LLVM: lib/CodeGen/WindowScheduler.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
49
50using namespace llvm;
51
52#define DEBUG_TYPE "pipeliner"
53
54namespace {
56 "Number of loops that we attempt to use window scheduling");
58 "Number of times that we run list schedule in the window scheduling");
60 "Number of loops that we successfully use window scheduling");
62 "Window scheduling abort due to the failure of the II analysis");
63
65 WindowSearchNum("window-search-num",
66 cl::desc("The number of searches per loop in the window "
67 "algorithm. 0 means no search number limit."),
69
71 "window-search-ratio",
72 cl::desc("The ratio of searches per loop in the window algorithm. 100 "
73 "means search all positions in the loop, while 0 means not "
74 "performing any search."),
76
78 "window-ii-coeff",
80 "The coefficient used when initializing II in the window algorithm."),
82
84 "window-region-limit",
86 "The lower limit of the scheduling region in the window algorithm."),
88
90 "window-diff-limit",
91 cl::desc("The lower limit of the difference between best II and base II in "
92 "the window algorithm. If the difference is smaller than "
93 "this lower limit, window scheduling will not be performed."),
95}
96
97
98
101 cl::desc("The upper limit of II in the window algorithm."),
103
108 TripleDAG = std::unique_ptr(
110}
111
114 LLVM_DEBUG(dbgs() << "The WindowScheduler failed to initialize!\n");
115 return false;
116 }
117
118
120 ++NumTryWindowSchedule;
121
123
125 auto SearchIndexes = getSearchIndexes(WindowSearchNum, WindowSearchRatio);
126 for (unsigned Idx : SearchIndexes) {
128 ++NumTryWindowSearch;
129
130
133 SchedDAG->startBlock(MBB);
135 SchedDAG->schedule();
140 LLVM_DEBUG(dbgs() << "Can't find a valid II. Keep searching...\n");
141 ++NumFailAnalyseII;
142 continue;
143 }
148 << II << ".\n");
149 }
150
152
154 LLVM_DEBUG(dbgs() << "Window scheduling is not needed!\n");
155 return false;
156 }
158 << " and Best II is " << BestII << ".\n");
159
161 ++NumWindowSchedule;
162 return true;
163}
164
167 return OnlyBuildGraph
169 Context, std::make_unique(Context),
170 true)
172}
173
175 if (->enableWindowScheduler()) {
176 LLVM_DEBUG(dbgs() << "Target disables the window scheduling!\n");
177 return false;
178 }
179
190
192 LLVM_DEBUG(dbgs() << "There is no LiveIntervals information!\n");
193 return false;
194 }
195
198 auto IsLoopCarried = [&](MachineInstr &Phi) {
199
200
201
202 if (PrevUses.count(Phi.getOperand(0).getReg()))
203 return true;
204 PrevDefs.insert(Phi.getOperand(0).getReg());
205 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
206 if (PrevDefs.count(Phi.getOperand(I).getReg()))
207 return true;
208 PrevUses.insert(Phi.getOperand(I).getReg());
209 }
210 return false;
211 };
212 auto PLI = TII->analyzeLoopForPipelining(MBB);
214 if (MI.isMetaInstruction() || MI.isTerminator())
215 continue;
216 if (MI.isPHI()) {
217 if (IsLoopCarried(MI)) {
218 LLVM_DEBUG(dbgs() << "Loop carried phis are not supported yet!\n");
219 return false;
220 }
223 } else
225 if (TII->isSchedulingBoundary(MI, MBB, *MF)) {
227 dbgs() << "Boundary MI is not allowed in window scheduling!\n");
228 return false;
229 }
230 if (PLI->shouldIgnoreForPipelining(&MI)) {
231 LLVM_DEBUG(dbgs() << "Special MI defined by target is not allowed in "
232 "window scheduling!\n");
233 return false;
234 }
235 for (auto &Def : MI.all_defs())
236 if (Def.isReg() && Def.getReg().isPhysical()) {
237 LLVM_DEBUG(dbgs() << "Physical registers are not supported in "
238 "window scheduling!\n");
239 return false;
240 }
241 }
243 LLVM_DEBUG(dbgs() << "There are too few MIs in the window region!\n");
244 return false;
245 }
246 return true;
247}
248
250
251
256 MBB, MBB->begin(), MBB->getFirstTerminator(),
257 std::distance(MBB->begin(), MBB->getFirstTerminator()));
259}
260
268
270 for (auto &MI : MBB->instrs())
272
274 Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(MI, true);
276 }
277}
278
280
282 Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(MI, true);
283 MI.eraseFromParent();
284 }
285
288}
289
291 const unsigned DuplicateNum = 3;
294 assert(OriMIs.size() > 0 && "The Original MIs were not backed up!");
295
296
297
300 if (MI->isMetaInstruction() || MI->isTerminator())
301 continue;
302 if (MI->isPHI())
304 DefPairs[MI->getOperand(0).getReg()] = AntiReg;
305 auto *NewMI = MF->CloneMachineInstr(MI);
306 MBB->push_back(NewMI);
307 TriMIs.push_back(NewMI);
309 }
310
311
312
313 for (size_t Cnt = 1; Cnt < DuplicateNum; ++Cnt) {
315 if (MI->isPHI() || MI->isMetaInstruction() ||
316 (MI->isTerminator() && Cnt < DuplicateNum - 1))
317 continue;
318 auto *NewMI = MF->CloneMachineInstr(MI);
320
321 for (auto MO : NewMI->all_defs())
322 if (MO.isReg() && MO.getReg().isVirtual()) {
324 MRI->createVirtualRegister(MRI->getRegClass(MO.getReg()));
325 NewMI->substituteRegister(MO.getReg(), NewDef, 0, *TRI);
326 NewDefs[MO.getReg()] = NewDef;
327 }
328
329 for (auto DefRegPair : DefPairs)
330 if (NewMI->readsRegister(DefRegPair.first, TRI)) {
331 Register NewUse = DefRegPair.second;
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359 if (auto It = DefPairs.find(NewUse); It != DefPairs.end())
360 NewUse = It->second;
361 NewMI->substituteRegister(DefRegPair.first, NewUse, 0, *TRI);
362 }
363
364 for (auto &NewDef : NewDefs)
365 DefPairs[NewDef.first] = NewDef.second;
366 MBB->push_back(NewMI);
367 TriMIs.push_back(NewMI);
369 }
370 }
371
372
373
374
375
376
377 for (auto &Phi : MBB->phis()) {
378 for (auto DefRegPair : DefPairs)
379 if (Phi.readsRegister(DefRegPair.first, TRI))
380 Phi.substituteRegister(DefRegPair.first, DefRegPair.second, 0, *TRI);
381 }
383}
384
386
387 for (size_t I = 0; I < TriMIs.size(); ++I) {
389 auto OldPos = MBB->begin();
390 std::advance(OldPos, I);
391 auto CurPos = MI->getIterator();
392 if (CurPos != OldPos) {
393 MBB->splice(OldPos, MBB, CurPos);
394 Context->LIS->handleMove(*MI, false);
395 }
396 }
397}
398
400 unsigned SearchRatio) {
401
402
403
404
405 assert(SearchRatio <= 100 && "SearchRatio should be equal or less than 100!");
406 unsigned MaxIdx = SchedInstrNum * SearchRatio / 100;
407 unsigned Step = SearchNum > 0 && SearchNum <= MaxIdx ? MaxIdx / SearchNum : 1;
409 for (unsigned Idx = 0; Idx < MaxIdx; Idx += Step)
411 return SearchIndexes;
412}
413
415
416 unsigned MaxDepth = 1;
417 for (auto &SU : DAG.SUnits)
418 MaxDepth = std::max(SU.getDepth() + SU.Latency, MaxDepth);
419 return MaxDepth * WindowIICoeff;
420}
421
426 RM.init(InitII);
427
428
429
430 int CurCycle = 0;
434 int ExpectCycle = CurCycle;
435
436 for (auto &Pred : SU->Preds) {
437 if (Pred.isWeak())
438 continue;
439 auto *PredMI = Pred.getSUnit()->getInstr();
441 ExpectCycle = std::max(ExpectCycle, PredCycle + (int)Pred.getLatency());
442 }
443
444 if (->isZeroCost(MI.getOpcode())) {
445
446
447 while (!RM.canReserveResources(*SU, CurCycle) || CurCycle < ExpectCycle) {
448 ++CurCycle;
450 return CurCycle;
451 }
452 RM.reserveResources(*SU, CurCycle);
453 }
455 LLVM_DEBUG(dbgs() << "\tCycle " << CurCycle << " [S."
457 }
458 LLVM_DEBUG(dbgs() << "MaxCycle is " << CurCycle << ".\n");
459 return CurCycle;
460}
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
493 int MaxStallCycle = 0;
494 int CurrentII = MaxCycle + 1;
499 for (auto &Succ : SU->Succs) {
500 if (Succ.isWeak() || Succ.getSUnit() == &TripleDAG->ExitSU)
501 continue;
502
503 if (DefCycle + (int)Succ.getLatency() <= CurrentII)
504 continue;
505
506
507
508 auto *SuccMI = Succ.getSUnit()->getInstr();
510 if (DefCycle < UseCycle)
512
513 int StallCycle = DefCycle + (int)Succ.getLatency() - CurrentII - UseCycle;
514 MaxStallCycle = std::max(MaxStallCycle, StallCycle);
515 }
516 }
517 LLVM_DEBUG(dbgs() << "MaxStallCycle is " << MaxStallCycle << ".\n");
518 return MaxStallCycle;
519}
520
525 return MaxCycle;
528 return StallCycle;
529
530 return MaxCycle + StallCycle + 1;
531}
532
535 for (auto &Phi : MBB->phis()) {
536 int LateCycle = INT_MAX;
537 auto *SU = TripleDAG->getSUnit(&Phi);
538 for (auto &Succ : SU->Succs) {
539
541 continue;
542
543
544 auto *SuccMI = Succ.getSUnit()->getInstr();
547 LateCycle = std::min(LateCycle, Cycle);
548 }
549
551 auto *AntiMI = MRI->getVRegDef(AntiReg);
552
553 if (AntiMI->getParent() == MBB) {
556 LateCycle = std::min(LateCycle, AntiCycle);
557 }
558 }
559
560 if (LateCycle == INT_MAX)
561 LateCycle = (int)(II - 1);
562 LLVM_DEBUG(dbgs() << "\tCycle range [0, " << LateCycle << "] " << Phi);
563
564 auto *OriPhi = getOriMI(&Phi);
566 }
567}
568
570 unsigned II) {
571
572
575 for (auto &Phi : MBB->phis())
579
580
582 int Id = 0;
584 auto It = CycleToMIs.find(Cycle);
585 if (It == CycleToMIs.end())
586 continue;
587 for (auto *MI : It->second)
588 IssueOrder[MI] = Id++;
589 }
590 return IssueOrder;
591}
592
594
595
600 return;
601 }
602
603
605 return;
608
609
613 assert(IssueOrder.count(Pair.first) && "Cannot find original MI!");
614 SchedResult.push_back(std::make_tuple(Pair.first, Pair.second,
616 IssueOrder[Pair.first]));
617 }
618}
619
621
623 [](const std::tuple<MachineInstr *, int, int, int> &A,
624 const std::tuple<MachineInstr *, int, int, int> &B) {
625 return std::get<3>(A) < std::get<3>(B);
626 });
627
628
630 std::vector<MachineInstr *> OrderedInsts;
632 auto *MI = std::get<0>(Info);
633 OrderedInsts.push_back(MI);
634 Cycles[MI] = std::get<1>(Info);
635 Stages[MI] = std::get<2>(Info);
636 LLVM_DEBUG(dbgs() << "\tCycle " << Cycles[MI] << " [S." << Stages[MI]
637 << "]: " << *MI);
638 }
640 std::move(Stages));
645}
646
651 if (!MO.isReg() || MO.getReg() == 0)
652 continue;
656 }
657 Context->LIS->repairIntervalsInRange(MBB, MBB->begin(), MBB->end(), UsedRegs);
658}
659
662 auto RegionBegin = MBB->begin();
663 std::advance(RegionBegin, Offset);
664 auto RegionEnd = RegionBegin;
665 std::advance(RegionEnd, Num);
666 return make_range(RegionBegin, RegionEnd);
667}
668
675
680
683
685 return 0;
686
687
688 unsigned Id = 0;
690 if (MI->isMetaInstruction())
691 continue;
692 if (MI == OriMI)
693 break;
694 ++Id;
695 }
696 return Id >= (size_t)Offset ? 1 : 0;
697}
698
700 assert(Phi->isPHI() && "Expecting PHI!");
702 for (auto MO : Phi->uses()) {
703 if (MO.isReg())
704 AntiReg = MO.getReg();
705 else if (MO.isMBB() && MO.getMBB() == MBB)
706 return AntiReg;
707 }
708 return 0;
709}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Target-Independent Code Generator Pass Configuration Options pass.
static cl::opt< unsigned > WindowIILimit("window-ii-limit", cl::desc("The upper limit of II in the window algorithm."), cl::Hidden, cl::init(1000))
iterator find(const_arg_type_t< KeyT > Val)
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place, rewriting the old loop and...
void cleanup()
Performs final cleanup after expansion.
void expand()
Performs the actual expansion.
DenseMap< MachineInstr *, std::pair< Register, int64_t > > InstrChangesTy
Represents a schedule for a single-block loop.
Wrapper class representing virtual and physical registers.
@ Data
Regular data dependence (aka true-dependence).
A ScheduleDAG for scheduling lists of MachineInstr.
SUnit * getSUnit(MachineInstr *MI) const
Returns an existing SUnit for this MI, or nullptr.
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
std::vector< SUnit > SUnits
The scheduling units.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The TimeTraceScope is a helper class to call the begin and end functions of the time trace profiler.
MachineInstr * getOriMI(MachineInstr *NewMI)
Get the original MI from which the new MI is cloned.
Definition WindowScheduler.cpp:676
virtual ScheduleDAGInstrs * createMachineScheduler(bool OnlyBuildGraph=false)
Two types of ScheduleDAGs are needed, one for creating dependency graphs only, and the other for list...
Definition WindowScheduler.cpp:166
unsigned SchedPhiNum
SchedPhiNum records the number of phi in the original MBB, and the scheduling starts with MI after ph...
virtual void preProcess()
Add some related processing before running window scheduling.
Definition WindowScheduler.cpp:249
MachineSchedContext * Context
bool run()
Definition WindowScheduler.cpp:112
virtual void restoreTripleMBB()
Restore the order of MIs in TripleMBB after each list scheduling.
Definition WindowScheduler.cpp:385
virtual void postProcess()
Add some related processing after running window scheduling.
Definition WindowScheduler.cpp:261
DenseMap< MachineInstr *, int > OriToCycle
OriToCycle keeps the mappings between the original MI and its issue cycle.
virtual int calculateMaxCycle(ScheduleDAGInstrs &DAG, unsigned Offset)
Calculate MIs execution cycle after list scheduling.
Definition WindowScheduler.cpp:422
MachineRegisterInfo * MRI
unsigned BestII
BestII and BestOffset record the characteristics of the best scheduling result and are used together ...
void backupMBB()
Back up the MIs in the original MBB and remove them from MBB.
Definition WindowScheduler.cpp:269
DenseMap< MachineInstr *, MachineInstr * > TriToOri
TriToOri keeps the mappings between the MI clones in TripleMBB and their original MI.
int getEstimatedII(ScheduleDAGInstrs &DAG)
Estimate a II value at which all MIs will be scheduled successfully.
Definition WindowScheduler.cpp:414
virtual void expand()
Using the scheduling infrastructure to expand the results of window scheduling.
Definition WindowScheduler.cpp:620
DenseMap< MachineInstr *, int > getIssueOrder(unsigned Offset, unsigned II)
Get the final issue order of all scheduled MIs including phis.
Definition WindowScheduler.cpp:569
Register getAntiRegister(MachineInstr *Phi)
Gets the register in phi which is generated from the current MBB.
Definition WindowScheduler.cpp:699
unsigned getOriStage(MachineInstr *OriMI, unsigned Offset)
Get the scheduling stage, where the stage of the new MI is identical to the original MI.
Definition WindowScheduler.cpp:681
const TargetRegisterInfo * TRI
virtual void updateLiveIntervals()
Update the live intervals for all registers used within MBB.
Definition WindowScheduler.cpp:647
const TargetSubtargetInfo * Subtarget
std::unique_ptr< ScheduleDAGInstrs > TripleDAG
To innovatively identify the dependencies between MIs across two trips, we construct a DAG for a new ...
unsigned BaseII
BaseII is the II obtained when the window offset is SchedPhiNum.
virtual void schedulePhi(int Offset, unsigned &II)
Phis are scheduled separately after each list scheduling.
Definition WindowScheduler.cpp:533
virtual unsigned analyseII(ScheduleDAGInstrs &DAG, unsigned Offset)
Analyzes the II value after each list scheduling.
Definition WindowScheduler.cpp:521
int getOriCycle(MachineInstr *NewMI)
Get the issue cycle of the new MI based on the cycle of the original MI.
Definition WindowScheduler.cpp:669
unsigned SchedInstrNum
SchedInstrNum records the MIs involved in scheduling in the original MBB, excluding debug instruction...
const TargetInstrInfo * TII
virtual void generateTripleMBB()
Make three copies of the original MBB to generate a new TripleMBB.
Definition WindowScheduler.cpp:290
iterator_range< MachineBasicBlock::iterator > getScheduleRange(unsigned Offset, unsigned Num)
Gets the iterator range of MIs in the scheduling window.
Definition WindowScheduler.cpp:661
virtual bool isScheduleValid()
Check whether the final result of window scheduling is valid.
virtual int calculateStallCycle(unsigned Offset, int MaxCycle)
Calculate the stall cycle between two trips after list scheduling.
Definition WindowScheduler.cpp:492
virtual void updateScheduleResult(unsigned Offset, unsigned II)
Update the scheduling result after each list scheduling.
Definition WindowScheduler.cpp:593
SmallVector< MachineInstr * > OriMIs
OriMIs keeps the MIs removed from the original MBB.
virtual bool initialize()
Initializes the algorithm and determines if it can be executed.
Definition WindowScheduler.cpp:174
SmallVector< std::tuple< MachineInstr *, int, int, int >, 256 > SchedResult
SchedResult keeps the result of each list scheduling, and the format of the tuple is <MI pointer,...
virtual SmallVector< unsigned > getSearchIndexes(unsigned SearchNum, unsigned SearchRatio)
Give the folding position in the window algorithm, where different heuristics can be used.
Definition WindowScheduler.cpp:399
void restoreMBB()
Erase the MIs in current MBB and restore the original MIs.
Definition WindowScheduler.cpp:279
WindowScheduler(MachineSchedContext *C, MachineLoop &ML)
Definition WindowScheduler.cpp:104
SmallVector< MachineInstr * > TriMIs
TriMIs keeps the MIs of TripleMBB, which is used to restore TripleMBB.
A range adaptor for a pair of iterators.
@ C
The default llvm calling convention, compatible with C.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
void stable_sort(R &&Range)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
MachineSchedContext provides enough context from the MachineScheduler pass for the target to instanti...