LLVM: lib/Target/AMDGPU/MCTargetDesc/AMDGPUMCExpr.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
21#include
22
23using namespace llvm;
25
29 assert(Args.size() >= 1 && "Needs a minimum of one expression.");
30 assert(Kind != AGVK_None && "Cannot construct AMDGPUMCExpr of kind none.");
31
32
33
34
35
36
37 RawArgs = static_cast<const MCExpr **>(
39 std::uninitialized_copy(Args.begin(), Args.end(), RawArgs);
41}
42
43AMDGPUMCExpr::~AMDGPUMCExpr() { Ctx.deallocate(RawArgs); }
44
48 return new (Ctx) AMDGPUMCExpr(Kind, Args, Ctx);
49}
50
52 assert(Index < Args.size() && "Indexing out of bounds AMDGPUMCExpr sub-expr");
53 return Args[Index];
54}
55
57 switch (Kind) {
58 default:
61 OS << "or(";
62 break;
64 OS << "max(";
65 break;
67 OS << "extrasgprs(";
68 break;
70 OS << "totalnumvgprs(";
71 break;
73 OS << "alignto(";
74 break;
76 OS << "occupancy(";
77 break;
78 }
79 for (const auto *It = Args.begin(); It != Args.end(); ++It) {
80 (*It)->print(OS, MAI, false);
81 if ((It + 1) != Args.end())
82 OS << ", ";
83 }
84 OS << ')';
85}
86
88 switch (Kind) {
89 default:
92 return std::max(Arg1, Arg2);
94 return Arg1 | Arg2;
95 }
96}
97
98bool AMDGPUMCExpr::evaluateExtraSGPRs(MCValue &Res, const MCAssembler *Asm,
100 auto TryGetMCExprValue = [&](const MCExpr *Arg, uint64_t &ConstantValue) {
103 return false;
104
106 return true;
107 };
108
110 "AMDGPUMCExpr Argument count incorrect for ExtraSGPRs");
112 uint64_t VCCUsed = 0, FlatScrUsed = 0, XNACKUsed = 0;
113
114 bool Success = TryGetMCExprValue(Args[2], XNACKUsed);
115
116 assert(Success && "Arguments 3 for ExtraSGPRs should be a known constant");
117 if ( || !TryGetMCExprValue(Args[0], VCCUsed) ||
118 !TryGetMCExprValue(Args[1], FlatScrUsed))
119 return false;
120
122 STI, (bool)VCCUsed, (bool)FlatScrUsed, (bool)XNACKUsed);
124 return true;
125}
126
127bool AMDGPUMCExpr::evaluateTotalNumVGPR(MCValue &Res, const MCAssembler *Asm,
129 auto TryGetMCExprValue = [&](const MCExpr *Arg, uint64_t &ConstantValue) {
132 return false;
133
135 return true;
136 };
138 "AMDGPUMCExpr Argument count incorrect for TotalNumVGPRs");
140 uint64_t NumAGPR = 0, NumVGPR = 0;
141
143
144 if (!TryGetMCExprValue(Args[0], NumAGPR) ||
145 !TryGetMCExprValue(Args[1], NumVGPR))
146 return false;
147
148 uint64_t TotalNum = Has90AInsts && NumAGPR ? alignTo(NumVGPR, 4) + NumAGPR
149 : std::max(NumVGPR, NumAGPR);
151 return true;
152}
153
154bool AMDGPUMCExpr::evaluateAlignTo(MCValue &Res, const MCAssembler *Asm,
156 auto TryGetMCExprValue = [&](const MCExpr *Arg, uint64_t &ConstantValue) {
159 return false;
160
162 return true;
163 };
164
166 "AMDGPUMCExpr Argument count incorrect for AlignTo");
168 if (!TryGetMCExprValue(Args[0], Value) || !TryGetMCExprValue(Args[1], Align))
169 return false;
170
172 return true;
173}
174
175bool AMDGPUMCExpr::evaluateOccupancy(MCValue &Res, const MCAssembler *Asm,
177 auto TryGetMCExprValue = [&](const MCExpr *Arg, uint64_t &ConstantValue) {
180 return false;
181
183 return true;
184 };
186 "AMDGPUMCExpr Argument count incorrect for Occupancy");
187 uint64_t InitOccupancy, MaxWaves, Granule, TargetTotalNumVGPRs, Generation,
189
191 Success &= TryGetMCExprValue(Args[0], MaxWaves);
192 Success &= TryGetMCExprValue(Args[1], Granule);
193 Success &= TryGetMCExprValue(Args[2], TargetTotalNumVGPRs);
194 Success &= TryGetMCExprValue(Args[3], Generation);
195 Success &= TryGetMCExprValue(Args[4], InitOccupancy);
196
197 assert(Success && "Arguments 1 to 5 for Occupancy should be known constants");
198
199 if ( || !TryGetMCExprValue(Args[5], NumSGPRs) ||
200 !TryGetMCExprValue(Args[6], NumVGPRs))
201 return false;
202
203 unsigned Occupancy = InitOccupancy;
204 if (NumSGPRs)
205 Occupancy = std::min(
207 NumSGPRs, MaxWaves,
209 if (NumVGPRs)
210 Occupancy = std::min(Occupancy,
212 NumVGPRs, Granule, MaxWaves, TargetTotalNumVGPRs));
213
215 return true;
216}
217
221 std::optional<int64_t> Total;
222 switch (Kind) {
223 default:
224 break;
226 return evaluateExtraSGPRs(Res, Asm, Fixup);
228 return evaluateAlignTo(Res, Asm, Fixup);
230 return evaluateTotalNumVGPR(Res, Asm, Fixup);
232 return evaluateOccupancy(Res, Asm, Fixup);
233 }
234
235 for (const MCExpr *Arg : Args) {
238 return false;
239
240 if (.has_value())
243 }
244
246 return true;
247}
248
250 for (const MCExpr *Arg : Args)
252}
253
255 for (const MCExpr *Arg : Args) {
258 }
259 return nullptr;
260}
261
262
263
264
265
267 const MCExpr *FlatScrUsed,
268 bool XNACKUsed,
270
273 Ctx);
274}
275
277 const MCExpr *NumVGPR,
280}
281
282
283
284
285
286
288 const MCExpr *NumSGPRs,
289 const MCExpr *NumVGPRs,
296
297 auto CreateExpr = [&Ctx](unsigned Value) {
299 };
300
302 {CreateExpr(MaxWaves), CreateExpr(Granule),
303 CreateExpr(TargetTotalNumVGPRs), CreateExpr(Generation),
304 CreateExpr(InitOcc), NumSGPRs, NumVGPRs},
305 Ctx);
306}
307
310 if (E->isSymbolUsedInExpression(Sym))
311 return true;
312 }
313 return false;
314}
315
317 static constexpr unsigned BitWidth = 64;
320 if (CompareResult) {
323 }
324
325 KnownBits UnknownBool(1);
327}
328
331 unsigned Depth = 0);
332
334 unsigned Depth) {
335 static constexpr unsigned BitWidth = 64;
336 const MCBinaryExpr *BExpr = cast(Expr);
339
344
346 default:
348 return;
351 return;
353 KBM[Expr] = LHSKnown & RHSKnown;
354 return;
357 return;
359 std::optional CompareRes = KnownBits::eq(LHSKnown, RHSKnown);
361 return;
362 }
364 std::optional CompareRes = KnownBits::ne(LHSKnown, RHSKnown);
366 return;
367 }
369 std::optional CompareRes = KnownBits::sgt(LHSKnown, RHSKnown);
371 return;
372 }
374 std::optional CompareRes = KnownBits::sge(LHSKnown, RHSKnown);
376 return;
377 }
379 std::optional CompareRes;
381 std::optional LHSBool =
383 std::optional RHSBool =
385 if (LHSBool && RHSBool)
386 CompareRes = *LHSBool && *RHSBool;
388 return;
389 }
392 KnownBits Bits = LHSKnown | RHSKnown;
393 std::optional CompareRes =
396 return;
397 }
399 std::optional CompareRes = KnownBits::slt(LHSKnown, RHSKnown);
401 return;
402 }
404 std::optional CompareRes = KnownBits::sle(LHSKnown, RHSKnown);
406 return;
407 }
410 return;
413 return;
415 KBM[Expr] = LHSKnown | RHSKnown;
416 return;
419 return;
422 return;
425 return;
428 return;
430 KBM[Expr] = LHSKnown ^ RHSKnown;
431 return;
432 }
433}
434
436 unsigned Depth) {
437 static constexpr unsigned BitWidth = 64;
438 const MCUnaryExpr *UExpr = cast(Expr);
441
443 default:
445 return;
448 KBM[Expr] = KB;
449 return;
450 }
454 KBM[Expr] = KB ^ AllOnes;
455 return;
456 }
459 KBM[Expr] = KB;
460 return;
461 }
462 }
463}
464
466 unsigned Depth) {
467 static constexpr unsigned BitWidth = 64;
468 const AMDGPUMCExpr *AGVK = cast(Expr);
469
470 switch (AGVK->getKind()) {
471 default:
473 return;
479 KB |= KBM[Arg];
480 }
481 KBM[Expr] = KB;
482 return;
483 }
490 }
491 KBM[Expr] = KB;
492 return;
493 }
498 int64_t Val;
502 return;
503 }
505 return;
506 }
507 }
508}
509
511 unsigned Depth) {
512 static constexpr unsigned BitWidth = 64;
513
514 int64_t Val;
515 if (Expr->evaluateAsAbsolute(Val)) {
518 return;
519 }
520
521 if (Depth == 16) {
523 return;
524 }
525
526 switch (Expr->getKind()) {
529 return;
530 }
532 const MCConstantExpr *CE = cast(Expr);
533 APInt APValue(BitWidth, CE->getValue(), true);
535 return;
536 }
538 const MCSymbolRefExpr *RExpr = cast(Expr);
540 if (.isVariable()) {
542 return;
543 }
544
545
546
547 const MCExpr *SymVal = Sym.getVariableValue(false);
549
550
551
552 KBM[Expr] = KnownBits(KBM[SymVal]);
553 return;
554 }
557 return;
558 }
561 return;
562 }
563 }
564}
565
568 if (!KBM.count(Expr))
569 return Expr;
570
571 auto ValueCheckKnownBits = [](KnownBits &KB, unsigned Value) -> bool {
573 return false;
574
576 };
577
579 return Expr;
580
581
582
583
586 APInt ConstVal = KBM[Expr].getConstant();
588 }
589
590 int64_t EvalValue;
591 if (Expr->evaluateAsAbsolute(EvalValue))
593 }
594
595 switch (Expr->getKind()) {
596 default:
597 return Expr;
599 const MCBinaryExpr *BExpr = cast(Expr);
602
604 default:
605 return Expr;
607 if (ValueCheckKnownBits(KBM[RHS], 0))
609 break;
610 }
613 if (ValueCheckKnownBits(KBM[LHS], 0))
615 if (ValueCheckKnownBits(KBM[RHS], 0))
617 break;
618 }
620 if (ValueCheckKnownBits(KBM[LHS], 1))
622 if (ValueCheckKnownBits(KBM[RHS], 1))
624 break;
625 }
629 if (ValueCheckKnownBits(KBM[RHS], 0))
631 if (ValueCheckKnownBits(KBM[LHS], 0))
633 break;
634 }
636 if (ValueCheckKnownBits(KBM[LHS], 0) || ValueCheckKnownBits(KBM[RHS], 0))
638 break;
639 }
640 }
643 if (NewLHS != LHS || NewRHS != RHS)
646 return Expr;
647 }
649 const MCUnaryExpr *UExpr = cast(Expr);
652 if (SubExpr != NewSubExpr)
655 return Expr;
656 }
658 const AMDGPUMCExpr *AGVK = cast(Expr);
660 bool Changed = false;
664 Changed |= Arg != NewArg;
665 }
667 }
668 }
669 return Expr;
670}
671
677
679}
680
683 int64_t Val;
684 if (Expr->evaluateAsAbsolute(Val)) {
685 OS << Val;
686 return;
687 }
688
690}
static bool isConstant(const MachineInstr &MI)
static void targetOpKnownBitsMapHelper(const MCExpr *Expr, KnownBitsMap &KBM, unsigned Depth)
static void unaryOpKnownBitsMapHelper(const MCExpr *Expr, KnownBitsMap &KBM, unsigned Depth)
static KnownBits fromOptionalToKnownBits(std::optional< bool > CompareResult)
static void binaryOpKnownBitsMapHelper(const MCExpr *Expr, KnownBitsMap &KBM, unsigned Depth)
static const MCExpr * tryFoldHelper(const MCExpr *Expr, KnownBitsMap &KBM, MCContext &Ctx)
static void knownBitsMapHelper(const MCExpr *Expr, KnownBitsMap &KBM, unsigned Depth=0)
AMD GCN specific subclass of TargetSubtarget.
PowerPC TLS Dynamic Call Fixup
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
AMDGPU target specific MCExpr operations.
ArrayRef< const MCExpr * > getArgs() const
MCFragment * findAssociatedFragment() const override
void visitUsedExpr(MCStreamer &Streamer) const override
static const AMDGPUMCExpr * createOccupancy(unsigned InitOcc, const MCExpr *NumSGPRs, const MCExpr *NumVGPRs, const GCNSubtarget &STM, MCContext &Ctx)
Mimics GCNSubtarget::computeOccupancy for MCExpr.
static const AMDGPUMCExpr * createTotalNumVGPR(const MCExpr *NumAGPR, const MCExpr *NumVGPR, MCContext &Ctx)
static const AMDGPUMCExpr * create(VariantKind Kind, ArrayRef< const MCExpr * > Args, MCContext &Ctx)
static const AMDGPUMCExpr * createExtraSGPRs(const MCExpr *VCCUsed, const MCExpr *FlatScrUsed, bool XNACKUsed, MCContext &Ctx)
Allow delayed MCExpr resolve of ExtraSGPRs (in case VCCUsed or FlatScrUsed are unresolvable but neede...
bool isSymbolUsedInExpression(const MCSymbol *Sym) const override
const MCExpr * getSubExpr(size_t Index) const
bool evaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm, const MCFixup *Fixup) const override
void printImpl(raw_ostream &OS, const MCAsmInfo *MAI) const override
VariantKind getKind() const
Class for arbitrary precision integers.
int64_t getSExtValue() const
Get sign extended value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Generation getGeneration() const
This class is intended to be used as a base class for asm properties and features specific to the tar...
Binary assembler expressions.
const MCExpr * getLHS() const
Get the left-hand side expression of the binary operator.
const MCExpr * getRHS() const
Get the right-hand side expression of the binary operator.
Opcode getOpcode() const
Get the kind of this binary expression.
static const MCBinaryExpr * create(Opcode Op, const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx, SMLoc Loc=SMLoc())
@ AShr
Arithmetic shift right.
@ LShr
Logical shift right.
@ GTE
Signed greater than or equal comparison (result is either 0 or some target-specific non-zero value).
@ GT
Signed greater than comparison (result is either 0 or some target-specific non-zero value)
@ Xor
Bitwise exclusive or.
@ LT
Signed less than comparison (result is either 0 or some target-specific non-zero value).
@ LTE
Signed less than or equal comparison (result is either 0 or some target-specific non-zero value).
@ NE
Inequality comparison.
static const MCConstantExpr * create(int64_t Value, MCContext &Ctx, bool PrintInHex=false, unsigned SizeInBytes=0)
Context object for machine code objects.
void * allocate(unsigned Size, unsigned Align=8)
void deallocate(void *Ptr)
const MCSubtargetInfo * getSubtargetInfo() const
Base class for the full range of assembler expressions which are needed for parsing.
bool evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm, const SectionAddrMap &Addrs) const
Try to evaluate the expression to an absolute value.
@ Unary
Unary expressions.
@ Constant
Constant expressions.
@ SymbolRef
References to labels and assigned expressions.
@ Target
Target specific expression.
@ Binary
Binary expressions.
bool evaluateAsRelocatable(MCValue &Res, const MCAssembler *Asm, const MCFixup *Fixup) const
Try to evaluate the expression to a relocatable value, i.e.
void print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens=false) const
MCFragment * findAssociatedFragment() const
Find the "associated section" for this expression, which is currently defined as the absolute section...
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
Streaming machine code generation interface.
void visitUsedExpr(const MCExpr &Expr)
Generic base class for all target subtargets.
Represent a reference to a symbol from inside an expression.
const MCSymbol & getSymbol() const
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Unary assembler expressions.
Opcode getOpcode() const
Get the kind of this unary expression.
static const MCUnaryExpr * create(Opcode Op, const MCExpr *Expr, MCContext &Ctx, SMLoc Loc=SMLoc())
const MCExpr * getSubExpr() const
Get the child of this unary expression.
This represents an "assembler immediate".
int64_t getConstant() const
static MCValue get(const MCSymbolRefExpr *SymA, const MCSymbolRefExpr *SymB=nullptr, int64_t Val=0, uint32_t RefKind=0)
bool isAbsolute() const
Is this an absolute (as opposed to relocatable) value.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
LLVM Value Representation.
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char NumVGPRs[]
Key for Kernel::CodeProps::Metadata::mNumVGPRs.
constexpr char NumSGPRs[]
Key for Kernel::CodeProps::Metadata::mNumSGPRs.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI)
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI)
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, bool FlatScrUsed, bool XNACKUsed)
unsigned getNumWavesPerEUWithNumVGPRs(const MCSubtargetInfo *STI, unsigned NumVGPRs)
unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves, AMDGPUSubtarget::Generation Gen)
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, std::optional< bool > EnableWavefrontSize32)
void printAMDGPUMCExpr(const MCExpr *Expr, raw_ostream &OS, const MCAsmInfo *MAI)
bool isGFX90A(const MCSubtargetInfo &STI)
const MCExpr * foldAMDGPUMCExpr(const MCExpr *Expr, MCContext &Ctx)
This is an optimization pass for GlobalISel generic memory operations.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
constexpr unsigned BitWidth
This struct is a compact representation of a valid (non-zero power of two) alignment.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
void makeNonNegative()
Make this value non-negative.
static KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
static std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
static KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
bool isConstant() const
Returns true if we know the value of all bits.
static KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
static KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
static KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
static std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
const APInt & getConstant() const
Returns the value when all bits have a known value.