299 NeedsElt = DemandedElts[CIdx->getZExtValue()];
2300 }
2301
2303 if (NeedsElt) {
2305
2307 break;
2308 }
2309
2310 if (!DemandedVecElts.isZero()) {
2313 }
2314 break;
2315 }
2316 case Instruction::ExtractElement: {
2317
2318
2319 const Value *Vec = I->getOperand(0);
2320 const Value *Idx = I->getOperand(1);
2323
2325 break;
2326 }
2329 if (CIdx && CIdx->getValue().ult(NumElts))
2332 break;
2333 }
2334 case Instruction::ExtractValue:
2339 switch (II->getIntrinsicID()) {
2340 default: break;
2341 case Intrinsic::uadd_with_overflow:
2342 case Intrinsic::sadd_with_overflow:
2344 true, II->getArgOperand(0), II->getArgOperand(1), false,
2345 false, DemandedElts, Known, Known2, Q, Depth);
2346 break;
2347 case Intrinsic::usub_with_overflow:
2348 case Intrinsic::ssub_with_overflow:
2350 false, II->getArgOperand(0), II->getArgOperand(1), false,
2351 false, DemandedElts, Known, Known2, Q, Depth);
2352 break;
2353 case Intrinsic::umul_with_overflow:
2354 case Intrinsic::smul_with_overflow:
2356 false, DemandedElts, Known, Known2, Q, Depth);
2357 break;
2358 }
2359 }
2360 }
2361 break;
2362 case Instruction::Freeze:
2366 break;
2367 }
2368}
2369
2370
2371
2378
2379
2380
2382 unsigned Depth) {
2385 return Known;
2386}
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2405 unsigned Depth) {
2406 if (!DemandedElts) {
2407
2409 return;
2410 }
2411
2412 assert(V && "No Value?");
2414
2415#ifndef NDEBUG
2416 Type *Ty = V->getType();
2418
2419 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2420 "Not integer or pointer type!");
2421
2424 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2425 "DemandedElt width should equal the fixed vector number of elements");
2426 } else {
2428 "DemandedElt width should be 1 for scalars or scalable vectors");
2429 }
2430
2434 "V and Known should have same BitWidth");
2435 } else {
2437 "V and Known should have same BitWidth");
2438 }
2439#endif
2440
2443
2445 return;
2446 }
2447
2450 return;
2451 }
2452
2453
2456
2457
2459 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2460 if (!DemandedElts[i])
2461 continue;
2462 APInt Elt = CDV->getElementAsAPInt(i);
2463 Known.Zero &= ~Elt;
2464 Known.One &= Elt;
2465 }
2468 return;
2469 }
2470
2473
2474
2476 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2477 if (!DemandedElts[i])
2478 continue;
2481 continue;
2483 if (!ElementCI) {
2485 return;
2486 }
2487 const APInt &Elt = ElementCI->getValue();
2488 Known.Zero &= ~Elt;
2489 Known.One &= Elt;
2490 }
2493 return;
2494 }
2495
2496
2498
2499
2501 return;
2502
2503
2504
2506
2508 if (std::optional Range = A->getRange())
2509 Known = Range->toKnownBits();
2510
2511
2513 return;
2514
2515
2516
2518 if (!GA->isInterposable())
2520 return;
2521 }
2522
2526 if (std::optional CR = GV->getAbsoluteSymbolRange())
2527 Known = CR->toKnownBits();
2528 }
2529
2530
2532 Align Alignment = V->getPointerAlignment(Q.DL);
2534 }
2535
2536
2537
2538
2539
2541}
2542
2543
2544
2548 Value *Start = nullptr, *Step = nullptr;
2550 return false;
2551
2552
2554 if (U.get() == Start) {
2555
2556
2559 return false;
2560 }
2561 }
2562
2563
2564
2566 return false;
2567
2570 case Instruction::Mul:
2571
2575 case Instruction::SDiv:
2576
2577
2579 return false;
2580 [[fallthrough]];
2581 case Instruction::UDiv:
2582
2583
2584
2585 return (OrZero || Q.IIQ.isExact(BO)) &&
2587 case Instruction::Shl:
2589 case Instruction::AShr:
2591 return false;
2592 [[fallthrough]];
2593 case Instruction::LShr:
2595 default:
2596 return false;
2597 }
2598}
2599
2600
2601
2604 bool CondIsTrue) {
2606 const APInt *RHSC;
2609 return false;
2610 if (!CondIsTrue)
2612
2614 return true;
2615
2617}
2618
2619
2620
2621
2622
2626
2629
2630
2631 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2632 return true;
2633
2634
2637 if (!AssumeVH)
2638 continue;
2641 true) &&
2643 return true;
2644 }
2645 }
2646
2647
2648 if (Q.DC && Q.CxtI && Q.DT) {
2650 Value *Cond = BI->getCondition();
2651
2652 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
2654 true) &&
2656 return true;
2657
2658 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
2660 false) &&
2662 return true;
2663 }
2664 }
2665
2667 if ()
2668 return false;
2669
2672
2673 return F->hasFnAttribute(Attribute::VScaleRange);
2674 }
2675
2676
2677
2679 return true;
2680
2681
2682
2684 return true;
2685
2686
2688 return false;
2689
2690 switch (I->getOpcode()) {
2691 case Instruction::ZExt:
2693 case Instruction::Trunc:
2695 case Instruction::Shl:
2698 return false;
2699 case Instruction::LShr:
2702 return false;
2703 case Instruction::UDiv:
2706 return false;
2707 case Instruction::Mul:
2711 case Instruction::And:
2712
2713 if (OrZero &&
2716 return true;
2717
2721 return false;
2722 case Instruction::Add: {
2723
2724
2728 if (match(I->getOperand(0),
2731 return true;
2732 if (match(I->getOperand(1),
2735 return true;
2736
2737 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2740
2743
2744
2745
2746 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2747
2748
2750 return true;
2751 }
2752
2753
2756 return true;
2757 return false;
2758 }
2759 case Instruction::Select:
2762 case Instruction::PHI: {
2763
2764
2765
2768
2769
2771 return true;
2772
2773
2774
2777
2778 if (U.get() == PN)
2779 return true;
2780
2781
2782
2783 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2784 return isKnownToBeAPowerOfTwo(U.get(), OrZero, RecQ, NewDepth);
2785 });
2786 }
2787 case Instruction::Invoke:
2788 case Instruction::Call: {
2790 switch (II->getIntrinsicID()) {
2791 case Intrinsic::umax:
2792 case Intrinsic::smax:
2793 case Intrinsic::umin:
2794 case Intrinsic::smin:
2797
2798
2799 case Intrinsic::bitreverse:
2800 case Intrinsic::bswap:
2802 case Intrinsic::fshr:
2803 case Intrinsic::fshl:
2804
2805 if (II->getArgOperand(0) == II->getArgOperand(1))
2807 break;
2808 default:
2809 break;
2810 }
2811 }
2812 return false;
2813 }
2814 default:
2815 return false;
2816 }
2817}
2818
2819
2820
2821
2822
2823
2824
2826 unsigned Depth) {
2830
2831
2832
2833 if (->hasNoUnsignedWrap() &&
2834 !(GEP->isInBounds() &&
2836 return false;
2837
2838
2839 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2840
2841
2842
2844 return true;
2845
2846
2847
2848
2850 GTI != GTE; ++GTI) {
2851
2852 if (StructType *STy = GTI.getStructTypeOrNull()) {
2857 if (ElementOffset > 0)
2858 return true;
2859 continue;
2860 }
2861
2862
2863 if (GTI.getSequentialElementStride(Q.DL).isZero())
2864 continue;
2865
2866
2867
2869 if (!OpC->isZero())
2870 return true;
2871 continue;
2872 }
2873
2874
2875
2876
2877
2878
2880 continue;
2881
2883 return true;
2884 }
2885
2886 return false;
2887}
2888
2893
2894 if (!CtxI || !DT)
2895 return false;
2896
2897 unsigned NumUsesExplored = 0;
2898 for (auto &U : V->uses()) {
2899
2901 break;
2902 NumUsesExplored++;
2903
2905
2906
2907 if (V->getType()->isPointerTy()) {
2909 if (CB->isArgOperand(&U) &&
2910 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
2911 false) &&
2913 return true;
2914 }
2915 }
2916
2917
2922 return true;
2923 }
2924
2928 return true;
2929
2930
2934 continue;
2935
2936 bool NonNullIfTrue;
2938 NonNullIfTrue = true;
2940 NonNullIfTrue = false;
2941 else
2942 continue;
2943
2946 for (const auto *CmpU : UI->users()) {
2947 assert(WorkList.empty() && "Should be!");
2948 if (Visited.insert(CmpU).second)
2950
2951 while (!WorkList.empty()) {
2953
2954
2955
2956
2957
2958 if (NonNullIfTrue)
2960 for (const auto *CurrU : Curr->users())
2961 if (Visited.insert(CurrU).second)
2963 continue;
2964 }
2965
2967 assert(BI->isConditional() && "uses a comparison!");
2968
2970 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2973 return true;
2974 } else if (NonNullIfTrue && isGuard(Curr) &&
2976 return true;
2977 }
2978 }
2979 }
2980 }
2981
2982 return false;
2983}
2984
2985
2986
2987
2989 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2990 assert(NumRanges >= 1);
2991 for (unsigned i = 0; i < NumRanges; ++i) {
2998 return false;
2999 }
3000 return true;
3001}
3002
3003
3004
3007 Value *Start = nullptr, *Step = nullptr;
3008 const APInt *StartC, *StepC;
3011 return false;
3012
3014 case Instruction::Add:
3015
3016
3020 case Instruction::Mul:
3023 case Instruction::Shl:
3025 case Instruction::AShr:
3026 case Instruction::LShr:
3028 default:
3029 return false;
3030 }
3031}
3032
3039
3042 bool NUW, unsigned Depth) {
3043
3045 return true;
3046
3047 if (NUW)
3050
3053
3054
3055
3059 return true;
3060
3061
3062
3065
3066
3068 return true;
3069
3070
3072 return true;
3073 }
3074
3075
3078 return true;
3081 return true;
3082
3084}
3085
3088 unsigned Depth) {
3089
3090
3092 return true;
3093
3094
3097 return true;
3098
3099 return ::isKnownNonEqual(X, Y, DemandedElts, Q, Depth);
3100}
3101
3104 bool NUW, unsigned Depth) {
3105
3106
3107 if (NSW || NUW)
3110
3111
3112
3114 if (XKnown.One[0])
3116
3118 if (YKnown.One[0])
3120
3121
3122
3123
3124
3125
3128}
3129
3132 unsigned Depth) {
3133 auto ShiftOp = [&](const APInt &Lhs, const APInt &Rhs) {
3134 switch (I->getOpcode()) {
3135 case Instruction::Shl:
3136 return Lhs.shl(Rhs);
3137 case Instruction::LShr:
3138 return Lhs.lshr(Rhs);
3139 case Instruction::AShr:
3140 return Lhs.ashr(Rhs);
3141 default:
3143 }
3144 };
3145
3146 auto InvShiftOp = [&](const APInt &Lhs, const APInt &Rhs) {
3147 switch (I->getOpcode()) {
3148 case Instruction::Shl:
3149 return Lhs.lshr(Rhs);
3150 case Instruction::LShr:
3151 case Instruction::AShr:
3152 return Lhs.shl(Rhs);
3153 default:
3155 }
3156 };
3157
3159 return false;
3160
3164 unsigned NumBits = KnownVal.getBitWidth();
3165 if (MaxShift.uge(NumBits))
3166 return false;
3167
3168 if (!ShiftOp(KnownVal.One, MaxShift).isZero())
3169 return true;
3170
3171
3172
3173 if (InvShiftOp(KnownVal.Zero, NumBits - MaxShift)
3174 .eq(InvShiftOp(APInt::getAllOnes(NumBits), NumBits - MaxShift)) &&
3176 return true;
3177
3178 return false;
3179}
3180
3182 const APInt &DemandedElts,
3185 switch (I->getOpcode()) {
3186 case Instruction::Alloca:
3187
3188 return I->getType()->getPointerAddressSpace() == 0;
3189 case Instruction::GetElementPtr:
3190 if (I->getType()->isPointerTy())
3192 break;
3193 case Instruction::BitCast: {
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221 Type *FromTy = I->getOperand(0)->getType();
3225 } break;
3226 case Instruction::IntToPtr:
3227
3228
3229
3234 break;
3235 case Instruction::PtrToInt:
3236
3237
3242 break;
3243 case Instruction::Trunc:
3244
3246 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
3248 break;
3249
3250
3251
3252 case Instruction::Xor:
3253 case Instruction::Sub:
3255 I->getOperand(1), Depth);
3256 case Instruction::Or:
3257
3259 return true;
3260
3261 if (isKnownNonEqual(I->getOperand(0), I->getOperand(1), DemandedElts, Q,
3263 return true;
3264
3267 case Instruction::SExt:
3268 case Instruction::ZExt:
3269
3271
3272 case Instruction::Shl: {
3273
3277
3278
3279
3282 if (Known.One[0])
3283 return true;
3284
3286 }
3287 case Instruction::LShr:
3288 case Instruction::AShr: {
3289
3293
3294
3295
3299 return true;
3300
3302 }
3303 case Instruction::UDiv:
3304 case Instruction::SDiv: {
3305
3306
3309
3312
3313
3315 return false;
3316
3319 if (I->getOpcode() == Instruction::SDiv) {
3320
3321 XKnown = XKnown.abs( false);
3322 YKnown = YKnown.abs( false);
3323 }
3324
3325 std::optional XUgeY = KnownBits::uge(XKnown, YKnown);
3326
3327
3328 return XUgeY && *XUgeY;
3329 }
3330 case Instruction::Add: {
3331
3332
3333
3334
3339 }
3340 case Instruction::Mul: {
3345 }
3346 case Instruction::Select: {
3347
3348
3349
3350
3351
3352
3353 auto SelectArmIsNonZero = [&](bool IsTrueArm) {
3355 Op = IsTrueArm ? I->getOperand(1) : I->getOperand(2);
3356
3358 return true;
3359
3360
3361
3365 return false;
3366
3367 if (!IsTrueArm)
3369
3371 };
3372
3373 if (SelectArmIsNonZero( true) &&
3374 SelectArmIsNonZero( false))
3375 return true;
3376 break;
3377 }
3378 case Instruction::PHI: {
3381 return true;
3382
3383
3387 if (U.get() == PN)
3388 return true;
3389 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
3390
3391 CmpPredicate Pred;
3392 Value *X;
3393 BasicBlock *TrueSucc, *FalseSucc;
3394 if (match(RecQ.CxtI,
3395 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
3396 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
3397
3398 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
3399
3400 if (FalseSucc == PN->getParent())
3401 Pred = CmpInst::getInversePredicate(Pred);
3402 if (cmpExcludesZero(Pred, X))
3403 return true;
3404 }
3405 }
3406
3407 return isKnownNonZero(U.get(), DemandedElts, RecQ, NewDepth);
3408 });
3409 }
3410 case Instruction::InsertElement: {
3412 break;
3413
3414 const Value *Vec = I->getOperand(0);
3415 const Value *Elt = I->getOperand(1);
3417
3418 unsigned NumElts = DemandedElts.getBitWidth();
3419 APInt DemandedVecElts = DemandedElts;
3420 bool SkipElt = false;
3421
3422 if (CIdx && CIdx->getValue().ult(NumElts)) {
3423 DemandedVecElts.clearBit(CIdx->getZExtValue());
3424 SkipElt = !DemandedElts[CIdx->getZExtValue()];
3425 }
3426
3427
3428
3430 (DemandedVecElts.isZero() ||
3432 }
3433 case Instruction::ExtractElement:
3435 const Value *Vec = EEI->getVectorOperand();
3436 const Value *Idx = EEI->getIndexOperand();
3439 unsigned NumElts = VecTy->getNumElements();
3441 if (CIdx && CIdx->getValue().ult(NumElts))
3444 }
3445 }
3446 break;
3447 case Instruction::ShuffleVector: {
3449 if (!Shuf)
3450 break;
3451 APInt DemandedLHS, DemandedRHS;
3452
3453
3455 break;
3456
3457 return (DemandedRHS.isZero() ||
3459 (DemandedLHS.isZero() ||
3461 }
3462 case Instruction::Freeze:
3466 case Instruction::Load: {
3468
3469
3471 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull) ||
3472 (Q.IIQ.getMetadata(LI, LLVMContext::MD_dereferenceable) &&
3474 return true;
3477 }
3478
3479
3480
3481 return false;
3482 }
3483 case Instruction::ExtractValue: {
3487 default:
3488 break;
3489 case Instruction::Add:
3492 false,
3493 false, Depth);
3494 case Instruction::Sub:
3497 case Instruction::Mul:
3500 false, false, Depth);
3501 break;
3502 }
3503 }
3504 break;
3505 }
3506 case Instruction::Call:
3507 case Instruction::Invoke: {
3509 if (I->getType()->isPointerTy()) {
3510 if (Call->isReturnNonNull())
3511 return true;
3514 } else {
3517 if (std::optional Range = Call->getRange()) {
3518 const APInt ZeroValue(Range->getBitWidth(), 0);
3519 if (->contains(ZeroValue))
3520 return true;
3521 }
3522 if (const Value *RV = Call->getReturnedArgOperand())
3524 return true;
3525 }
3526
3528 switch (II->getIntrinsicID()) {
3529 case Intrinsic::sshl_sat:
3530 case Intrinsic::ushl_sat:
3531 case Intrinsic::abs:
3532 case Intrinsic::bitreverse:
3533 case Intrinsic::bswap:
3534 case Intrinsic::ctpop:
3536
3537
3538 case Intrinsic::ssub_sat:
3540 II->getArgOperand(1), Depth);
3541 case Intrinsic::sadd_sat:
3543 II->getArgOperand(1),
3544 true, false, Depth);
3545
3546 case Intrinsic::vector_reverse:
3549
3550 case Intrinsic::vector_reduce_or:
3551 case Intrinsic::vector_reduce_umax:
3552 case Intrinsic::vector_reduce_umin:
3553 case Intrinsic::vector_reduce_smax:
3554 case Intrinsic::vector_reduce_smin:
3556 case Intrinsic::umax:
3557 case Intrinsic::uadd_sat:
3558
3559
3561 return true;
3562
3565 case Intrinsic::smax: {
3566
3567
3568 auto IsNonZero = [&](Value *Op, std::optional &OpNonZero,
3570 if (!OpNonZero.has_value())
3571 OpNonZero = OpKnown.isNonZero() ||
3573 return *OpNonZero;
3574 };
3575
3576 std::optional Op0NonZero, Op1NonZero;
3580 IsNonZero(II->getArgOperand(1), Op1NonZero, Op1Known))
3581 return true;
3585 IsNonZero(II->getArgOperand(0), Op0NonZero, Op0Known))
3586 return true;
3587 return IsNonZero(II->getArgOperand(1), Op1NonZero, Op1Known) &&
3588 IsNonZero(II->getArgOperand(0), Op0NonZero, Op0Known);
3589 }
3590 case Intrinsic::smin: {
3591
3592
3596 return true;
3600 return true;
3601
3603 return true;
3604 }
3605 [[fallthrough]];
3606 case Intrinsic::umin:
3609 case Intrinsic::cttz:
3611 .Zero[0];
3612 case Intrinsic::ctlz:
3614 .isNonNegative();
3615 case Intrinsic::fshr:
3616 case Intrinsic::fshl:
3617
3618 if (II->getArgOperand(0) == II->getArgOperand(1))
3620 break;
3621 case Intrinsic::vscale:
3622 return true;
3623 case Intrinsic::experimental_get_vector_length:
3625 default:
3626 break;
3627 }
3628 break;
3629 }
3630
3631 return false;
3632 }
3633 }
3634
3637 return Known.One != 0;
3638}
3639
3640
3641
3642
3643
3644
3645
3648 Type *Ty = V->getType();
3649
3650#ifndef NDEBUG
3652
3655 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3656 "DemandedElt width should equal the fixed vector number of elements");
3657 } else {
3659 "DemandedElt width should be 1 for scalars");
3660 }
3661#endif
3662
3664 if (C->isNullValue())
3665 return false;
3667
3668 return true;
3669
3670
3671
3673 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3674 if (!DemandedElts[i])
3675 continue;
3676 Constant *Elt = C->getAggregateElement(i);
3678 return false;
3680 return false;
3681 }
3682 return true;
3683 }
3684
3685
3688
3689
3690
3691
3693 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3694 GV->getType()->getAddressSpace() == 0)
3695 return true;
3696 }
3697
3698
3700 return false;
3701 }
3702
3704 if (std::optional Range = A->getRange()) {
3705 const APInt ZeroValue(Range->getBitWidth(), 0);
3706 if (->contains(ZeroValue))
3707 return true;
3708 }
3709
3711 return true;
3712
3713
3715 return false;
3716
3717
3718
3720
3721
3723 if (((A->hasPassPointeeByValueCopyAttr() &&
3725 A->hasNonNullAttr()))
3726 return true;
3727 }
3728 }
3729
3732 return true;
3733
3736 return true;
3737
3740
3741 return false;
3742}
3743
3745 unsigned Depth) {
3747 APInt DemandedElts =
3749 return ::isKnownNonZero(V, DemandedElts, Q, Depth);
3750}
3751
3752
3753
3754
3755
3756
3757
3758static std::optional<std::pair<Value*, Value*>>
3762 return std::nullopt;
3763
3764 auto getOperands = [&](unsigned OpNum) -> auto {
3766 };
3767
3769 default:
3770 break;
3771 case Instruction::Or:
3774 break;
3775 [[fallthrough]];
3776 case Instruction::Xor:
3777 case Instruction::Add: {
3783 break;
3784 }
3785 case Instruction::Sub:
3790 break;
3791 case Instruction::Mul: {
3792
3793
3794
3797 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3798 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3799 break;
3800
3801
3806 break;
3807 }
3808 case Instruction::Shl: {
3809
3810
3813 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3814 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3815 break;
3816
3819 break;
3820 }
3821 case Instruction::AShr:
3822 case Instruction::LShr: {
3825 if (!PEO1->isExact() || !PEO2->isExact())
3826 break;
3827
3830 break;
3831 }
3832 case Instruction::SExt:
3833 case Instruction::ZExt:
3836 break;
3837 case Instruction::PHI: {
3840
3841
3842
3843
3845 Value *Start1 = nullptr, *Step1 = nullptr;
3847 Value *Start2 = nullptr, *Step2 = nullptr;
3851 break;
3852
3855 if (!Values)
3856 break;
3857
3858
3859
3860
3861
3862
3863 if (Values->first != PN1 || Values->second != PN2)
3864 break;
3865
3866 return std::make_pair(Start1, Start2);
3867 }
3868 }
3869 return std::nullopt;
3870}
3871
3872
3873
3874
3876 const APInt &DemandedElts,
3879 if (!BO)
3880 return false;
3882 default:
3883 break;
3884 case Instruction::Or:
3886 break;
3887 [[fallthrough]];
3888 case Instruction::Xor:
3889 case Instruction::Add:
3895 else
3896 return false;
3898 }
3899 return false;
3900}
3901
3902
3903
3906 unsigned Depth) {
3910 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3911 ->isZero() &&
->isOne() &&
3913 }
3914 return false;
3915}
3916
3917
3918
3921 unsigned Depth) {
3925 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3927 }
3928 return false;
3929}
3930
3933 unsigned Depth) {
3934
3936 return false;
3937
3939 bool UsedFullRecursion = false;
3941 if (!VisitedBBs.insert(IncomBB).second)
3942 continue;
3945 const APInt *C1, *C2;
3947 continue;
3948
3949
3950 if (UsedFullRecursion)
3951 return false;
3952
3954 RecQ.CxtI = IncomBB->getTerminator();
3956 return false;
3957 UsedFullRecursion = true;
3958 }
3959 return true;
3960}
3961
3964 unsigned Depth) {
3966 if (!SI1)
3967 return false;
3968
3971 const Value *Cond2 = SI2->getCondition();
3972 if (Cond1 == Cond2)
3974 DemandedElts, Q, Depth + 1) &&
3976 DemandedElts, Q, Depth + 1);
3977 }
3980}
3981
3982
3983
3984
3985
3986
3989 if (->getType()->isPointerTy() ||
->getType()->isPointerTy())
3990 return false;
3991
3993 if (!GEPA || GEPA->getNumIndices() != 1 || (GEPA->idx_begin()))
3994 return false;
3995
3996
3998 if (!PN || PN->getNumIncomingValues() != 2)
3999 return false;
4000
4001
4002
4003 Value *Start = nullptr;
4005 if (PN->getIncomingValue(0) == Step)
4006 Start = PN->getIncomingValue(1);
4007 else if (PN->getIncomingValue(1) == Step)
4008 Start = PN->getIncomingValue(0);
4009 else
4010 return false;
4011
4012
4013
4014
4015
4016
4017
4019 APInt StartOffset(IndexWidth, 0);
4020 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StartOffset);
4021 APInt StepOffset(IndexWidth, 0);
4023
4024
4025 if (Step != PN)
4026 return false;
4027 APInt OffsetB(IndexWidth, 0);
4028 B = B->stripAndAccumulateInBoundsConstantOffsets(Q.DL, OffsetB);
4029 return Start == B &&
4031 (StartOffset.sle(OffsetB) && StepOffset.isNegative()));
4032}
4033
4036 if (!Q.CxtI)
4037 return false;
4038
4039
4041 auto IsKnownNonEqualFromDominatingCondition = [&](const Value *V) {
4043 Value *Cond = BI->getCondition();
4044 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
4047 true, Depth)
4048 .value_or(false))
4049 return true;
4050
4051 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
4054 false, Depth)
4055 .value_or(false))
4056 return true;
4057 }
4058
4059 return false;
4060 };
4061
4062 if (IsKnownNonEqualFromDominatingCondition(V1) ||
4063 IsKnownNonEqualFromDominatingCondition(V2))
4064 return true;
4065 }
4066
4067 if (!Q.AC)
4068 return false;
4069
4070
4072 if (!AssumeVH)
4073 continue;
4075
4077 "Got assumption for the wrong function!");
4078 assert(I->getIntrinsicID() == Intrinsic::assume &&
4079 "must be an assume intrinsic");
4080
4082 true, Depth)
4083 .value_or(false) &&
4085 return true;
4086 }
4087
4088 return false;
4089}
4090
4091
4094 unsigned Depth) {
4095 if (V1 == V2)
4096 return false;
4098
4099 return false;
4100
4102 return false;
4103
4104
4105
4106
4109 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
4111 return isKnownNonEqual(Values->first, Values->second, DemandedElts, Q,
4113
4116
4117
4119 return true;
4120 };
4121 }
4122
4125 return true;
4126
4129 return true;
4130
4133 return true;
4134
4136
4137
4143 return true;
4144 }
4145 }
4146
4149 return true;
4150
4153 return true;
4154
4156
4157
4161
4163 return true;
4164
4165 return false;
4166}
4167
4168
4169
4170
4171
4173 const APInt &DemandedElts,
4174 unsigned TyBits) {
4177 return 0;
4178
4179 unsigned MinSignBits = TyBits;
4181 for (unsigned i = 0; i != NumElts; ++i) {
4182 if (!DemandedElts[i])
4183 continue;
4184
4186 if (!Elt)
4187 return 0;
4188
4189 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
4190 }
4191
4192 return MinSignBits;
4193}
4194
4196 const APInt &DemandedElts,
4198
4202 assert(Result > 0 && "At least one sign bit needs to be present!");
4203 return Result;
4204}
4205
4206
4207
4208
4209
4210
4211
4212
4214 const APInt &DemandedElts,
4216 Type *Ty = V->getType();
4217#ifndef NDEBUG
4219
4222 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
4223 "DemandedElt width should equal the fixed vector number of elements");
4224 } else {
4226 "DemandedElt width should be 1 for scalars");
4227 }
4228#endif
4229
4230
4231
4232
4233
4235 unsigned TyBits = ScalarTy->isPointerTy() ?
4238
4239 unsigned Tmp, Tmp2;
4240 unsigned FirstAnswer = 1;
4241
4242
4243
4244
4246 return 1;
4247
4250 default: break;
4251 case Instruction::BitCast: {
4252 Value *Src = U->getOperand(0);
4253 Type *SrcTy = Src->getType();
4254
4255
4256
4257 if (!SrcTy->isIntOrIntVectorTy())
4258 break;
4259
4261
4262
4263 if ((SrcBits % TyBits) != 0)
4264 break;
4265
4266
4268
4269
4271 if (Tmp == SrcBits)
4272 return TyBits;
4273 }
4274 break;
4275 }
4276 case Instruction::SExt:
4277 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
4279 Tmp;
4280
4281 case Instruction::SDiv: {
4282 const APInt *Denominator;
4283
4284 if (match(U->getOperand(1), m_APInt(Denominator))) {
4285
4286
4288 break;
4289
4290
4291 unsigned NumBits =
4293
4294
4295 return std::min(TyBits, NumBits + Denominator->logBase2());
4296 }
4297 break;
4298 }
4299
4300 case Instruction::SRem: {
4302
4303 const APInt *Denominator;
4304
4305
4306
4307 if (match(U->getOperand(1), m_APInt(Denominator))) {
4308
4309
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
4325 Tmp = std::max(Tmp, ResBits);
4326 }
4327 }
4328 return Tmp;
4329 }
4330
4331 case Instruction::AShr: {
4333
4334 const APInt *ShAmt;
4335 if (match(U->getOperand(1), m_APInt(ShAmt))) {
4336 if (ShAmt->uge(TyBits))
4337 break;
4338 unsigned ShAmtLimited = ShAmt->getZExtValue();
4339 Tmp += ShAmtLimited;
4340 if (Tmp > TyBits) Tmp = TyBits;
4341 }
4342 return Tmp;
4343 }
4344 case Instruction::Shl: {
4345 const APInt *ShAmt;
4347 if (match(U->getOperand(1), m_APInt(ShAmt))) {
4348
4349 if (ShAmt->uge(TyBits))
4350 break;
4351
4352
4354 ShAmt->uge(TyBits - X->getType()->getScalarSizeInBits())) {
4356 Tmp += TyBits - X->getType()->getScalarSizeInBits();
4357 } else
4358 Tmp =
4360 if (ShAmt->uge(Tmp))
4361 break;
4363 return Tmp - Tmp2;
4364 }
4365 break;
4366 }
4367 case Instruction::And:
4368 case Instruction::Or:
4369 case Instruction::Xor:
4370
4372 if (Tmp != 1) {
4374 FirstAnswer = std::min(Tmp, Tmp2);
4375
4376
4377
4378 }
4379 break;
4380
4381 case Instruction::Select: {
4382
4383
4385 const APInt *CLow, *CHigh;
4388
4390 if (Tmp == 1)
4391 break;
4393 return std::min(Tmp, Tmp2);
4394 }
4395
4396 case Instruction::Add:
4397
4398
4400 if (Tmp == 1) break;
4401
4402
4404 if (CRHS->isAllOnesValue()) {
4407
4408
4409
4410 if ((Known.Zero | 1).isAllOnes())
4411 return TyBits;
4412
4413
4414
4416 return Tmp;
4417 }
4418
4420 if (Tmp2 == 1)
4421 break;
4422 return std::min(Tmp, Tmp2) - 1;
4423
4424 case Instruction::Sub:
4426 if (Tmp2 == 1)
4427 break;
4428
4429
4431 if (CLHS->isNullValue()) {
4434
4435
4436 if ((Known.Zero | 1).isAllOnes())
4437 return TyBits;
4438
4439
4440
4441
4443 return Tmp2;
4444
4445
4446 }
4447
4448
4449
4451 if (Tmp == 1)
4452 break;
4453 return std::min(Tmp, Tmp2) - 1;
4454
4455 case Instruction::Mul: {
4456
4457
4458 unsigned SignBitsOp0 =
4460 if (SignBitsOp0 == 1)
4461 break;
4462 unsigned SignBitsOp1 =
4464 if (SignBitsOp1 == 1)
4465 break;
4466 unsigned OutValidBits =
4467 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
4468 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
4469 }
4470
4471 case Instruction::PHI: {
4474
4475 if (NumIncomingValues > 4) break;
4476
4477 if (NumIncomingValues == 0) break;
4478
4479
4480
4482 Tmp = TyBits;
4483 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4484 if (Tmp == 1) return Tmp;
4487 DemandedElts, RecQ, Depth + 1));
4488 }
4489 return Tmp;
4490 }
4491
4492 case Instruction::Trunc: {
4493
4494
4495
4497 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4498 if (Tmp > (OperandTyBits - TyBits))
4499 return Tmp - (OperandTyBits - TyBits);
4500
4501 return 1;
4502 }
4503
4504 case Instruction::ExtractElement:
4505
4506
4507
4508
4510
4511 case Instruction::ShuffleVector: {
4512
4513
4515 if (!Shuf) {
4516
4517 return 1;
4518 }
4519 APInt DemandedLHS, DemandedRHS;
4520
4521
4523 return 1;
4524 Tmp = std::numeric_limits::max();
4525 if (!!DemandedLHS) {
4526 const Value *LHS = Shuf->getOperand(0);
4528 }
4529
4530
4531 if (Tmp == 1)
4532 break;
4533 if (!!DemandedRHS) {
4534 const Value *RHS = Shuf->getOperand(1);
4536 Tmp = std::min(Tmp, Tmp2);
4537 }
4538
4539
4540 if (Tmp == 1)
4541 break;
4542 assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
4543 return Tmp;
4544 }
4545 case Instruction::Call: {
4547 switch (II->getIntrinsicID()) {
4548 default:
4549 break;
4550 case Intrinsic::abs:
4551 Tmp =
4553 if (Tmp == 1)
4554 break;
4555
4556
4557 return Tmp - 1;
4558 case Intrinsic::smin:
4559 case Intrinsic::smax: {
4560 const APInt *CLow, *CHigh;
4563 }
4564 }
4565 }
4566 }
4567 }
4568 }
4569
4570
4571
4572
4573
4574
4575 if (unsigned VecSignBits =
4577 return VecSignBits;
4578
4581
4582
4583
4585}
4586
4590 if ()
4592
4593 if (F->isIntrinsic())
4594 return F->getIntrinsicID();
4595
4596
4597
4598
4599 LibFunc Func;
4600 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
4603
4604 switch (Func) {
4605 default:
4606 break;
4607 case LibFunc_sin:
4608 case LibFunc_sinf:
4609 case LibFunc_sinl:
4610 return Intrinsic::sin;
4611 case LibFunc_cos:
4612 case LibFunc_cosf:
4613 case LibFunc_cosl:
4614 return Intrinsic::cos;
4615 case LibFunc_tan:
4616 case LibFunc_tanf:
4617 case LibFunc_tanl:
4618 return Intrinsic::tan;
4619 case LibFunc_asin:
4620 case LibFunc_asinf:
4621 case LibFunc_asinl:
4622 return Intrinsic::asin;
4623 case LibFunc_acos:
4624 case LibFunc_acosf:
4625 case LibFunc_acosl:
4626 return Intrinsic::acos;
4627 case LibFunc_atan:
4628 case LibFunc_atanf:
4629 case LibFunc_atanl:
4630 return Intrinsic::atan;
4631 case LibFunc_atan2:
4632 case LibFunc_atan2f:
4633 case LibFunc_atan2l:
4634 return Intrinsic::atan2;
4635 case LibFunc_sinh:
4636 case LibFunc_sinhf:
4637 case LibFunc_sinhl:
4638 return Intrinsic::sinh;
4639 case LibFunc_cosh:
4640 case LibFunc_coshf:
4641 case LibFunc_coshl:
4642 return Intrinsic::cosh;
4643 case LibFunc_tanh:
4644 case LibFunc_tanhf:
4645 case LibFunc_tanhl:
4646 return Intrinsic::tanh;
4647 case LibFunc_exp:
4648 case LibFunc_expf:
4649 case LibFunc_expl:
4650 return Intrinsic::exp;
4651 case LibFunc_exp2:
4652 case LibFunc_exp2f:
4653 case LibFunc_exp2l:
4654 return Intrinsic::exp2;
4655 case LibFunc_exp10:
4656 case LibFunc_exp10f:
4657 case LibFunc_exp10l:
4658 return Intrinsic::exp10;
4659 case LibFunc_log:
4660 case LibFunc_logf:
4661 case LibFunc_logl:
4662 return Intrinsic::log;
4663 case LibFunc_log10:
4664 case LibFunc_log10f:
4665 case LibFunc_log10l:
4666 return Intrinsic::log10;
4667 case LibFunc_log2:
4668 case LibFunc_log2f:
4669 case LibFunc_log2l:
4670 return Intrinsic::log2;
4671 case LibFunc_fabs:
4672 case LibFunc_fabsf:
4673 case LibFunc_fabsl:
4674 return Intrinsic::fabs;
4675 case LibFunc_fmin:
4676 case LibFunc_fminf:
4677 case LibFunc_fminl:
4678 return Intrinsic::minnum;
4679 case LibFunc_fmax:
4680 case LibFunc_fmaxf:
4681 case LibFunc_fmaxl:
4682 return Intrinsic::maxnum;
4683 case LibFunc_copysign:
4684 case LibFunc_copysignf:
4685 case LibFunc_copysignl:
4686 return Intrinsic::copysign;
4687 case LibFunc_floor:
4688 case LibFunc_floorf:
4689 case LibFunc_floorl:
4690 return Intrinsic::floor;
4691 case LibFunc_ceil:
4692 case LibFunc_ceilf:
4693 case LibFunc_ceill:
4694 return Intrinsic::ceil;
4695 case LibFunc_trunc:
4696 case LibFunc_truncf:
4697 case LibFunc_truncl:
4698 return Intrinsic::trunc;
4699 case LibFunc_rint:
4700 case LibFunc_rintf:
4701 case LibFunc_rintl:
4702 return Intrinsic::rint;
4703 case LibFunc_nearbyint:
4704 case LibFunc_nearbyintf:
4705 case LibFunc_nearbyintl:
4706 return Intrinsic::nearbyint;
4707 case LibFunc_round:
4708 case LibFunc_roundf:
4709 case LibFunc_roundl:
4710 return Intrinsic::round;
4711 case LibFunc_roundeven:
4712 case LibFunc_roundevenf:
4713 case LibFunc_roundevenl:
4714 return Intrinsic::roundeven;
4715 case LibFunc_pow:
4716 case LibFunc_powf:
4717 case LibFunc_powl:
4718 return Intrinsic::pow;
4719 case LibFunc_sqrt:
4720 case LibFunc_sqrtf:
4721 case LibFunc_sqrtl:
4722 return Intrinsic::sqrt;
4723 }
4724
4726}
4727
4729 Ty = Ty->getScalarType();
4733}
4734
4735
4736
4738 bool &TrueIfSigned) {
4739 switch (Pred) {
4741 TrueIfSigned = true;
4742 return RHS.isZero();
4744 TrueIfSigned = true;
4745 return RHS.isAllOnes();
4747 TrueIfSigned = false;
4748 return RHS.isAllOnes();
4750 TrueIfSigned = false;
4751 return RHS.isZero();
4753
4754 TrueIfSigned = true;
4755 return RHS.isMaxSignedValue();
4757
4758 TrueIfSigned = true;
4759 return RHS.isMinSignedValue();
4761
4762 TrueIfSigned = false;
4763 return RHS.isMinSignedValue();
4765
4766 TrueIfSigned = false;
4767 return RHS.isMaxSignedValue();
4768 default:
4769 return false;
4770 }
4771}
4772
4774 bool CondIsTrue,
4777 unsigned Depth = 0) {
4786 return;
4787 }
4791 return;
4792 }
4800 Pred, *CxtI->getParent()->getParent(), LHS, *CRHS, LHS != V);
4801 if (CmpVal == V)
4802 KnownFromContext.knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4806 KnownFromContext.knownNot(CondIsTrue ? ~Mask : Mask);
4809 bool TrueIfSigned;
4811 return;
4812 if (TrueIfSigned == CondIsTrue)
4814 else
4816 }
4817}
4818
4822
4825 KnownFromContext);
4826
4827 if (!Q.CxtI)
4828 return KnownFromContext;
4829
4831
4833 Value *Cond = BI->getCondition();
4834
4835 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
4838 KnownFromContext);
4839
4840 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
4843 KnownFromContext);
4844 }
4845 }
4846
4847 if (!Q.AC)
4848 return KnownFromContext;
4849
4850
4851
4853 if (!AssumeVH)
4854 continue;
4856
4858 "Got assumption for the wrong function!");
4859 assert(I->getIntrinsicID() == Intrinsic::assume &&
4860 "must be an assume intrinsic");
4861
4863 continue;
4864
4866 true, Q.CxtI, KnownFromContext);
4867 }
4868
4869 return KnownFromContext;
4870}
4871
4875
4880 APInt DemandedElts =
4883}
4884
4886 const APInt &DemandedElts,
4890 unsigned Depth) {
4891 if ((InterestedClasses &
4893 return;
4894
4897 KnownSrc, Q, Depth + 1);
4898
4899
4900
4903
4905
4906
4907}
4908
4912 assert(Known.isUnknown() && "should not be called with known information");
4913
4914 if (!DemandedElts) {
4915
4917 return;
4918 }
4919
4921
4923 Known.KnownFPClasses = CFP->getValueAPF().classify();
4924 Known.SignBit = CFP->isNegative();
4925 return;
4926 }
4927
4931 return;
4932 }
4933
4937 return;
4938 }
4939
4940
4943 if (VFVTy && CV) {
4945 bool SignBitAllZero = true;
4946 bool SignBitAllOne = true;
4947
4948
4949 unsigned NumElts = VFVTy->getNumElements();
4950 for (unsigned i = 0; i != NumElts; ++i) {
4951 if (!DemandedElts[i])
4952 continue;
4953
4955 if (!Elt) {
4957 return;
4958 }
4960 continue;
4962 if (!CElt) {
4964 return;
4965 }
4966
4967 const APFloat &C = CElt->getValueAPF();
4969 if (C.isNegative())
4970 SignBitAllZero = false;
4971 else
4972 SignBitAllOne = false;
4973 }
4974 if (SignBitAllOne != SignBitAllZero)
4975 Known.SignBit = SignBitAllOne;
4976 return;
4977 }
4978
4981 KnownNotFromFlags |= CB->getRetNoFPClass();
4983 KnownNotFromFlags |= Arg->getNoFPClass();
4984
4987 if (FPOp->hasNoNaNs())
4988 KnownNotFromFlags |= fcNan;
4989 if (FPOp->hasNoInfs())
4990 KnownNotFromFlags |= fcInf;
4991 }
4992
4994 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
4995
4996
4997
4998 InterestedClasses &= ~KnownNotFromFlags;
4999
5000 auto ClearClassesFromFlags = make_scope_exit([=, &Known] {
5001 Known.knownNot(KnownNotFromFlags);
5003 if (*AssumedClasses.SignBit)
5005 else
5007 }
5008 });
5009
5010 if ()
5011 return;
5012
5013
5015 return;
5016
5017 const unsigned Opc = Op->getOpcode();
5018 switch (Opc) {
5019 case Instruction::FNeg: {
5021 Known, Q, Depth + 1);
5022 Known.fneg();
5023 break;
5024 }
5025 case Instruction::Select: {
5029
5032
5033 Value *TestedValue = nullptr;
5039 Value *CmpLHS, *CmpRHS;
5041
5042
5043
5044
5045
5046 bool LookThroughFAbsFNeg = CmpLHS != LHS && CmpLHS != RHS;
5047 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
5048 fcmpImpliesClass(Pred, *F, CmpLHS, CmpRHS, LookThroughFAbsFNeg);
5053 MaskIfTrue = TestedMask;
5054 MaskIfFalse = ~TestedMask;
5055 }
5056
5057 if (TestedValue == LHS) {
5058
5059 FilterLHS = MaskIfTrue;
5060 } else if (TestedValue == RHS) {
5061
5062 FilterRHS = MaskIfFalse;
5063 }
5064
5069
5071 Known2, Q, Depth + 1);
5073
5074 Known |= Known2;
5075 break;
5076 }
5077 case Instruction::Call: {
5080 switch (IID) {
5081 case Intrinsic::fabs: {
5083
5084
5086 InterestedClasses, Known, Q, Depth + 1);
5087 }
5088
5089 Known.fabs();
5090 break;
5091 }
5092 case Intrinsic::copysign: {
5094
5096 Known, Q, Depth + 1);
5098 KnownSign, Q, Depth + 1);
5100 break;
5101 }
5102 case Intrinsic::fma:
5103 case Intrinsic::fmuladd: {
5105 break;
5106
5107 if (II->getArgOperand(0) != II->getArgOperand(1))
5108 break;
5109
5110
5112
5113
5116 KnownAddend, Q, Depth + 1);
5117
5120 break;
5121 }
5122 case Intrinsic::sqrt:
5123 case Intrinsic::experimental_constrained_sqrt: {
5125 FPClassTest InterestedSrcs = InterestedClasses;
5126 if (InterestedClasses & fcNan)
5128
5130 KnownSrc, Q, Depth + 1);
5131
5136
5137
5140
5141
5143
5144
5145
5148 II->getType()->getScalarType()->getFltSemantics();
5149
5151 (F &&
5154
5155 break;
5156 }
5157 case Intrinsic::sin:
5158 case Intrinsic::cos: {
5159
5162 KnownSrc, Q, Depth + 1);
5166 break;
5167 }
5168 case Intrinsic::maxnum:
5169 case Intrinsic::minnum:
5170 case Intrinsic::minimum:
5171 case Intrinsic::maximum:
5172 case Intrinsic::minimumnum:
5173 case Intrinsic::maximumnum: {
5176 KnownLHS, Q, Depth + 1);
5178 KnownRHS, Q, Depth + 1);
5179
5181 Known = KnownLHS | KnownRHS;
5182
5183
5184 if (NeverNaN &&
5185 (IID == Intrinsic::minnum || IID == Intrinsic::maxnum ||
5186 IID == Intrinsic::minimumnum || IID == Intrinsic::maximumnum))
5188
5189 if (IID == Intrinsic::maxnum || IID == Intrinsic::maximumnum) {
5190
5191
5197 } else if (IID == Intrinsic::maximum) {
5198
5199
5203 } else if (IID == Intrinsic::minnum || IID == Intrinsic::minimumnum) {
5204
5205
5211 } else if (IID == Intrinsic::minimum) {
5212
5213
5217 } else
5219
5220
5221
5222
5223
5224
5225
5226
5229 const Function *Parent = II->getFunction();
5230 if (!Parent)
5231 break;
5232
5234 II->getType()->getScalarType()->getFltSemantics());
5237 }
5238
5244 else
5246 } else if ((IID == Intrinsic::maximum || IID == Intrinsic::minimum ||
5247 IID == Intrinsic::maximumnum ||
5248 IID == Intrinsic::minimumnum) ||
5249
5254
5256 KnownLHS.SignBit = std::nullopt;
5258 KnownRHS.SignBit = std::nullopt;
5259 if ((IID == Intrinsic::maximum || IID == Intrinsic::maximumnum ||
5260 IID == Intrinsic::maxnum) &&
5261 (KnownLHS.SignBit == false || KnownRHS.SignBit == false))
5263 else if ((IID == Intrinsic::minimum || IID == Intrinsic::minimumnum ||
5264 IID == Intrinsic::minnum) &&
5265 (KnownLHS.SignBit == true || KnownRHS.SignBit == true))
5267 }
5268 }
5269 break;
5270 }
5271 case Intrinsic::canonicalize: {
5274 KnownSrc, Q, Depth + 1);
5275
5276
5277
5278
5279
5280
5281
5283
5284
5285
5288 else
5290
5292 if ()
5293 break;
5294
5295
5296
5298 II->getType()->getScalarType()->getFltSemantics();
5299 DenormalMode DenormMode = F->getDenormalMode(FPType);
5305 break;
5306 }
5307
5310
5315
5316 break;
5317 }
5318 case Intrinsic::vector_reduce_fmax:
5319 case Intrinsic::vector_reduce_fmin:
5320 case Intrinsic::vector_reduce_fmaximum:
5321 case Intrinsic::vector_reduce_fminimum: {
5322
5323
5325 InterestedClasses, Q, Depth + 1);
5326
5329 break;
5330 }
5331
5332 case Intrinsic::vector_reverse:
5334 II->getArgOperand(0), DemandedElts.reverseBits(),
5335 II->getFastMathFlags(), InterestedClasses, Q, Depth + 1);
5336 break;
5337 case Intrinsic::trunc:
5338 case Intrinsic:🤣
5339 case Intrinsic::ceil:
5340 case Intrinsic::rint:
5341 case Intrinsic::nearbyint:
5342 case Intrinsic::round:
5343 case Intrinsic::roundeven: {
5345 FPClassTest InterestedSrcs = InterestedClasses;
5351 KnownSrc, Q, Depth + 1);
5352
5353
5355
5357
5358
5359
5360 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
5365 }
5366
5367
5372
5373 break;
5374 }
5375 case Intrinsic::exp:
5376 case Intrinsic::exp2:
5377 case Intrinsic::exp10: {
5379 if ((InterestedClasses & fcNan) == fcNone)
5380 break;
5381
5384 KnownSrc, Q, Depth + 1);
5388 }
5389
5390 break;
5391 }
5392 case Intrinsic::fptrunc_round: {
5395 break;
5396 }
5397 case Intrinsic:🪵
5398 case Intrinsic::log10:
5399 case Intrinsic::log2:
5400 case Intrinsic::experimental_constrained_log:
5401 case Intrinsic::experimental_constrained_log10:
5402 case Intrinsic::experimental_constrained_log2: {
5403
5404
5405
5406
5408 break;
5409
5410 FPClassTest InterestedSrcs = InterestedClasses;
5413 if ((InterestedClasses & fcNan) != fcNone)
5415
5418 KnownSrc, Q, Depth + 1);
5419
5422
5425
5427
5428 if ()
5429 break;
5430
5432 II->getType()->getScalarType()->getFltSemantics();
5434
5437
5438 break;
5439 }
5440 case Intrinsic::powi: {
5442 break;
5443
5444 const Value *Exp = II->getArgOperand(1);
5445 Type *ExpTy = Exp->getType();
5449 ExponentKnownBits, Q, Depth + 1);
5450
5451 if (ExponentKnownBits.Zero[0]) {
5453 break;
5454 }
5455
5456
5457
5458
5459
5460
5461
5462
5463
5466 KnownSrc, Q, Depth + 1);
5469 break;
5470 }
5471 case Intrinsic::ldexp: {
5474 KnownSrc, Q, Depth + 1);
5475 Known.propagateNaN(KnownSrc, true);
5476
5477
5482
5487
5488
5490 if ((InterestedClasses & ExpInfoMask) == fcNone)
5491 break;
5493 break;
5494
5496 II->getType()->getScalarType()->getFltSemantics();
5498 const Value *ExpArg = II->getArgOperand(1);
5501
5502 const int MantissaBits = Precision - 1;
5503 if (ExpRange.getSignedMin().sge(static_cast<int64_t>(MantissaBits)))
5505
5509 II->getType()->getScalarType()->getFltSemantics();
5510 if (ConstVal && ConstVal->isZero()) {
5511
5514
5520
5525 if (F &&
5528 if (F &&
5531 }
5532
5533 break;
5534 }
5535 case Intrinsic::arithmetic_fence: {
5537 Known, Q, Depth + 1);
5538 break;
5539 }
5540 case Intrinsic::experimental_constrained_sitofp:
5541 case Intrinsic::experimental_constrained_uitofp:
5542
5544
5545
5547
5548
5550
5551 if (IID == Intrinsic::experimental_constrained_uitofp)
5553
5554
5555 break;
5556 default:
5557 break;
5558 }
5559
5560 break;
5561 }
5562 case Instruction::FAdd:
5563 case Instruction::FSub: {
5565 bool WantNegative =
5566 Op->getOpcode() == Instruction::FAdd &&
5568 bool WantNaN = (InterestedClasses & fcNan) != fcNone;
5569 bool WantNegZero = (InterestedClasses & fcNegZero) != fcNone;
5570
5571 if (!WantNaN && !WantNegative && !WantNegZero)
5572 break;
5573
5574 FPClassTest InterestedSrcs = InterestedClasses;
5575 if (WantNegative)
5577 if (InterestedClasses & fcNan)
5578 InterestedSrcs |= fcInf;
5580 KnownRHS, Q, Depth + 1);
5581
5584 WantNegZero || Opc == Instruction::FSub) {
5585
5586
5587
5589 KnownLHS, Q, Depth + 1);
5590
5591
5595
5596
5598
5599 if (Op->getOpcode() == Instruction::FAdd) {
5603 if ()
5604 break;
5605
5607 Op->getType()->getScalarType()->getFltSemantics();
5609
5610
5613
5616 } else {
5617 if ()
5618 break;
5619
5621 Op->getType()->getScalarType()->getFltSemantics();
5623
5624
5627
5630 }
5631 }
5632
5633 break;
5634 }
5635 case Instruction::FMul: {
5636
5637 if (Op->getOperand(0) == Op->getOperand(1))
5639
5640 if ((InterestedClasses & fcNan) != fcNan)
5641 break;
5642
5643
5645
5650 break;
5651
5655 break;
5656
5660 else
5662 }
5663
5664
5667 break;
5668 }
5669
5671 if ()
5672 break;
5673
5674 Type *OpTy = Op->getType()->getScalarType();
5677
5683
5684 break;
5685 }
5686 case Instruction::FDiv:
5687 case Instruction::FRem: {
5688 if (Op->getOperand(0) == Op->getOperand(1)) {
5689
5690 if (Op->getOpcode() == Instruction::FDiv) {
5691
5693 } else {
5694
5696 }
5697
5698 break;
5699 }
5700
5701 const bool WantNan = (InterestedClasses & fcNan) != fcNone;
5702 const bool WantNegative = (InterestedClasses & fcNegative) != fcNone;
5703 const bool WantPositive =
5705 if (!WantNan && !WantNegative && !WantPositive)
5706 break;
5707
5709
5713
5714 bool KnowSomethingUseful =
5716
5717 if (KnowSomethingUseful || WantPositive) {
5721
5723 InterestedClasses & InterestedLHS, KnownLHS, Q,
5725 }
5726
5729 Op->getType()->getScalarType()->getFltSemantics();
5730
5731 if (Op->getOpcode() == Instruction::FDiv) {
5732
5736 ((F &&
5738 (F &&
5741 }
5742
5743
5744
5747 } else {
5748
5753 }
5754
5755
5760
5761
5766 }
5767
5768 break;
5769 }
5770 case Instruction::FPExt: {
5771
5773 Known, Q, Depth + 1);
5774
5776 Op->getType()->getScalarType()->getFltSemantics();
5778 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5779
5780
5787 }
5788
5789
5791 Known.SignBit = std::nullopt;
5792 break;
5793 }
5794 case Instruction::FPTrunc: {
5797 break;
5798 }
5799 case Instruction::SIToFP:
5800 case Instruction::UIToFP: {
5801
5803
5804
5806
5807
5809 if (Op->getOpcode() == Instruction::UIToFP)
5811
5812 if (InterestedClasses & fcInf) {
5813
5814
5815
5816 int IntSize = Op->getOperand(0)->getType()->getScalarSizeInBits();
5817 if (Op->getOpcode() == Instruction::SIToFP)
5818 --IntSize;
5819
5820
5821
5822 Type *FPTy = Op->getType()->getScalarType();
5825 }
5826
5827 break;
5828 }
5829 case Instruction::ExtractElement: {
5830
5831
5832 const Value *Vec = Op->getOperand(0);
5833
5834 APInt DemandedVecElts;
5836 unsigned NumElts = VecTy->getNumElements();
5839 if (CIdx && CIdx->getValue().ult(NumElts))
5841 } else {
5842 DemandedVecElts = APInt(1, 1);
5843 }
5844
5845 return computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known,
5847 }
5848 case Instruction::InsertElement: {
5850 return;
5851
5852 const Value *Vec = Op->getOperand(0);
5853 const Value *Elt = Op->getOperand(1);
5855 unsigned NumElts = DemandedElts.getBitWidth();
5856 APInt DemandedVecElts = DemandedElts;
5857 bool NeedsElt = true;
5858
5859 if (CIdx && CIdx->getValue().ult(NumElts)) {
5860 DemandedVecElts.clearBit(CIdx->getZExtValue());
5861 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5862 }
5863
5864
5865 if (NeedsElt) {
5867
5869 break;
5870 } else {
5872 }
5873
5874
5875 if (!DemandedVecElts.isZero()) {
5879 Known |= Known2;
5880 }
5881
5882 break;
5883 }
5884 case Instruction::ShuffleVector: {
5885
5888 break;
5889 }
5890
5891
5892
5893 APInt DemandedLHS, DemandedRHS;
5896 return;
5897
5898 if (!!DemandedLHS) {
5899 const Value *LHS = Shuf->getOperand(0);
5902
5903
5905 break;
5906 } else {
5908 }
5909
5910 if (!!DemandedRHS) {
5912 const Value *RHS = Shuf->getOperand(1);
5915 Known |= Known2;
5916 }
5917
5918 break;
5919 }
5920 case Instruction::ExtractValue: {
5925 Indices[0] == 0) {
5927 switch (II->getIntrinsicID()) {
5928 case Intrinsic::frexp: {
5930
5933 InterestedClasses, KnownSrc, Q, Depth + 1);
5934
5937 Op->getType()->getScalarType()->getFltSemantics();
5938
5941 else {
5942 if (F &&
5947 }
5948
5951 else {
5952 if (F &&
5957 }
5958
5960 return;
5961 }
5962 default:
5963 break;
5964 }
5965 }
5966 }
5967
5970 break;
5971 }
5972 case Instruction::PHI: {
5974
5975 if (P->getNumIncomingValues() == 0)
5976 break;
5977
5978
5979
5981
5982 if (Depth < PhiRecursionLimit) {
5983
5985 break;
5986
5987 bool First = true;
5988
5989 for (const Use &U : P->operands()) {
5990 Value *IncValue;
5993
5994 if (IncValue == P)
5995 continue;
5996
5998
5999
6000
6001 computeKnownFPClass(IncValue, DemandedElts, InterestedClasses, KnownSrc,
6003 PhiRecursionLimit);
6004
6006 Known = KnownSrc;
6008 } else {
6009 Known |= KnownSrc;
6010 }
6011
6013 break;
6014 }
6015 }
6016
6017 break;
6018 }
6019 case Instruction::BitCast: {
6020 const Value *Src;
6022 !Src->getType()->isIntOrIntVectorTy())
6023 break;
6024
6025 const Type *Ty = Op->getType()->getScalarType();
6026 KnownBits Bits(Ty->getScalarSizeInBits());
6028
6029
6030 if (Bits.isNonNegative())
6032 else if (Bits.isNegative())
6034
6035 if (Ty->isIEEELikeFPTy()) {
6036
6037
6038
6039
6040
6041
6042
6043 if (APFloat(Ty->getFltSemantics(), Bits.One).isNaN())
6045 else if ((Ty->getFltSemantics(), ~Bits.Zero).isNaN())
6047
6048
6049
6051 APFloat::getInf(Ty->getFltSemantics()).bitcastToAPInt());
6052 InfKB.Zero.clearSignBit();
6053 if (const auto InfResult = KnownBits::eq(Bits, InfKB)) {
6054 assert(!InfResult.value());
6056 } else if (Bits == InfKB) {
6058 }
6059
6060
6061
6064 ZeroKB.Zero.clearSignBit();
6065 if (const auto ZeroResult = KnownBits::eq(Bits, ZeroKB)) {
6066 assert(!ZeroResult.value());
6068 } else if (Bits == ZeroKB) {
6070 }
6071 }
6072
6073 break;
6074 }
6075 default:
6076 break;
6077 }
6078}
6079
6081 const APInt &DemandedElts,
6084 unsigned Depth) {
6088 return KnownClasses;
6089}
6090
6094 unsigned Depth) {
6097 return Known;
6098}
6099
6108
6114 InterestedClasses &= ~fcNan;
6116 InterestedClasses &= ~fcInf;
6117
6120
6122 Result.KnownFPClasses &= ~fcNan;
6124 Result.KnownFPClasses &= ~fcInf;
6125 return Result;
6126}
6127
6131 unsigned Depth) {
6133 APInt DemandedElts =
6137}
6138
6140 unsigned Depth) {
6143}
6144
6146 unsigned Depth) {
6150}
6151
6153 unsigned Depth) {
6156}
6157
6158
6160 unsigned Depth) {
6163}
6164
6165
6166
6167
6169 unsigned Depth) {
6172}
6173
6174
6175
6176
6179 unsigned Depth) {
6182}
6183
6187 if (FPOp->hasNoSignedZeros())
6188 return true;
6189 }
6190
6191 switch (User->getOpcode()) {
6192 case Instruction::FPToSI:
6193 case Instruction::FPToUI:
6194 return true;
6195 case Instruction::FCmp:
6196
6197 return true;
6198 case Instruction::Call:
6200 switch (II->getIntrinsicID()) {
6201 case Intrinsic::fabs:
6202 return true;
6203 case Intrinsic::copysign:
6204 return U.getOperandNo() == 0;
6205 case Intrinsic::is_fpclass:
6206 case Intrinsic::vp_is_fpclass: {
6212 }
6213 default:
6214 return false;
6215 }
6216 }
6217 return false;
6218 default:
6219 return false;
6220 }
6221}
6222
6226 if (FPOp->hasNoNaNs())
6227 return true;
6228 }
6229
6230 switch (User->getOpcode()) {
6231 case Instruction::FPToSI:
6232 case Instruction::FPToUI:
6233 return true;
6234
6235 case Instruction::FAdd:
6236 case Instruction::FSub:
6237 case Instruction::FMul:
6238 case Instruction::FDiv:
6239 case Instruction::FRem:
6240 case Instruction::FPTrunc:
6241 case Instruction::FPExt:
6242 case Instruction::FCmp:
6243 return true;
6244
6245 case Instruction::FNeg:
6246 case Instruction::Select:
6247 case Instruction::PHI:
6248 return false;
6249 case Instruction::Ret:
6250 return User->getFunction()->getAttributes().getRetNoFPClass() &
6252 case Instruction::Call:
6253 case Instruction::Invoke: {
6255 switch (II->getIntrinsicID()) {
6256 case Intrinsic::fabs:
6257 return true;
6258 case Intrinsic::copysign:
6259 return U.getOperandNo() == 0;
6260
6261 case Intrinsic::maxnum:
6262 case Intrinsic::minnum:
6263 case Intrinsic::maximum:
6264 case Intrinsic::minimum:
6265 case Intrinsic::maximumnum:
6266 case Intrinsic::minimumnum:
6267 case Intrinsic::canonicalize:
6268 case Intrinsic::fma:
6269 case Intrinsic::fmuladd:
6270 case Intrinsic::sqrt:
6271 case Intrinsic::pow:
6272 case Intrinsic::powi:
6273 case Intrinsic::fptoui_sat:
6274 case Intrinsic::fptosi_sat:
6275 case Intrinsic::is_fpclass:
6276 case Intrinsic::vp_is_fpclass:
6277 return true;
6278 default:
6279 return false;
6280 }
6281 }
6282
6286 }
6287 default:
6288 return false;
6289 }
6290}
6291
6293
6294
6295 if (V->getType()->isIntegerTy(8))
6296 return V;
6297
6299
6300
6303 return UndefInt8;
6304
6305
6306 if (DL.getTypeStoreSize(V->getType()).isZero())
6308
6310 if () {
6311
6312
6313
6314
6315
6316
6317 return nullptr;
6318 }
6319
6320
6321 if (C->isNullValue())
6323
6324
6325
6327 Type *Ty = nullptr;
6328 if (CFP->getType()->isHalfTy())
6330 else if (CFP->getType()->isFloatTy())
6332 else if (CFP->getType()->isDoubleTy())
6334
6336 : nullptr;
6337 }
6338
6339
6341 if (CI->getBitWidth() % 8 == 0) {
6342 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
6343 if (!CI->getValue().isSplat(8))
6344 return nullptr;
6345 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6346 }
6347 }
6348
6350 if (CE->getOpcode() == Instruction::IntToPtr) {
6352 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6356 }
6357 }
6358 }
6359
6361 if (LHS == RHS)
6362 return LHS;
6363 if (!LHS || !RHS)
6364 return nullptr;
6365 if (LHS == UndefInt8)
6366 return RHS;
6367 if (RHS == UndefInt8)
6368 return LHS;
6369 return nullptr;
6370 };
6371
6373 Value *Val = UndefInt8;
6374 for (uint64_t I = 0, E = CA->getNumElements(); I != E; ++I)
6376 return nullptr;
6377 return Val;
6378 }
6379
6381 Value *Val = UndefInt8;
6382 for (Value *Op : C->operands())
6384 return nullptr;
6385 return Val;
6386 }
6387
6388
6389 return nullptr;
6390}
6391
6392
6393
6394
6395
6396
6397
6400 unsigned IdxSkip,
6403 if (STy) {
6404
6405 Value *OrigTo = To;
6406
6407 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
6408
6410 Value *PrevTo = To;
6412 InsertBefore);
6414 if (!To) {
6415
6416 while (PrevTo != OrigTo) {
6420 }
6421
6422 break;
6423 }
6424 }
6425
6426 if (To)
6427 return To;
6428 }
6429
6430
6431
6432
6433
6434
6436
6437 if (!V)
6438 return nullptr;
6439
6440
6442 InsertBefore);
6443}
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6460 idx_range);
6463 unsigned IdxSkip = Idxs.size();
6464
6465 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
6466}
6467
6468
6469
6470
6471
6472
6473
6476 std::optionalBasicBlock::iterator InsertBefore) {
6477
6478
6479 if (idx_range.empty())
6480 return V;
6481
6482 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6483 "Not looking at a struct or array?");
6485 "Invalid indices for type?");
6486
6488 C = C->getAggregateElement(idx_range[0]);
6489 if () return nullptr;
6491 }
6492
6494
6495
6496 const unsigned *req_idx = idx_range.begin();
6497 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
6498 i != e; ++i, ++req_idx) {
6499 if (req_idx == idx_range.end()) {
6500
6501 if (!InsertBefore)
6502 return nullptr;
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6515 *InsertBefore);
6516 }
6517
6518
6519
6520
6521 if (*req_idx != *i)
6523 InsertBefore);
6524 }
6525
6526
6527
6529 ArrayRef(req_idx, idx_range.end()), InsertBefore);
6530 }
6531
6533
6534
6535
6536
6537
6538 unsigned size = I->getNumIndices() + idx_range.size();
6539
6542
6543 Idxs.append(I->idx_begin(), I->idx_end());
6544
6545
6547
6549 && "Number of indices added not correct?");
6550
6551 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
6552 }
6553
6554
6555 return nullptr;
6556}
6557
6558
6559
6560
6561
6562
6566 assert(V && "V should not be null.");
6567 assert((ElementSize % 8) == 0 &&
6568 "ElementSize expected to be a multiple of the size of a byte.");
6569 unsigned ElementSizeInBytes = ElementSize / 8;
6570
6571
6572
6573
6577
6578 return false;
6579
6581 APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
6582
6584 true))
6585
6586 return false;
6587
6588 uint64_t StartIdx = Off.getLimitedValue();
6590
6591 return false;
6592
6593
6594
6595 if ((StartIdx % ElementSizeInBytes) != 0)
6596 return false;
6597
6598 Offset += StartIdx / ElementSizeInBytes;
6601
6604 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue();
6606
6607 Slice.Array = nullptr;
6608 Slice.Offset = 0;
6609
6610
6611
6612
6614 return true;
6615 }
6616
6619 Type *InitElTy = ArrayInit->getElementType();
6620 if (InitElTy->isIntegerTy(ElementSize)) {
6621
6622
6623 Array = ArrayInit;
6624 ArrayTy = ArrayInit->getType();
6625 }
6626 }
6627
6628 if (!Array) {
6629 if (ElementSize != 8)
6630
6631 return false;
6632
6633
6634
6637 return false;
6638
6642 }
6643
6645 if (Offset > NumElts)
6646 return false;
6647
6648 Slice.Array = Array;
6649 Slice.Offset = Offset;
6650 Slice.Length = NumElts - Offset;
6651 return true;
6652}
6653
6654
6655
6656
6657
6659 bool TrimAtNul) {
6662 return false;
6663
6664 if (Slice.Array == nullptr) {
6665 if (TrimAtNul) {
6666
6667
6668
6669
6670
6671
6673 return true;
6674 }
6675 if (Slice.Length == 1) {
6677 return true;
6678 }
6679
6680
6681 return false;
6682 }
6683
6684
6686
6687 Str = Str.substr(Slice.Offset);
6688
6689 if (TrimAtNul) {
6690
6691
6692
6693 Str = Str.substr(0, Str.find('\0'));
6694 }
6695 return true;
6696}
6697
6698
6699
6700
6701
6702
6703
6706 unsigned CharSize) {
6707
6708 V = V->stripPointerCasts();
6709
6710
6711
6713 if (!PHIs.insert(PN).second)
6714 return ~0ULL;
6715
6716
6718 for (Value *IncValue : PN->incoming_values()) {
6720 if (Len == 0) return 0;
6721
6722 if (Len == ~0ULL) continue;
6723
6724 if (Len != LenSoFar && LenSoFar != ~0ULL)
6725 return 0;
6726 LenSoFar = Len;
6727 }
6728
6729
6730 return LenSoFar;
6731 }
6732
6733
6736 if (Len1 == 0) return 0;
6738 if (Len2 == 0) return 0;
6739 if (Len1 == ~0ULL) return Len2;
6740 if (Len2 == ~0ULL) return Len1;
6741 if (Len1 != Len2) return 0;
6742 return Len1;
6743 }
6744
6745
6748 return 0;
6749
6750 if (Slice.Array == nullptr)
6751
6752 return 1;
6753
6754
6755
6756
6757
6758 unsigned NullIndex = 0;
6759 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
6760 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6761 break;
6762 }
6763
6764 return NullIndex + 1;
6765}
6766
6767
6768
6770 if (!V->getType()->isPointerTy())
6771 return 0;
6772
6775
6776
6777 return Len == ~0ULL ? 1 : Len;
6778}
6779
6782 bool MustPreserveNullness) {
6784 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6785 if (const Value *RV = Call->getReturnedArgOperand())
6786 return RV;
6787
6789 Call, MustPreserveNullness))
6790 return Call->getArgOperand(0);
6791 return nullptr;
6792}
6793
6795 const CallBase *Call, bool MustPreserveNullness) {
6796 switch (Call->getIntrinsicID()) {
6797 case Intrinsic::launder_invariant_group:
6798 case Intrinsic::strip_invariant_group:
6799 case Intrinsic::aarch64_irg:
6800 case Intrinsic::aarch64_tagp:
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810 case Intrinsic::amdgcn_make_buffer_rsrc:
6811 return true;
6812 case Intrinsic::ptrmask:
6813 return !MustPreserveNullness;
6814 case Intrinsic::threadlocal_address:
6815
6816
6817 return ->getParent()->getParent()->isPresplitCoroutine();
6818 default:
6819 return false;
6820 }
6821}
6822
6823
6824
6827
6830 return true;
6831
6832
6834 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
6836 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
6837 return true;
6838
6839
6840
6841
6842
6843
6845 if (!L->isLoopInvariant(Load->getPointerOperand()))
6846 return false;
6847 return true;
6848}
6849
6851 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
6853 const Value *PtrOp = GEP->getPointerOperand();
6854 if (!PtrOp->getType()->isPointerTy())
6855 return V;
6856 V = PtrOp;
6861 return V;
6862 V = NewV;
6864 if (GA->isInterposable())
6865 return V;
6866 V = GA->getAliasee();
6867 } else {
6869
6870 if (PHI->getNumIncomingValues() == 1) {
6871 V = PHI->getIncomingValue(0);
6872 continue;
6873 }
6875
6876
6877
6878
6879
6880
6881
6882
6883
6885 V = RP;
6886 continue;
6887 }
6888 }
6889
6890 return V;
6891 }
6892 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
6893 }
6894 return V;
6895}
6896
6899 const LoopInfo *LI, unsigned MaxLookup) {
6903 do {
6906
6907 if (!Visited.insert(P).second)
6908 continue;
6909
6912 Worklist.push_back(SI->getFalseValue());
6913 continue;
6914 }
6915
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
6929 append_range(Worklist, PN->incoming_values());
6930 else
6932 continue;
6933 }
6934
6936 } while (!Worklist.empty());
6937}
6938
6940 const unsigned MaxVisited = 8;
6941
6945 const Value *Object = nullptr;
6946
6947
6948 bool First = true;
6950 do {
6954
6955 if (!Visited.insert(P).second)
6956 continue;
6957
6958 if (Visited.size() == MaxVisited)
6959 return FirstObject;
6960
6963 Worklist.push_back(SI->getFalseValue());
6964 continue;
6965 }
6966
6968 append_range(Worklist, PN->incoming_values());
6969 continue;
6970 }
6971
6972 if (!Object)
6973 Object = P;
6974 else if (Object != P)
6975 return FirstObject;
6976 } while (!Worklist.empty());
6977
6978 return Object ? Object : FirstObject;
6979}
6980
6981
6982
6984 do {
6986
6987
6988 if (U->getOpcode() == Instruction::PtrToInt)
6989 return U->getOperand(0);
6990
6991
6992
6993
6994
6995
6996 if (U->getOpcode() != Instruction::Add ||
7000 return V;
7001 V = U->getOperand(0);
7002 } else {
7003 return V;
7004 }
7005 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
7006 } while (true);
7007}
7008
7009
7010
7011
7016 do {
7018
7021
7022 for (const Value *V : Objs) {
7023 if (!Visited.insert(V).second)
7024 continue;
7026 const Value *O =
7028 if (O->getType()->isPointerTy()) {
7030 continue;
7031 }
7032 }
7033
7034
7036 Objects.clear();
7037 return false;
7038 }
7040 }
7041 } while (!Working.empty());
7042 return true;
7043}
7044
7049
7050 auto AddWork = [&](Value *V) {
7051 if (Visited.insert(V).second)
7053 };
7054
7055 AddWork(V);
7056 do {
7059
7061 if (Result && Result != AI)
7062 return nullptr;
7063 Result = AI;
7065 AddWork(CI->getOperand(0));
7067 for (Value *IncValue : PN->incoming_values())
7068 AddWork(IncValue);
7070 AddWork(SI->getTrueValue());
7071 AddWork(SI->getFalseValue());
7073 if (OffsetZero && ->hasAllZeroIndices())
7074 return nullptr;
7075 AddWork(GEP->getPointerOperand());
7077 Value *Returned = CB->getReturnedArgOperand();
7078 if (Returned)
7079 AddWork(Returned);
7080 else
7081 return nullptr;
7082 } else {
7083 return nullptr;
7084 }
7085 } while (!Worklist.empty());
7086
7087 return Result;
7088}
7089
7091 const Value *V, bool AllowLifetime, bool AllowDroppable) {
7092 for (const User *U : V->users()) {
7094 if ()
7095 return false;
7096
7097 if (AllowLifetime && II->isLifetimeStartOrEnd())
7098 continue;
7099
7100 if (AllowDroppable && II->isDroppable())
7101 continue;
7102
7103 return false;
7104 }
7105 return true;
7106}
7107
7110 V, true, false);
7111}
7114 V, true, true);
7115}
7116
7121 return (!Shuffle || Shuffle->isSelect()) &&
7123}
7124
7128 bool IgnoreUBImplyingAttrs) {
7130 AC, DT, TLI, UseVariableInfo,
7131 IgnoreUBImplyingAttrs);
7132}
7133
7137 bool UseVariableInfo, bool IgnoreUBImplyingAttrs) {
7138#ifndef NDEBUG
7139 if (Inst->getOpcode() != Opcode) {
7140
7141 auto hasEqualReturnAndLeadingOperandTypes =
7142 [](const Instruction *Inst, unsigned NumLeadingOperands) {
7144 return false;
7145 const Type *ExpectedType = Inst->getType();
7146 for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
7148 return false;
7149 return true;
7150 };
7152 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
7154 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
7155 }
7156#endif
7157
7158 switch (Opcode) {
7159 default:
7160 return true;
7161 case Instruction::UDiv:
7162 case Instruction::URem: {
7163
7166 return *V != 0;
7167 return false;
7168 }
7169 case Instruction::SDiv:
7170 case Instruction::SRem: {
7171
7172 const APInt *Numerator, *Denominator;
7174 return false;
7175
7176 if (*Denominator == 0)
7177 return false;
7178
7180 return true;
7181
7182
7185
7186 return false;
7187 }
7188 case Instruction::Load: {
7189 if (!UseVariableInfo)
7190 return false;
7191
7193 if (!LI)
7194 return false;
7196 return false;
7200 CtxI, AC, DT, TLI);
7201 }
7202 case Instruction::Call: {
7204 if (!CI)
7205 return false;
7206 const Function *Callee = CI->getCalledFunction();
7207
7208
7209
7210 if (!Callee || !Callee->isSpeculatable())
7211 return false;
7212
7213
7214 return IgnoreUBImplyingAttrs || !CI->hasUBImplyingAttrs();
7215 }
7216 case Instruction::VAArg:
7217 case Instruction::Alloca:
7218 case Instruction::Invoke:
7219 case Instruction::CallBr:
7220 case Instruction::PHI:
7221 case Instruction::Store:
7222 case Instruction::Ret:
7223 case Instruction::Br:
7224 case Instruction::IndirectBr:
7225 case Instruction::Switch:
7226 case Instruction::Unreachable:
7227 case Instruction::Fence:
7228 case Instruction::AtomicRMW:
7229 case Instruction::AtomicCmpXchg:
7230 case Instruction::LandingPad:
7231 case Instruction::Resume:
7232 case Instruction::CatchSwitch:
7233 case Instruction::CatchPad:
7234 case Instruction::CatchRet:
7235 case Instruction::CleanupPad:
7236 case Instruction::CleanupRet:
7237 return false;
7238 }
7239}
7240
7242 if (I.mayReadOrWriteMemory())
7243
7244 return true;
7246
7247
7248 return true;
7250
7251
7252
7253 return true;
7254 return false;
7255}
7256
7257
7259 switch (OR) {
7268 }
7270}
7271
7272
7275 bool ForSigned,
7283}
7284
7286 const Value *RHS,
7288 bool IsNSW) {
7291
7292
7295
7299}
7300
7302 const Value *RHS,
7304
7305
7306
7307
7308
7309
7310 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
7311
7312
7313
7314 unsigned SignBits =
7316
7317
7318
7319 if (SignBits > BitWidth + 1)
7321
7322
7323
7324
7325
7326
7327 if (SignBits == BitWidth + 1) {
7328
7329
7330
7331
7336 }
7338}
7339
7350
7355 if (Add && Add->hasNoSignedWrap()) {
7357 }
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7375
7383 return OR;
7384
7385
7386 if ()
7388
7389
7390
7391
7392
7393
7394 bool LHSOrRHSKnownNonNegative =
7396 bool LHSOrRHSKnownNegative =
7398 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7401 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
7402 (AddKnown.isNegative() && LHSOrRHSKnownNegative))
7404 }
7405
7407}
7408
7410 const Value *RHS,
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7427
7429 SQ.DL)) {
7430 if (*C)
7433 }
7434
7440}
7441
7443 const Value *RHS,
7445
7446
7447
7448
7449
7450
7451
7452
7457
7458
7459
7462
7468}
7469
7474
7475 for (const User *U : WO->users()) {
7477 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
7478
7479 if (EVI->getIndices()[0] == 0)
7481 else {
7482 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
7483
7484 for (const auto *U : EVI->users())
7486 assert(B->isConditional() && "How else is it using an i1?");
7488 }
7489 }
7490 } else {
7491
7492
7493 return false;
7494 }
7495 }
7496
7497 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
7498 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
7500 return false;
7501
7502
7503 for (const auto *Result : Results) {
7504
7505
7506 if (DT.dominates(NoWrapEdge, Result->getParent()))
7507 continue;
7508
7509 for (const auto &RU : Result->uses())
7510 if (!DT.dominates(NoWrapEdge, RU))
7511 return false;
7512 }
7513
7514 return true;
7515 };
7516
7517 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7518}
7519
7520
7523 if ()
7524 return false;
7525
7526
7529 unsigned NumElts = FVTy->getNumElements();
7530 for (unsigned i = 0; i < NumElts; ++i)
7531 ShiftAmounts.push_back(C->getAggregateElement(i));
7533 return false;
7534 else
7536
7539 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
7540 });
7541
7542 return Safe;
7543}
7544
7550
7554
7558
7560 bool ConsiderFlagsAndMetadata) {
7561
7562 if (ConsiderFlagsAndMetadata && includesPoison(Kind) &&
7563 Op->hasPoisonGeneratingAnnotations())
7564 return true;
7565
7566 unsigned Opcode = Op->getOpcode();
7567
7568
7569 switch (Opcode) {
7570 case Instruction::Shl:
7571 case Instruction::AShr:
7572 case Instruction::LShr:
7574 case Instruction::FPToSI:
7575 case Instruction::FPToUI:
7576
7577
7578 return true;
7579 case Instruction::Call:
7581 switch (II->getIntrinsicID()) {
7582
7583 case Intrinsic::ctlz:
7584 case Intrinsic::cttz:
7585 case Intrinsic::abs:
7587 return false;
7588 break;
7589 case Intrinsic::sshl_sat:
7590 case Intrinsic::ushl_sat:
7593 return false;
7594 break;
7595 }
7596 }
7597 [[fallthrough]];
7598 case Instruction::CallBr:
7599 case Instruction::Invoke: {
7601 return !CB->hasRetAttr(Attribute::NoUndef) &&
7602 !CB->hasFnAttr(Attribute::NoCreateUndefOrPoison);
7603 }
7604 case Instruction::InsertElement:
7605 case Instruction::ExtractElement: {
7606
7608 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7611 return !Idx ||
7612 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7613 return false;
7614 }
7615 case Instruction::ShuffleVector: {
7620 }
7621 case Instruction::FNeg:
7622 case Instruction::PHI:
7623 case Instruction::Select:
7624 case Instruction::ExtractValue:
7625 case Instruction::InsertValue:
7626 case Instruction::Freeze:
7627 case Instruction::ICmp:
7628 case Instruction::FCmp:
7629 case Instruction::GetElementPtr:
7630 return false;
7631 case Instruction::AddrSpaceCast:
7632 return true;
7633 default: {
7636 return false;
7638 return false;
7639
7640 return true;
7641 }
7642 }
7643}
7644
7646 bool ConsiderFlagsAndMetadata) {
7648 ConsiderFlagsAndMetadata);
7649}
7650
7653 ConsiderFlagsAndMetadata);
7654}
7655
7657 unsigned Depth) {
7658 if (ValAssumedPoison == V)
7659 return true;
7660
7661 const unsigned MaxDepth = 2;
7662 if (Depth >= MaxDepth)
7663 return false;
7664
7666 if (any_of(I->operands(), [=](const Use &Op) {
7667 return propagatesPoison(Op) &&
7668 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7669 }))
7670 return true;
7671
7672
7673
7674
7679 return true;
7680 }
7681 return false;
7682}
7683
7685 unsigned Depth) {
7687 return true;
7688
7690 return true;
7691
7692 const unsigned MaxDepth = 2;
7693 if (Depth >= MaxDepth)
7694 return false;
7695
7699 return impliesPoison(Op, V, Depth + 1);
7700 });
7701 }
7702 return false;
7703}
7704
7706 return ::impliesPoison(ValAssumedPoison, V, 0);
7707}
7708
7710
7715 return false;
7716
7718 return false;
7719
7721 if (A->hasAttribute(Attribute::NoUndef) ||
7722 A->hasAttribute(Attribute::Dereferenceable) ||
7723 A->hasAttribute(Attribute::DereferenceableOrNull))
7724 return true;
7725 }
7726
7730
7733
7736 return true;
7737
7738 if (C->getType()->isVectorTy()) {
7740
7741 if (Constant *SplatC = C->getSplatValue())
7743 return true;
7744 } else {
7745 if (includesUndef(Kind) && C->containsUndefElement())
7746 return false;
7748 return false;
7749 return ->containsConstantExpression();
7750 }
7751 }
7752 }
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7765 return true;
7766
7767 auto OpCheck = [&](const Value *V) {
7769 };
7770
7772
7773
7775 return true;
7776
7778 if (CB->hasRetAttr(Attribute::NoUndef) ||
7779 CB->hasRetAttr(Attribute::Dereferenceable) ||
7780 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7781 return true;
7782 }
7783
7785 true)) {
7787 unsigned Num = PN->getNumIncomingValues();
7788 bool IsWellDefined = true;
7789 for (unsigned i = 0; i < Num; ++i) {
7790 if (PN == PN->getIncomingValue(i))
7791 continue;
7792 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7794 DT, Depth + 1, Kind)) {
7795 IsWellDefined = false;
7796 break;
7797 }
7798 }
7799 if (IsWellDefined)
7800 return true;
7802 : nullptr) {
7803
7804 if (OpCheck(Splat))
7805 return true;
7806 } else if (all_of(Opr->operands(), OpCheck))
7807 return true;
7808 }
7809 }
7810
7812 if (I->hasMetadata(LLVMContext::MD_noundef) ||
7813 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7814 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7815 return true;
7816
7818 return true;
7819
7820
7821 if (!CtxI || !CtxI->getParent() || !DT)
7822 return false;
7823
7825 if (!DNode)
7826
7827 return false;
7828
7829
7830
7831
7832
7833
7834 auto *Dominator = DNode->getIDom();
7835
7836
7837 if ((Kind) || V->getType()->isIntegerTy())
7838 while (Dominator) {
7839 auto *TI = Dominator->getBlock()->getTerminator();
7840
7843 if (BI->isConditional())
7844 Cond = BI->getCondition();
7846 Cond = SI->getCondition();
7847 }
7848
7850 if (Cond == V)
7851 return true;
7853
7855 if (any_of(Opr->operands(), [V](const Use &U) {
7856 return V == U && propagatesPoison(U);
7857 }))
7858 return true;
7859 }
7860 }
7861
7862 Dominator = Dominator->getIDom();
7863 }
7864
7866 return true;
7867
7868 return false;
7869}
7870
7874 unsigned Depth) {
7875 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7877}
7878
7882 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7884}
7885
7889 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7891}
7892
7893
7894
7895
7896
7897
7898
7899
7903
7904
7905
7906
7907
7908
7909
7913 while (!Worklist.empty()) {
7915
7916
7918 return true;
7919
7920
7921
7922 if (I != Root && (I->operands(), [&KnownPoison](const Use &U) {
7923 return KnownPoison.contains(U) && propagatesPoison(U);
7924 }))
7925 continue;
7926
7927 if (KnownPoison.insert(I).second)
7928 for (const User *User : I->users())
7930 }
7931
7932
7933
7934 return false;
7935}
7936
7939 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
7940 Add, SQ);
7941}
7942
7947 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, SQ);
7948}
7949
7951
7952
7953
7954
7955
7957 return false;
7959 return false;
7960
7961
7962
7963
7964
7967 default:
7968
7969
7970 return false;
7972
7973 return true;
7974 }
7975 }
7976
7977
7978
7979 return ->mayThrow() && I->willReturn();
7980}
7981
7983
7984
7987 return false;
7988 return true;
7989}
7990
7993 unsigned ScanLimit) {
7995 ScanLimit);
7996}
7997
8000 assert(ScanLimit && "scan limit must be non-zero");
8002 if (--ScanLimit == 0)
8003 return false;
8005 return false;
8006 }
8007 return true;
8008}
8009
8011 const Loop *L) {
8012
8013
8014
8015
8016 if (I->getParent() != L->getHeader()) return false;
8017
8018 for (const Instruction &LI : *L->getHeader()) {
8019 if (&LI == I) return true;
8021 }
8022 llvm_unreachable("Instruction not contained in its own parent basic block.");
8023}
8024
8026 switch (IID) {
8027
8028 case Intrinsic::sadd_with_overflow:
8029 case Intrinsic::ssub_with_overflow:
8030 case Intrinsic::smul_with_overflow:
8031 case Intrinsic::uadd_with_overflow:
8032 case Intrinsic::usub_with_overflow:
8033 case Intrinsic::umul_with_overflow:
8034
8035
8036
8037 return true;
8038 case Intrinsic::ctpop:
8039 case Intrinsic::ctlz:
8040 case Intrinsic::cttz:
8041 case Intrinsic::abs:
8042 case Intrinsic::smax:
8043 case Intrinsic::smin:
8044 case Intrinsic::umax:
8045 case Intrinsic::umin:
8046 case Intrinsic::scmp:
8047 case Intrinsic::is_fpclass:
8048 case Intrinsic::ptrmask:
8049 case Intrinsic::ucmp:
8050 case Intrinsic::bitreverse:
8051 case Intrinsic::bswap:
8052 case Intrinsic::sadd_sat:
8053 case Intrinsic::ssub_sat:
8054 case Intrinsic::sshl_sat:
8055 case Intrinsic::uadd_sat:
8056 case Intrinsic::usub_sat:
8057 case Intrinsic::ushl_sat:
8058 case Intrinsic::smul_fix:
8059 case Intrinsic::smul_fix_sat:
8060 case Intrinsic::umul_fix:
8061 case Intrinsic::umul_fix_sat:
8062 case Intrinsic::pow:
8063 case Intrinsic::powi:
8064 case Intrinsic::sin:
8065 case Intrinsic::sinh:
8066 case Intrinsic::cos:
8067 case Intrinsic::cosh:
8068 case Intrinsic::sincos:
8069 case Intrinsic::sincospi:
8070 case Intrinsic::tan:
8071 case Intrinsic::tanh:
8072 case Intrinsic::asin:
8073 case Intrinsic::acos:
8074 case Intrinsic::atan:
8075 case Intrinsic::atan2:
8076 case Intrinsic::canonicalize:
8077 case Intrinsic::sqrt:
8078 case Intrinsic::exp:
8079 case Intrinsic::exp2:
8080 case Intrinsic::exp10:
8081 case Intrinsic:🪵
8082 case Intrinsic::log2:
8083 case Intrinsic::log10:
8084 case Intrinsic::modf:
8085 case Intrinsic:🤣
8086 case Intrinsic::ceil:
8087 case Intrinsic::trunc:
8088 case Intrinsic::rint:
8089 case Intrinsic::nearbyint:
8090 case Intrinsic::round:
8091 case Intrinsic::roundeven:
8092 case Intrinsic::lrint:
8093 case Intrinsic::llrint:
8094 return true;
8095 default:
8096 return false;
8097 }
8098}
8099
8102 switch (I->getOpcode()) {
8103 case Instruction::Freeze:
8104 case Instruction::PHI:
8105 case Instruction::Invoke:
8106 return false;
8107 case Instruction::Select:
8109 case Instruction::Call:
8112 return false;
8113 case Instruction::ICmp:
8114 case Instruction::FCmp:
8115 case Instruction::GetElementPtr:
8116 return true;
8117 default:
8119 return true;
8120
8121
8122 return false;
8123 }
8124}
8125
8126
8127
8128
8129template
8131 const CallableT &Handle) {
8132 switch (I->getOpcode()) {
8133 case Instruction::Store:
8135 return true;
8136 break;
8137
8138 case Instruction::Load:
8140 return true;
8141 break;
8142
8143
8144
8145 case Instruction::AtomicCmpXchg:
8147 return true;
8148 break;
8149
8150 case Instruction::AtomicRMW:
8152 return true;
8153 break;
8154
8155 case Instruction::Call:
8156 case Instruction::Invoke: {
8159 return true;
8160 for (unsigned i = 0; i < CB->arg_size(); ++i)
8161 if ((CB->paramHasAttr(i, Attribute::NoUndef) ||
8162 CB->paramHasAttr(i, Attribute::Dereferenceable) ||
8163 CB->paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
8165 return true;
8166 break;
8167 }
8168 case Instruction::Ret:
8169 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
8170 Handle(I->getOperand(0)))
8171 return true;
8172 break;
8173 case Instruction::Switch:
8175 return true;
8176 break;
8177 case Instruction::Br: {
8179 if (BR->isConditional() && Handle(BR->getCondition()))
8180 return true;
8181 break;
8182 }
8183 default:
8184 break;
8185 }
8186
8187 return false;
8188}
8189
8190
8191template
8193 const CallableT &Handle) {
8195 return true;
8196 switch (I->getOpcode()) {
8197
8198 case Instruction::UDiv:
8199 case Instruction::SDiv:
8200 case Instruction::URem:
8201 case Instruction::SRem:
8202 return Handle(I->getOperand(1));
8203 default:
8204 return false;
8205 }
8206}
8207
8211 I, [&](const Value *V) { return KnownPoison.count(V); });
8212}
8213
8216
8217
8218
8219
8220
8221
8222
8228 Begin++;
8230 if (Arg->getParent()->isDeclaration())
8231 return false;
8233 Begin = BB->begin();
8234 } else {
8235 return false;
8236 }
8237
8238
8239
8240 unsigned ScanLimit = 32;
8242
8244
8245
8246
8247
8248 for (const auto &I : make_range(Begin, End)) {
8249 if (--ScanLimit == 0)
8250 break;
8251
8253 return WellDefinedOp == V;
8254 }))
8255 return true;
8256
8258 break;
8259 }
8260 return false;
8261 }
8262
8263
8264
8267
8268 YieldsPoison.insert(V);
8270
8271 while (true) {
8272 for (const auto &I : make_range(Begin, End)) {
8273 if (--ScanLimit == 0)
8274 return false;
8276 return true;
8278 return false;
8279
8280
8281 for (const Use &Op : I.operands()) {
8284 break;
8285 }
8286 }
8287
8288
8289
8290
8291 if (I.getOpcode() == Instruction::Select &&
8292 YieldsPoison.count(I.getOperand(1)) &&
8293 YieldsPoison.count(I.getOperand(2))) {
8295 }
8296 }
8297
8299 if (!BB || !Visited.insert(BB).second)
8300 break;
8301
8303 End = BB->end();
8304 }
8305 return false;
8306}
8307
8309 return ::programUndefinedIfUndefOrPoison(Inst, false);
8310}
8311
8313 return ::programUndefinedIfUndefOrPoison(Inst, true);
8314}
8315
8318 return true;
8319
8321 return ->isNaN();
8322
8324 if (->getElementType()->isFloatingPointTy())
8325 return false;
8326 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
8327 if (C->getElementAsAPFloat(I).isNaN())
8328 return false;
8329 }
8330 return true;
8331 }
8332
8334 return true;
8335
8336 return false;
8337}
8338
8341 return ->isZero();
8342
8344 if (->getElementType()->isFloatingPointTy())
8345 return false;
8346 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
8347 if (C->getElementAsAPFloat(I).isZero())
8348 return false;
8349 }
8350 return true;
8351 }
8352
8353 return false;
8354}
8355
8356
8357
8358
8359
8364
8365
8366
8367
8368
8369
8370 if (CmpRHS == FalseVal) {
8373 }
8374
8375
8376 LHS = TrueVal;
8377 RHS = FalseVal;
8378
8382
8384 switch (Pred) {
8390 *FC1 < *FC2)
8392 break;
8398 *FC1 > *FC2)
8400 break;
8401 default:
8402 break;
8403 }
8404
8406}
8407
8408
8409
8413
8414 if (CmpRHS != TrueVal) {
8417 }
8418 const APInt *C1;
8419 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
8420 const APInt *C2;
8421
8425
8426
8430
8431
8435
8436
8440 }
8442}
8443
8444
8445
8449 unsigned Depth) {
8450
8452
8453 Value *A = nullptr, *B = nullptr;
8457
8458 Value *C = nullptr, *D = nullptr;
8460 if (L.Flavor != R.Flavor)
8462
8463
8464
8465
8466 switch (L.Flavor) {
8471 }
8473 break;
8479 }
8481 break;
8487 }
8489 break;
8495 }
8497 break;
8499 default:
8501 }
8502
8503
8504
8505
8506
8507
8508
8512 return {L.Flavor, SPNB_NA, false};
8513 }
8514
8515
8519 return {L.Flavor, SPNB_NA, false};
8520 }
8521
8522
8526 return {L.Flavor, SPNB_NA, false};
8527 }
8528
8529
8533 return {L.Flavor, SPNB_NA, false};
8534 }
8535
8537}
8538
8539
8540
8541
8545 return NotV;
8546
8549 return ConstantInt::get(V->getType(), ~(*C));
8550
8551 return nullptr;
8552}
8553
8554
8559 unsigned Depth) {
8560
8561 LHS = TrueVal;
8562 RHS = FalseVal;
8563
8566 return SPR;
8567
8570 return SPR;
8571
8572
8573
8574
8576 switch (Pred) {
8581 default: break;
8582 }
8583 }
8584
8585
8586
8588 switch (Pred) {
8593 default: break;
8594 }
8595 }
8596
8599
8600 const APInt *C1;
8603
8604
8605 const APInt *C2;
8606 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
8607 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
8608
8609
8610
8613
8614
8615
8616
8619 }
8620
8622}
8623
8625 bool AllowPoison) {
8626 assert(X && Y && "Invalid operand");
8627
8628 auto IsNegationOf = [&](const Value *X, const Value *Y) {
8630 return false;
8631
8633 if (NeedNSW && !BO->hasNoSignedWrap())
8634 return false;
8635
8637 if (!AllowPoison && !Zero->isNullValue())
8638 return false;
8639
8640 return true;
8641 };
8642
8643
8644 if (IsNegationOf(X, Y) || IsNegationOf(Y, X))
8645 return true;
8646
8647
8653}
8654
8656
8661 return false;
8662
8663
8665 return false;
8666
8669
8670
8671 const APInt *RHSC1, *RHSC2;
8673 return false;
8674
8675
8677 return false;
8678
8681
8682 return CR1.inverse() == CR2;
8683}
8684
8687 bool Ordered) {
8688 switch (Pred) {
8689 default:
8707 return {SPF_FMAXNUM, NaNBehavior, Ordered};
8712 return {SPF_FMINNUM, NaNBehavior, Ordered};
8713 }
8714}
8715
8716std::optional<std::pair<CmpPredicate, Constant *>>
8719 "Only for relational integer predicates.");
8721 return std::nullopt;
8722
8725
8727 bool WillIncrement =
8729
8730
8731
8732 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
8733 return WillIncrement ? ->isMaxValue(IsSigned) :
->isMinValue(IsSigned);
8734 };
8735
8736 Constant *SafeReplacementConstant = nullptr;
8738
8739 if (!ConstantIsOk(CI))
8740 return std::nullopt;
8742 unsigned NumElts = FVTy->getNumElements();
8743 for (unsigned i = 0; i != NumElts; ++i) {
8744 Constant *Elt = C->getAggregateElement(i);
8745 if (!Elt)
8746 return std::nullopt;
8747
8749 continue;
8750
8751
8752
8754 if (!CI || !ConstantIsOk(CI))
8755 return std::nullopt;
8756
8757 if (!SafeReplacementConstant)
8758 SafeReplacementConstant = CI;
8759 }
8761
8762 Value *SplatC = C->getSplatValue();
8764
8765 if (!CI || !ConstantIsOk(CI))
8766 return std::nullopt;
8767 } else {
8768
8769 return std::nullopt;
8770 }
8771
8772
8773
8774
8775
8776 if (C->containsUndefOrPoisonElement()) {
8777 assert(SafeReplacementConstant && "Replacement constant not set");
8779 }
8780
8782
8783
8784 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
8786
8787 return std::make_pair(NewPred, NewC);
8788}
8789
8795 unsigned Depth) {
8796 bool HasMismatchedZeros = false;
8798
8799
8800
8801
8802 Value *OutputZeroVal = nullptr;
8804 (TrueVal)->containsUndefOrPoisonElement())
8805 OutputZeroVal = TrueVal;
8807 (FalseVal)->containsUndefOrPoisonElement())
8808 OutputZeroVal = FalseVal;
8809
8810 if (OutputZeroVal) {
8811 if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) {
8812 HasMismatchedZeros = true;
8813 CmpLHS = OutputZeroVal;
8814 }
8815 if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) {
8816 HasMismatchedZeros = true;
8817 CmpRHS = OutputZeroVal;
8818 }
8819 }
8820 }
8821
8822 LHS = CmpLHS;
8823 RHS = CmpRHS;
8824
8825
8826
8827
8828
8829
8830 switch (Pred) {
8831 default: break;
8834 if (!HasMismatchedZeros)
8835 break;
8836 [[fallthrough]];
8842 }
8843
8845 bool Ordered = false;
8846
8847
8848
8849
8850
8851
8855
8856 if (LHSSafe && RHSSafe) {
8857
8861
8862
8863 Ordered = true;
8864 if (LHSSafe)
8865
8867 else if (RHSSafe)
8869 else
8870
8872 } else {
8873 Ordered = false;
8874
8875
8876 if (LHSSafe)
8877
8879 else if (RHSSafe)
8881 else
8882
8884 }
8885 }
8886
8887 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8894 Ordered = !Ordered;
8895 }
8896
8897
8898 if (TrueVal == CmpLHS && FalseVal == CmpRHS)
8900
8902
8903
8904 auto MaybeSExtCmpLHS =
8908 if (match(TrueVal, MaybeSExtCmpLHS)) {
8909
8910
8911 LHS = TrueVal;
8912 RHS = FalseVal;
8915
8916
8917
8920
8921
8924
8925
8926
8929 }
8930 else if (match(FalseVal, MaybeSExtCmpLHS)) {
8931
8932
8933 LHS = FalseVal;
8934 RHS = TrueVal;
8937
8938
8939
8942
8943
8944
8947 }
8948 }
8949
8952
8953
8954
8955
8960
8962}
8963
8967
8968 Constant *CastedTo = nullptr;
8969 switch (*CastOp) {
8970 case Instruction::ZExt:
8973 break;
8974 case Instruction::SExt:
8977 break;
8978 case Instruction::Trunc:
8981 CmpConst->getType() == SrcTy) {
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003 CastedTo = CmpConst;
9004 } else {
9005 unsigned ExtOp = CmpI->isSigned() ? Instruction::SExt : Instruction::ZExt;
9007 }
9008 break;
9009 case Instruction::FPTrunc:
9011 break;
9012 case Instruction::FPExt:
9014 break;
9015 case Instruction::FPToUI:
9017 break;
9018 case Instruction::FPToSI:
9020 break;
9021 case Instruction::UIToFP:
9023 break;
9024 case Instruction::SIToFP:
9026 break;
9027 default:
9028 break;
9029 }
9030
9031 if (!CastedTo)
9032 return nullptr;
9033
9034
9037 if (CastedBack && CastedBack != C)
9038 return nullptr;
9039
9040 return CastedTo;
9041}
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9062 if (!Cast1)
9063 return nullptr;
9064
9065 *CastOp = Cast1->getOpcode();
9066 Type *SrcTy = Cast1->getSrcTy();
9068
9069 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
9070 return Cast2->getOperand(0);
9071 return nullptr;
9072 }
9073
9075 if (C)
9077
9078 Value *CastedTo = nullptr;
9079 if (*CastOp == Instruction::Trunc) {
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9093 "V2 and Cast1 should be the same type.");
9095 }
9096 }
9097
9098 return CastedTo;
9099}
9102 unsigned Depth) {
9105
9108
9111
9112 Value *TrueVal = SI->getTrueValue();
9113 Value *FalseVal = SI->getFalseValue();
9114
9116 CmpI, TrueVal, FalseVal, LHS, RHS,
9119}
9120
9129
9130
9133
9134
9135 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
9137
9138
9139 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9141 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9143 LHS, RHS, Depth);
9144 }
9146
9147
9148 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9150 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9152 LHS, RHS, Depth);
9153 }
9154 }
9155 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
9156 LHS, RHS, Depth);
9157}
9158
9170
9172 switch (SPF) {
9174 return Intrinsic::umin;
9176 return Intrinsic::umax;
9178 return Intrinsic::smin;
9180 return Intrinsic::smax;
9181 default:
9183 }
9184}
9185
9193
9195 switch (MinMaxID) {
9196 case Intrinsic::smax: return Intrinsic::smin;
9197 case Intrinsic::smin: return Intrinsic::smax;
9198 case Intrinsic::umax: return Intrinsic::umin;
9199 case Intrinsic::umin: return Intrinsic::umax;
9200
9201
9202 case Intrinsic::maximum: return Intrinsic::minimum;
9203 case Intrinsic::minimum: return Intrinsic::maximum;
9204 case Intrinsic::maxnum: return Intrinsic::minnum;
9205 case Intrinsic::minnum: return Intrinsic::maxnum;
9206 case Intrinsic::maximumnum:
9207 return Intrinsic::minimumnum;
9208 case Intrinsic::minimumnum:
9209 return Intrinsic::maximumnum;
9211 }
9212}
9213
9215 switch (SPF) {
9221 }
9222}
9223
9224std::pair<Intrinsic::ID, bool>
9226
9227
9228
9229 bool AllCmpSingleUse = true;
9232 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
9233 Value *LHS, *RHS;
9236 return false;
9238 SelectPattern.Flavor != CurrentPattern.Flavor)
9239 return false;
9240 SelectPattern = CurrentPattern;
9241 AllCmpSingleUse &=
9243 return true;
9244 })) {
9245 switch (SelectPattern.Flavor) {
9247 return {Intrinsic::smin, AllCmpSingleUse};
9249 return {Intrinsic::umin, AllCmpSingleUse};
9251 return {Intrinsic::smax, AllCmpSingleUse};
9253 return {Intrinsic::umax, AllCmpSingleUse};
9255 return {Intrinsic::maxnum, AllCmpSingleUse};
9257 return {Intrinsic::minnum, AllCmpSingleUse};
9258 default:
9260 }
9261 }
9263}
9264
9265template
9268
9269
9270
9271
9273 return false;
9274
9275 for (unsigned I = 0; I != 2; ++I) {
9280 if (LHS != PN && RHS != PN)
9281 continue;
9282
9285 OtherOp = (LHS == PN) ? RHS : LHS;
9286 return true;
9287 }
9288 }
9289 return false;
9290}
9291
9294
9295
9296
9297
9298
9299
9301}
9302
9311
9314 Value *&OtherOp) {
9315
9316 if (I->arg_size() != 2 || I->getType() != I->getArgOperand(0)->getType() ||
9317 I->getType() != I->getArgOperand(1)->getType())
9318 return false;
9319
9322 if ()
9324
9326}
9327
9328
9332 return true;
9333
9334 switch (Pred) {
9335 default:
9336 return false;
9337
9340
9341
9342
9345 return ->isNegative();
9346
9347
9349 return true;
9350
9351
9353 return true;
9354
9355
9357 const APInt *CLHS, *CRHS;
9360 return CLHS->sle(*CRHS);
9361
9362 return false;
9363 }
9364
9366
9369 return true;
9370
9371
9373 return true;
9374
9375
9377 return true;
9378
9379
9381 return true;
9382
9383
9386 return true;
9387
9388
9390 return true;
9391
9392
9394 return true;
9395
9396
9398 const APInt *CLHS, *CRHS;
9401 return CLHS->ule(*CRHS);
9402
9403 return false;
9404 }
9405 }
9406}
9407
9408
9409
9410static std::optional
9412 const Value *ARHS, const Value *BLHS, const Value *BRHS) {
9413 switch (Pred) {
9414 default:
9415 return std::nullopt;
9416
9421 return true;
9422 return std::nullopt;
9423
9428 return true;
9429 return std::nullopt;
9430
9435 return true;
9436 return std::nullopt;
9437
9442 return true;
9443 return std::nullopt;
9444 }
9445}
9446
9447
9448
9449
9450static std::optional
9455
9456 if (CR.icmp(Pred, RCR))
9457 return true;
9458
9459
9461 return false;
9462
9463 return std::nullopt;
9464 };
9466 RPred))
9467 return Res;
9474 RPred);
9475 }
9476 return std::nullopt;
9477}
9478
9479
9480
9481
9482static std::optional
9486
9487
9488 if (!LHSIsTrue)
9490
9491
9492
9493 if (L0 == R1) {
9496 }
9497 if (R0 == L1) {
9500 }
9501 if (L1 == R1) {
9502
9508 }
9509 }
9510
9511
9512
9513 const APInt *Unused;
9515
9516
9517
9518
9520 L1, ICmpInst::isSigned(LPred), true, nullptr,
9523 R1, ICmpInst::isSigned(RPred), true, nullptr,
9525
9526
9528 return R;
9529
9530
9532 return std::nullopt;
9533 }
9534
9535
9536 if (L0 == R0 && L1 == R1)
9538
9539
9540
9541
9542
9549 return false;
9550 }
9551
9552
9553
9559 return true;
9560 }
9561
9562
9563
9564 const APInt *L1C;
9569 ((A == R0 && B == R1) || (A == R1 && B == R0) ||
9575 }
9576
9577
9578 if (L0 == R0 &&
9583
9586
9587 return std::nullopt;
9588}
9589
9590
9591
9592
9593static std::optional
9597
9598
9599 if (!LHSIsTrue)
9601
9602
9603
9604 if (L0 == R1) {
9607 }
9608 if (R0 == L1) {
9611 }
9612 if (L1 == R1) {
9613
9619 }
9620 }
9621
9622
9623 if (L0 == R0 && L1 == R1) {
9624 if ((LPred & RPred) == LPred)
9625 return true;
9626 if ((LPred & ~RPred) == LPred)
9627 return false;
9628 }
9629
9630
9631
9632 const APFloat *L1C, *R1C;
9634 if (std::optional DomCR =
9636 if (std::optional ImpliedCR =
9638 if (ImpliedCR->contains(*DomCR))
9639 return true;
9640 }
9641 if (std::optional ImpliedCR =
9644 if (ImpliedCR->contains(*DomCR))
9645 return false;
9646 }
9647 }
9648 }
9649
9650 return std::nullopt;
9651}
9652
9653
9654
9655
9656
9657static std::optional
9659 const Value *RHSOp0, const Value *RHSOp1,
9661
9662 assert((LHS->getOpcode() == Instruction::And ||
9663 LHS->getOpcode() == Instruction::Or ||
9664 LHS->getOpcode() == Instruction::Select) &&
9665 "Expected LHS to be 'and', 'or', or 'select'.");
9666
9668
9669
9670
9671
9672 const Value *ALHS, *ARHS;
9675
9677 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
9678 return Implication;
9680 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
9681 return Implication;
9682 return std::nullopt;
9683 }
9684 return std::nullopt;
9685}
9686
9687std::optional
9689 const Value *RHSOp0, const Value *RHSOp1,
9691
9693 return std::nullopt;
9694
9695
9696
9697 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
9698 return std::nullopt;
9699
9700 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9701 "Expected integer type only!");
9702
9703
9705 LHSIsTrue = !LHSIsTrue;
9706
9707
9711 LHSCmp->getOperand(0), LHSCmp->getOperand(1),
9712 RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue);
9716 ConstantInt::get(V->getType(), 0), RHSPred,
9717 RHSOp0, RHSOp1, DL, LHSIsTrue);
9718 } else {
9720 "Expected floating point type only!");
9722 return isImpliedCondFCmps(LHSCmp->getPredicate(), LHSCmp->getOperand(0),
9723 LHSCmp->getOperand(1), RHSPred, RHSOp0, RHSOp1,
9724 DL, LHSIsTrue);
9725 }
9726
9727
9728
9729
9731 if ((LHSI->getOpcode() == Instruction::And ||
9732 LHSI->getOpcode() == Instruction::Or ||
9733 LHSI->getOpcode() == Instruction::Select))
9736 }
9737 return std::nullopt;
9738}
9739
9742 bool LHSIsTrue, unsigned Depth) {
9743
9744 if (LHS == RHS)
9745 return LHSIsTrue;
9746
9747
9748 bool InvertRHS = false;
9750 if (LHS == RHS)
9751 return !LHSIsTrue;
9752 InvertRHS = true;
9753 }
9754
9757 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0),
9758 RHSCmp->getOperand(1), DL, LHSIsTrue, Depth))
9759 return InvertRHS ? !*Implied : *Implied;
9760 return std::nullopt;
9761 }
9764 LHS, RHSCmp->getPredicate(), RHSCmp->getOperand(0),
9765 RHSCmp->getOperand(1), DL, LHSIsTrue, Depth))
9766 return InvertRHS ? !*Implied : *Implied;
9767 return std::nullopt;
9768 }
9769
9773 ConstantInt::get(V->getType(), 0), DL,
9774 LHSIsTrue, Depth))
9775 return InvertRHS ? !*Implied : *Implied;
9776 return std::nullopt;
9777 }
9778
9780 return std::nullopt;
9781
9782
9783
9784 const Value *RHS1, *RHS2;
9786 if (std::optional Imp =
9788 if (*Imp == true)
9789 return !InvertRHS;
9790 if (std::optional Imp =
9792 if (*Imp == true)
9793 return !InvertRHS;
9794 }
9796 if (std::optional Imp =
9798 if (*Imp == false)
9799 return InvertRHS;
9800 if (std::optional Imp =
9802 if (*Imp == false)
9803 return InvertRHS;
9804 }
9805
9806 return std::nullopt;
9807}
9808
9809
9810
9811static std::pair<Value *, bool>
9813 if (!ContextI || !ContextI->getParent())
9814 return {nullptr, false};
9815
9816
9817
9820 if (!PredBB)
9821 return {nullptr, false};
9822
9823
9824 Value *PredCond;
9827 return {nullptr, false};
9828
9829
9830 if (TrueBB == FalseBB)
9831 return {nullptr, false};
9832
9833 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9834 "Predecessor block does not point to successor?");
9835
9836
9837 return {PredCond, TrueBB == ContextBB};
9838}
9839
9843 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
9845 if (PredCond.first)
9847 return std::nullopt;
9848}
9849
9851 const Value *LHS,
9852 const Value *RHS,
9856 if (PredCond.first)
9858 PredCond.second);
9859 return std::nullopt;
9860}
9861
9864 bool PreferSignedRange) {
9865 unsigned Width = Lower.getBitWidth();
9868 case Instruction::Sub:
9872
9873
9874
9875
9876
9877
9878 if (PreferSignedRange && HasNSW && HasNUW)
9879 HasNUW = false;
9880
9881 if (HasNUW) {
9882
9884 } else if (HasNSW) {
9885 if (C->isNegative()) {
9886
9889 } else {
9890
9891
9894 }
9895 }
9896 }
9897 break;
9898 case Instruction::Add:
9902
9903
9904
9905
9906
9907 if (PreferSignedRange && HasNSW && HasNUW)
9908 HasNUW = false;
9909
9910 if (HasNUW) {
9911
9913 } else if (HasNSW) {
9914 if (C->isNegative()) {
9915
9918 } else {
9919
9922 }
9923 }
9924 }
9925 break;
9926
9927 case Instruction::And:
9929
9931
9932
9936 break;
9937
9938 case Instruction::Or:
9940
9942 break;
9943
9944 case Instruction::AShr:
9946
9950 unsigned ShiftAmount = Width - 1;
9951 if (->isZero() && IIQ.isExact(&BO))
9952 ShiftAmount = C->countr_zero();
9953 if (C->isNegative()) {
9954
9956 Upper = C->ashr(ShiftAmount) + 1;
9957 } else {
9958
9959 Lower = C->ashr(ShiftAmount);
9961 }
9962 }
9963 break;
9964
9965 case Instruction::LShr:
9967
9970
9971 unsigned ShiftAmount = Width - 1;
9972 if (->isZero() && IIQ.isExact(&BO))
9973 ShiftAmount = C->countr_zero();
9974 Lower = C->lshr(ShiftAmount);
9976 }
9977 break;
9978
9979 case Instruction::Shl:
9982
9985 } else if (BO.hasNoSignedWrap()) {
9986 if (C->isNegative()) {
9987
9988 unsigned ShiftAmount = C->countl_one() - 1;
9989 Lower = C->shl(ShiftAmount);
9991 } else {
9992
9993 unsigned ShiftAmount = C->countl_zero() - 1;
9995 Upper = C->shl(ShiftAmount) + 1;
9996 }
9997 } else {
9998
9999 if ((*C)[0])
10001
10002
10003
10004
10005
10006
10008 }
10011 }
10012 break;
10013
10014 case Instruction::SDiv:
10018 if (C->isAllOnes()) {
10019
10020
10021 Lower = IntMin + 1;
10022 Upper = IntMax + 1;
10023 } else if (C->countl_zero() < Width - 1) {
10024
10025
10031 assert(Upper != Lower && "Upper part of range has wrapped!");
10032 }
10034 if (C->isMinSignedValue()) {
10035
10038 } else {
10039
10042 }
10043 }
10044 break;
10045
10046 case Instruction::UDiv:
10048
10051
10053 }
10054 break;
10055
10056 case Instruction::SRem:
10058
10062 if (C->isNegative()) {
10063
10066 } else {
10067
10069 }
10070 }
10071 break;
10072
10073 case Instruction::URem:
10075
10078
10080 break;
10081
10082 default:
10083 break;
10084 }
10085}
10086
10088 bool UseInstrInfo) {
10089 unsigned Width = II.getType()->getScalarSizeInBits();
10091 switch (II.getIntrinsicID()) {
10092 case Intrinsic::ctlz:
10093 case Intrinsic::cttz: {
10095 if (!UseInstrInfo || (II.getArgOperand(1), m_One()))
10097
10099 }
10100 case Intrinsic::ctpop:
10101
10103 APInt(Width, Width) + 1);
10104 case Intrinsic::uadd_sat:
10105
10109 break;
10110 case Intrinsic::sadd_sat:
10113 if (C->isNegative())
10114
10117 1);
10118
10119
10122 }
10123 break;
10124 case Intrinsic::usub_sat:
10125
10128
10129
10133 break;
10134 case Intrinsic::ssub_sat:
10136 if (C->isNegative())
10137
10140 1);
10141
10142
10146 if (C->isNegative())
10147
10150
10151
10154 1);
10155 }
10156 break;
10157 case Intrinsic::umin:
10158 case Intrinsic::umax:
10159 case Intrinsic::smin:
10160 case Intrinsic::smax:
10163 break;
10164
10165 switch (II.getIntrinsicID()) {
10166 case Intrinsic::umin:
10168 case Intrinsic::umax:
10170 case Intrinsic::smin:
10172 *C + 1);
10173 case Intrinsic::smax:
10176 default:
10178 }
10179 break;
10180 case Intrinsic::abs:
10181
10182
10186
10189 case Intrinsic::vscale:
10190 if (.getParent() ||
.getFunction())
10191 break;
10193 default:
10194 break;
10195 }
10196
10197 return ConstantRange::getFull(Width);
10198}
10199
10202 unsigned BitWidth = SI.getType()->getScalarSizeInBits();
10203 const Value *LHS = nullptr, *RHS = nullptr;
10206 return ConstantRange::getFull(BitWidth);
10207
10209
10210
10211
10216
10219 }
10220
10222
10225 }
10226
10229 return ConstantRange::getFull(BitWidth);
10230
10231 switch (R.Flavor) {
10238 *C + 1);
10242 default:
10243 return ConstantRange::getFull(BitWidth);
10244 }
10245}
10246
10248
10249
10250 unsigned BitWidth = I->getType()->getScalarSizeInBits();
10251 if (->getOperand(0)->getType()->getScalarType()->isHalfTy())
10252 return;
10256 }
10257
10259
10261 }
10262}
10263
10268 unsigned Depth) {
10269 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
10270
10272 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
10273
10275 return C->toConstantRange();
10276
10277 unsigned BitWidth = V->getType()->getScalarSizeInBits();
10283
10290 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1);
10292 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1);
10293 CR = CRTrue.unionWith(CRFalse);
10298
10302 if (std::optional Range = A->getRange())
10304
10308
10310 if (std::optional Range = CB->getRange())
10312 }
10313
10314 if (CtxI && AC) {
10315
10317 if (!AssumeVH)
10318 continue;
10320 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
10321 "Got assumption for the wrong function!");
10322 assert(I->getIntrinsicID() == Intrinsic::assume &&
10323 "must be an assume intrinsic");
10324
10326 continue;
10327 Value *Arg = I->getArgOperand(0);
10329
10330 if (!Cmp || Cmp->getOperand(0) != V)
10331 continue;
10332
10335 UseInstrInfo, AC, I, DT, Depth + 1);
10338 }
10339 }
10340
10341 return CR;
10342}
10343
10344static void
10347 assert(V != nullptr);
10349 InsertAffected(V);
10351 InsertAffected(V);
10352
10353
10357 InsertAffected(Op);
10358 }
10359 }
10360}
10361
10364 auto AddAffected = [&InsertAffected](Value *V) {
10366 };
10367
10368 auto AddCmpOperands = [&AddAffected, IsAssume](Value *LHS, Value *RHS) {
10369 if (IsAssume) {
10370 AddAffected(LHS);
10371 AddAffected(RHS);
10373 AddAffected(LHS);
10374 };
10375
10379 while (!Worklist.empty()) {
10381 if (!Visited.insert(V).second)
10382 continue;
10383
10386
10387 if (IsAssume) {
10388 AddAffected(V);
10390 AddAffected(X);
10391 }
10392
10394
10395
10396
10397
10398
10399 if (!IsAssume) {
10402 }
10406 AddAffected(A);
10407 if (IsAssume)
10408 AddAffected(B);
10409 if (HasRHSC) {
10411
10413 AddAffected(X);
10414
10417 AddAffected(X);
10418 AddAffected(Y);
10419 }
10420
10422 AddAffected(X);
10423 AddAffected(Y);
10424 }
10425 }
10426 } else {
10428 if (HasRHSC) {
10429
10430
10432 AddAffected(X);
10433
10436
10437
10438
10442 AddAffected(X);
10443 AddAffected(Y);
10444 }
10445
10447 AddAffected(X);
10448 }
10449 }
10450
10451
10452
10455 InsertAffected(X);
10457 InsertAffected(X);
10458 }
10459 }
10460
10462 AddAffected(X);
10465
10466
10467
10468
10470 AddAffected(A);
10472 AddAffected(A);
10473
10476
10477 AddAffected(A);
10479
10480
10481 AddAffected(X);
10483
10485 }
10486 }
10487}
10488
10490
10492 if (BO->getOpcode() == Instruction::Add ||
10493 BO->getOpcode() == Instruction::Or) {
10495 const APInt *C1, *C2;
10502 return X;
10503 }
10504 }
10505 return nullptr;
10506}
10507
10511
10514 unsigned MaxCount, bool AllowUndefOrPoison) {
10517 auto Push = [&](const Value *V) -> bool {
10521 return false;
10522
10523 if (Constants.contains(C))
10524 return true;
10525 if (Constants.size() == MaxCount)
10526 return false;
10527 Constants.insert(C);
10528 return true;
10529 }
10530
10532 if (Visited.insert(Inst).second)
10534 return true;
10535 }
10536 return false;
10537 };
10538 if (!Push(V))
10539 return false;
10540 while (!Worklist.empty()) {
10542 switch (CurInst->getOpcode()) {
10543 case Instruction::Select:
10545 return false;
10547 return false;
10548 break;
10549 case Instruction::PHI:
10550 for (Value *IncomingValue : cast(CurInst)->incoming_values()) {
10551
10552 if (IncomingValue == CurInst)
10553 continue;
10554 if (!Push(IncomingValue))
10555 return false;
10556 }
10557 break;
10558 default:
10559 return false;
10560 }
10561 }
10562 return true;
10563}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Utilities for dealing with flags related to floating point properties and mode controls.
static Value * getCondition(Instruction *I)
Module.h This file contains the declarations for the Module class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
std::pair< BasicBlock *, BasicBlock * > Edge
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SmallVector< VPValue *, 4 > getOperands(ArrayRef< VPValue * > Values, unsigned OperandIndex)
static void computeKnownFPClassFromCond(const Value *V, Value *Cond, bool CondIsTrue, const Instruction *CxtI, KnownFPClass &KnownFromContext, unsigned Depth=0)
Definition ValueTracking.cpp:4773
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, SimplifyQuery &Q, unsigned Depth)
Try to detect a recurrence that the value of the induction variable is always a power of two (or zero...
Definition ValueTracking.cpp:2545
static cl::opt< unsigned > DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20))
static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits)
For vector constants, loop over the elements and find the constant with the minimum number of sign bi...
Definition ValueTracking.cpp:4172
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS)
Return true if "icmp Pred LHS RHS" is always true.
Definition ValueTracking.cpp:9329
static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V1 == (binop V2, X), where X is known non-zero.
Definition ValueTracking.cpp:3875
static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q, unsigned Depth)
Test whether a GEP's result is known to be non-null.
Definition ValueTracking.cpp:2825
static bool isNonEqualShl(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and the shift is nuw or nsw.
Definition ValueTracking.cpp:3919
static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT)
Definition ValueTracking.cpp:2889
static const Value * getUnderlyingObjectFromInt(const Value *V)
This is the function that does the work of looking through basic ptrtoint+arithmetic+inttoptr sequenc...
Definition ValueTracking.cpp:6983
static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
Definition ValueTracking.cpp:3102
static bool rangeMetadataExcludesValue(const MDNode *Ranges, const APInt &Value)
Does the 'Range' metadata (which must be a valid MD_range operand list) ensure that the value it's at...
Definition ValueTracking.cpp:2988
static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty)
Definition ValueTracking.cpp:4728
static KnownBits getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &Q, unsigned Depth)
Definition ValueTracking.cpp:1169
static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, Value *&ValOut, Instruction *&CtxIOut, const PHINode **PhiOut=nullptr)
Definition ValueTracking.cpp:783
static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, unsigned Depth)
Definition ValueTracking.cpp:3086
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
Definition ValueTracking.cpp:7258
static void addValueAffectedByCondition(Value *V, function_ref< void(Value *)> InsertAffected)
Definition ValueTracking.cpp:10345
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
Definition ValueTracking.cpp:99
static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
Definition ValueTracking.cpp:179
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange)
Definition ValueTracking.cpp:9862
static Value * lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp)
Helps to match a select pattern in case of a type mismatch.
Definition ValueTracking.cpp:9059
static std::pair< Value *, bool > getDomPredecessorCondition(const Instruction *ContextI)
Definition ValueTracking.cpp:9812
static constexpr unsigned MaxInstrsToCheckForFree
Maximum number of instructions to check between assume and context instruction.
Definition ValueTracking.cpp:95
static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, const KnownBits &KnownVal, unsigned Depth)
Definition ValueTracking.cpp:3130
static std::optional< bool > isImpliedCondFCmps(FCmpInst::Predicate LPred, const Value *L0, const Value *L1, FCmpInst::Predicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
Definition ValueTracking.cpp:9594
UndefPoisonKind
Definition ValueTracking.cpp:7545
@ UndefOnly
Definition ValueTracking.cpp:7547
@ UndefOrPoison
Definition ValueTracking.cpp:7548
@ PoisonOnly
Definition ValueTracking.cpp:7546
static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2, const SimplifyQuery &Q, unsigned Depth)
Definition ValueTracking.cpp:4034
static bool includesPoison(UndefPoisonKind Kind)
Definition ValueTracking.cpp:7551
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS)
Match clamp pattern for float types without care about NaNs or signed zeros.
Definition ValueTracking.cpp:8360
static std::optional< bool > isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1, CmpPredicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
Definition ValueTracking.cpp:9483
static bool includesUndef(UndefPoisonKind Kind)
Definition ValueTracking.cpp:7555
static std::optional< bool > isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, CmpPredicate RPred, const ConstantRange &RCR)
Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
Definition ValueTracking.cpp:9451
static ConstantRange getRangeForSelectPattern(const SelectInst &SI, const InstrInfoQuery &IIQ)
Definition ValueTracking.cpp:10200
static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth)
Definition ValueTracking.cpp:1390
static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl< const PHINode * > &PHIs, unsigned CharSize)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
Definition ValueTracking.cpp:6704
static void computeKnownBitsFromShiftOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth, function_ref< KnownBits(const KnownBits &, const KnownBits &, bool)> KF)
Compute known bits from a shift operator, including those with a non-constant shift amount.
Definition ValueTracking.cpp:1153
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value *V, bool AllowLifetime, bool AllowDroppable)
Definition ValueTracking.cpp:7090
static std::optional< bool > isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth)
Return true if LHS implies RHS is true.
Definition ValueTracking.cpp:9658
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh)
Definition ValueTracking.cpp:1334
static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
Definition ValueTracking.cpp:3040
static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth)
Definition ValueTracking.cpp:7656
static bool isNonEqualSelect(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Definition ValueTracking.cpp:3962
static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst, Value *&Init, Value *&OtherOp)
Definition ValueTracking.cpp:9266
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Definition ValueTracking.cpp:3931
static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS, KnownBits &Known, const SimplifyQuery &Q)
Definition ValueTracking.cpp:865
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth)
Recognize variations of: a < c ?
Definition ValueTracking.cpp:8446
static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, KnownBits &Known)
Definition ValueTracking.cpp:1382
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper)
Definition ValueTracking.cpp:10247
static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI)
PN defines a loop-variant pointer to an object.
Definition ValueTracking.cpp:6825
static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, const SimplifyQuery &Q)
Definition ValueTracking.cpp:3987
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh)
Definition ValueTracking.cpp:1363
static Value * lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, Instruction::CastOps *CastOp)
Definition ValueTracking.cpp:8964
static bool handleGuaranteedWellDefinedOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be undef or poison.
Definition ValueTracking.cpp:8130
static void computeKnownBitsFromLerpPattern(const Value *Op0, const Value *Op1, const APInt &DemandedElts, KnownBits &KnownOut, const SimplifyQuery &Q, unsigned Depth)
Try to detect the lerp pattern: a * (b - c) + c * d where a >= 0, b >= 0, c >= 0, d >= 0,...
Definition ValueTracking.cpp:372
static KnownFPClass computeKnownFPClassFromContext(const Value *V, const SimplifyQuery &Q)
Definition ValueTracking.cpp:4819
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
Definition ValueTracking.cpp:486
static Value * getNotValue(Value *V)
If the input value is the result of a 'not' op, constant integer, or vector splat of a constant integ...
Definition ValueTracking.cpp:8542
static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return the number of times the sign bit of the register is replicated into the other bits.
Definition ValueTracking.cpp:4213
static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, KnownBits &Known, const SimplifyQuery &SQ, bool Invert)
Definition ValueTracking.cpp:971
static bool isKnownNonZeroFromOperator(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Definition ValueTracking.cpp:3181
static bool matchOpWithOpEqZero(Value *Op0, Value *Op1)
Definition ValueTracking.cpp:3033
static bool isNonZeroRecurrence(const PHINode *PN)
Try to detect a recurrence that monotonically increases/decreases from a non-zero starting value.
Definition ValueTracking.cpp:3005
static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal)
Recognize variations of: CLAMP(v,l,h) ==> ((v) < (l) ?
Definition ValueTracking.cpp:8410
static bool shiftAmountKnownInRange(const Value *ShiftAmount)
Shifts return poison if shiftwidth is larger than the bitwidth.
Definition ValueTracking.cpp:7521
static bool isEphemeralValueOf(const Instruction *I, const Value *E)
Definition ValueTracking.cpp:608
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth)
Match non-obvious integer minimum and maximum sequences.
Definition ValueTracking.cpp:8555
static KnownBits computeKnownBitsForHorizontalOperation(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth, const function_ref< KnownBits(const KnownBits &, const KnownBits &)> KnownBitsFunc)
Definition ValueTracking.cpp:1239
static bool handleGuaranteedNonPoisonOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be poison.
Definition ValueTracking.cpp:8192
static std::optional< std::pair< Value *, Value * > > getInvertibleOperands(const Operator *Op1, const Operator *Op2)
If the pair of operators are the same invertible function, return the the operands of the function co...
Definition ValueTracking.cpp:3759
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS)
Definition ValueTracking.cpp:752
static void computeKnownBitsFromCond(const Value *V, Value *Cond, KnownBits &Known, const SimplifyQuery &SQ, bool Invert, unsigned Depth)
Definition ValueTracking.cpp:993
static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q)
Definition ValueTracking.cpp:818
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
Definition ValueTracking.cpp:9411
static const Instruction * safeCxtI(const Value *V, const Instruction *CxtI)
Definition ValueTracking.cpp:108
static bool isNonEqualMul(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and the multiplication is nuw o...
Definition ValueTracking.cpp:3904
static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, const Value *Cond, bool CondIsTrue)
Return true if we can infer that V is known to be a power of 2 from dominating condition Cond (e....
Definition ValueTracking.cpp:2602
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
Definition ValueTracking.cpp:511
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF)
Definition ValueTracking.cpp:8316
static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, bool UseInstrInfo)
Definition ValueTracking.cpp:10087
static void computeKnownFPClassForFPTrunc(const Operator *Op, const APInt &DemandedElts, FPClassTest InterestedClasses, KnownFPClass &Known, const SimplifyQuery &Q, unsigned Depth)
Definition ValueTracking.cpp:4885
static Value * BuildSubAggregate(Value *From, Value *To, Type *IndexedType, SmallVectorImpl< unsigned > &Idxs, unsigned IdxSkip, BasicBlock::iterator InsertBefore)
Definition ValueTracking.cpp:6398
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
static LLVM_ABI bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned ceilLogBase2() const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt reverseBits() const
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool getBoolValue() const
Convert APInt to a boolean value.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
bool hasSameSign() const
Query samesign information, for optimizations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI std::optional< ConstantFPRange > makeExactFCmpRegion(FCmpInst::Predicate Pred, const APFloat &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This class represents a range of values.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI bool isAllNegative() const
Return true if all values in this range are negative.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI bool isAllNonNegative() const
Return true if all values in this range are non-negative.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
ArrayRef< BranchInst * > conditionsFor(const Value *V) const
Access the list of branches which affect this value.
DomTreeNodeBase * getIDom() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
const BasicBlock & getEntryBlock() const
bool hasNoSync() const
Determine if the call can synchroize with other threads.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getAggregateOperand()
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
This is a utility class that provides an abstraction for the common functionality between Instruction...
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
iterator_range< const_block_iterator > blocks() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A udiv, sdiv, lshr, or ashr instruction, which can be marked as "exact", indicating that no bits are ...
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
const KnownBits & getKnownBits(const SimplifyQuery &Q) const
PointerType getValue() const
Represents an op.with.overflow intrinsic.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
StructType * getStructTypeOrNull() const
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_IntrinsicIntrinsic::fabs(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
static unsigned decodeVSEW(unsigned VSEW)
LLVM_ABI unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
Definition ValueTracking.cpp:237
LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
Definition ValueTracking.cpp:7900
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
Definition ValueTracking.cpp:9194
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
Definition ValueTracking.cpp:705
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
Definition ValueTracking.cpp:6080
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
Definition ValueTracking.cpp:655
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
Definition ValueTracking.cpp:7651
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
Definition ValueTracking.cpp:8208
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
Definition ValueTracking.cpp:6152
LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0)
Merge bits known from context-dependent facts into Known.
Definition ValueTracking.cpp:1036
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
Definition ValueTracking.cpp:261
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
Definition ValueTracking.cpp:4737
LLVM_ABI const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
Definition ValueTracking.cpp:6781
LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
Definition ValueTracking.cpp:648
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
Definition ValueTracking.cpp:7045
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
Definition ValueTracking.cpp:9214
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
Definition ValueTracking.cpp:256
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
Definition ValueTracking.cpp:6658
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
Definition ValueTracking.cpp:7112
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
Definition ValueTracking.cpp:10508
LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
Definition ValueTracking.cpp:7012
LLVM_ABI std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
Definition ValueTracking.cpp:9225
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
Definition ValueTracking.cpp:6563
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
Definition ValueTracking.cpp:8010
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
gep_type_iterator gep_type_end(const User *GEP)
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
Definition ValueTracking.cpp:7125
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
Definition ValueTracking.cpp:9159
bool isa_and_nonnull(const Y &Val)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
Definition ValueTracking.cpp:6184
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
Definition ValueTracking.cpp:7886
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
Definition ValueTracking.cpp:10264
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
Definition ValueTracking.cpp:318
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
Definition ValueTracking.cpp:7470
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
Definition ValueTracking.cpp:9292
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
Definition ValueTracking.cpp:7285
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
Definition ValueTracking.cpp:9186
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
Definition ValueTracking.cpp:1298
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
Definition ValueTracking.cpp:298
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
Definition ValueTracking.cpp:7442
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
Definition ValueTracking.cpp:6794
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
Definition ValueTracking.cpp:7705
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
Definition ValueTracking.cpp:8685
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
Definition ValueTracking.cpp:152
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
Definition ValueTracking.cpp:8312
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
Definition ValueTracking.cpp:9100
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
Definition ValueTracking.cpp:9312
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
Definition ValueTracking.cpp:6139
LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
Definition ValueTracking.cpp:8308
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI bool collectPossibleValues(const Value *V, SmallPtrSetImpl< const Constant * > &Constants, unsigned MaxCount, bool AllowUndefOrPoison=true)
Enumerates all possible immediate values of V and inserts them into the set Constants.
Definition ValueTracking.cpp:10512
FunctionAddr VTableAddr Count
LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
Definition ValueTracking.cpp:6769
LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
Definition ValueTracking.cpp:7301
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
Definition ValueTracking.cpp:1279
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
Definition ValueTracking.cpp:7645
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
Definition ValueTracking.cpp:8655
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
Definition ValueTracking.cpp:8025
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
Definition ValueTracking.cpp:7117
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
Definition ValueTracking.cpp:3744
constexpr int PoisonMaskElem
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
Definition ValueTracking.cpp:7134
LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
Definition ValueTracking.cpp:7108
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
Definition ValueTracking.cpp:4587
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
Definition ValueTracking.cpp:6939
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
Definition ValueTracking.cpp:9171
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
Definition ValueTracking.cpp:9121
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
Definition ValueTracking.cpp:7944
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
Definition ValueTracking.cpp:8100
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
Definition ValueTracking.cpp:7274
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
Definition ValueTracking.cpp:307
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
Definition ValueTracking.cpp:7871
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
Definition ValueTracking.cpp:336
constexpr unsigned BitWidth
LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &SQ, unsigned Depth=0)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
Definition ValueTracking.cpp:1266
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
Definition ValueTracking.cpp:7409
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
Definition ValueTracking.cpp:7950
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
Definition ValueTracking.cpp:6159
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
Definition ValueTracking.cpp:6168
gep_type_iterator gep_type_begin(const User *GEP)
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
Definition ValueTracking.cpp:6292
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
Definition ValueTracking.cpp:8717
LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Get the upper bound on bit size for this Value Op as a signed integer.
Definition ValueTracking.cpp:344
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
Definition ValueTracking.cpp:7341
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
Definition ValueTracking.cpp:268
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
Definition ValueTracking.cpp:9840
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
Definition ValueTracking.cpp:7879
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
Definition ValueTracking.cpp:579
LLVM_ABI Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
Definition ValueTracking.cpp:6475
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
Definition ValueTracking.cpp:8624
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
Definition ValueTracking.cpp:6850
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
Definition ValueTracking.cpp:286
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
Definition ValueTracking.cpp:281
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
Definition ValueTracking.cpp:6145
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
Definition ValueTracking.cpp:6897
LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
Definition ValueTracking.cpp:7241
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
Definition ValueTracking.cpp:9740
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
Definition ValueTracking.cpp:6177
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
Definition ValueTracking.cpp:6223
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
Definition ValueTracking.cpp:10362
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
SmallPtrSet< Value *, 4 > AffectedValues
Represents offset+length into a ConstantDataArray.
const ConstantDataArray * Array
ConstantDataArray pointer.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
constexpr bool outputsAreZero() const
Return true if output denormals should be flushed to 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getIEEE()
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedZeros(const InstT *Op) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
bool hasConflict() const
Returns true if there is conflicting information.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
bool isConstant() const
Returns true if we know the value of all bits.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinTrailingOnes() const
Returns the minimum number of trailing one bits.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void setAllOnes()
Make all bits known to be one and discard any previous information.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
KnownBits sextOrTrunc(unsigned BitWidth) const
Return known bits for a sign extension or truncation of the value we're tracking.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a zero.
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
LLVM_ABI void propagateCanonicalizingSrc(const KnownFPClass &Src, DenormalMode Mode)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void signBitMustBeZero()
Assume the sign bit is zero.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a negative zero.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
Represent one information held inside an operand bundle of an llvm.assume.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithoutCondContext() const
SimplifyQuery getWithInstruction(const Instruction *I) const
const DomConditionCache * DC