LLVM: lib/IR/AsmWriter.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
31#include "llvm/Config/llvm-config.h"
78#include
79#include
80#include
81#include
82#include
83#include
84#include
85#include
86#include
87#include
88#include
89
90using namespace llvm;
91
92
93
96 cl::desc("Print addresses of instructions when dumping"));
97
100 cl::desc("Pretty print debug locations of instructions when dumping"));
101
104 cl::desc("Pretty print perf data (branch weights, etc) when dumping"));
105
108 cl::desc("Preserve use-list order when writing LLVM assembly."));
109
112 cl::desc("Print address space names"));
113
114
116
117
118
119
120
122
125
126
127
131 return VAM->getValue();
132 return V;
133}
134
136 if (OM.lookup(V))
137 return;
138
141 return;
142
144 for (const Value *Op : C->operands())
147 }
148
149
150
151 unsigned ID = OM.size() + 1;
152 OM[V] = ID;
153}
154
156 OrderMap OM;
157
158 auto OrderConstantValue = [&OM](const Value *V) {
161 };
162
163 auto OrderConstantFromMetadata = [&](Metadata *MD) {
165 OrderConstantValue(VAM->getValue());
167 for (const auto *VAM : AL->getArgs())
168 OrderConstantValue(VAM->getValue());
169 }
170 };
171
173 if (G.hasInitializer())
177 }
182 }
187 }
189 for (const Use &U : F.operands())
192
194
195 if (F.isDeclaration())
196 continue;
197
203
204
205
206
208 OrderConstantFromMetadata(DVR.getRawLocation());
209 if (DVR.isDbgAssign())
210 OrderConstantFromMetadata(DVR.getRawAddress());
211 }
212
213 for (const Value *Op : I.operands()) {
218 }
220 }
221 }
222 }
223 return OM;
224}
225
226static std::vector
228
229 using Entry = std::pair<const Use *, unsigned>;
231 for (const Use &U : V->uses())
232
233 if (OM.lookup(U.getUser()))
234 List.push_back(std::make_pair(&U, List.size()));
235
236 if (List.size() < 2)
237
238 return {};
239
240
241
242
245 ID = OM.lookup(BA->getBasicBlock());
246 llvm::sort(List, [&](const Entry &L, const Entry &R) {
247 const Use *LU = L.first;
248 const Use *RU = R.first;
249 if (LU == RU)
250 return false;
251
252 auto LID = OM.lookup(LU->getUser());
253 auto RID = OM.lookup(RU->getUser());
254
255
256 if (LID < RID) {
257 if (GetsReversed)
258 if (RID <= ID)
259 return true;
260 return false;
261 }
262 if (RID < LID) {
263 if (GetsReversed)
264 if (LID <= ID)
265 return false;
266 return true;
267 }
268
269
270
271 if (GetsReversed)
272 if (LID <= ID)
273 return LU->getOperandNo() < RU->getOperandNo();
274 return LU->getOperandNo() > RU->getOperandNo();
275 });
276
278
279 return {};
280
281
282 std::vector Shuffle(List.size());
283 for (size_t I = 0, E = List.size(); I != E; ++I)
284 Shuffle[I] = List[I].second;
285 return Shuffle;
286}
287
291 for (const auto &Pair : OM) {
292 const Value *V = Pair.first;
293 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
294 continue;
295
296 std::vector Shuffle =
298 if (Shuffle.empty())
299 continue;
300
307 F = BB->getParent();
308 ULOM[F][V] = std::move(Shuffle);
309 }
310 return ULOM;
311}
312
315 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
316
318 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
319
321 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
322 return M ? M->getParent() : nullptr;
323 }
324
326 return GV->getParent();
327
329 for (const User *U : MAV->users())
332 return M;
333 return nullptr;
334 }
335
336 return nullptr;
337}
338
342 return M ? M->getParent() : nullptr;
343}
344
348
350 switch (cc) {
351 default: Out << "cc" << cc; break;
374 Out << "aarch64_sve_vector_pcs";
375 break;
377 Out << "aarch64_sme_preservemost_from_x0";
378 break;
380 Out << "aarch64_sme_preservemost_from_x1";
381 break;
383 Out << "aarch64_sme_preservemost_from_x2";
384 break;
398 Out << "hhvmcc";
399 break;
401 Out << "hhvm_ccc";
402 break;
411 Out << "amdgpu_cs_chain";
412 break;
414 Out << "amdgpu_cs_chain_preserve";
415 break;
419 Out << "amdgpu_gfx_whole_wave";
420 break;
423 Out << "riscv_vector_cc";
424 break;
425#define CC_VLS_CASE(ABI_VLEN) \
426 case CallingConv::RISCV_VLSCall_##ABI_VLEN: \
427 Out << "riscv_vls_cc(" #ABI_VLEN ")"; \
428 break;
441#undef CC_VLS_CASE
443 Out << "cheriot_compartmentcallcc";
444 break;
446 Out << "cheriot_compartmentcalleecc";
447 break;
449 Out << "cheriot_librarycallcc";
450 break;
451 }
452}
453
461
463 assert(!Name.empty() && "Cannot get empty name!");
464
465
466 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
467 if (!NeedsQuotes) {
468 for (unsigned char C : Name) {
469
470
471
472
473 if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
474 NeedsQuotes = true;
475 break;
476 }
477 }
478 }
479
480
481 if (!NeedsQuotes) {
482 OS << Name;
483 return;
484 }
485
486
487
488 OS << '"';
490 OS << '"';
491}
492
493
494
495
497 switch (Prefix) {
499 break;
501 OS << '@';
502 break;
504 OS << '$';
505 break;
507 break;
509 OS << '%';
510 break;
511 }
513}
514
515
516
517
522
524 Out << ", <";
526 Out << "vscale x ";
527 Out << Mask.size() << " x i32> ";
528 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
529 Out << "zeroinitializer";
531 Out << "poison";
532 } else {
533 Out << "<";
535 for (int Elt : Mask) {
536 Out << LS << "i32 ";
538 Out << "poison";
539 else
540 Out << Elt;
541 }
542 Out << ">";
543 }
544}
545
546namespace {
547
548class TypePrinting {
549public:
550 TypePrinting(const Module *M = nullptr)
551 : M(M), TypesIncorporated(M == nullptr) {}
552
553 TypePrinting(const TypePrinting &) = delete;
554 TypePrinting &operator=(const TypePrinting &) = delete;
555
556
557 TypeFinder &getNamedTypes();
558
559
560 std::vector<StructType *> &getNumberedTypes();
561
563
564 void print(Type *Ty, raw_ostream &OS);
565
566 void printStructBody(StructType *Ty, raw_ostream &OS);
567
568private:
569 void incorporateTypes();
570
571
573 bool TypesIncorporated;
574
575 TypeFinder NamedTypes;
576
577
578 DenseMap<StructType *, unsigned> Type2Number;
579
580 std::vector<StructType *> NumberedTypes;
581};
582
583}
584
585TypeFinder &TypePrinting::getNamedTypes() {
586 incorporateTypes();
587 return NamedTypes;
588}
589
590std::vector<StructType *> &TypePrinting::getNumberedTypes() {
591 incorporateTypes();
592
593
594
595
596 if (NumberedTypes.size() == Type2Number.size())
597 return NumberedTypes;
598
599 NumberedTypes.resize(Type2Number.size());
600 for (const auto &P : Type2Number) {
601 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
602 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
603 NumberedTypes[P.second] = P.first;
604 }
605 return NumberedTypes;
606}
607
608bool TypePrinting::empty() {
609 incorporateTypes();
610 return NamedTypes.empty() && Type2Number.empty();
611}
612
613void TypePrinting::incorporateTypes() {
614 if (TypesIncorporated)
615 return;
616
617 NamedTypes.run(*M, false);
618 TypesIncorporated = true;
619
620
621
622 unsigned NextNumber = 0;
623
624 std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
625 for (StructType *STy : NamedTypes) {
626
627 if (STy->isLiteral())
628 continue;
629
630 if (STy->getName().empty())
631 Type2Number[STy] = NextNumber++;
632 else
633 *NextToUse++ = STy;
634 }
635
636 NamedTypes.erase(NextToUse, NamedTypes.end());
637}
638
641 bool ForcePrint = false) {
642 if (AS == 0 && !ForcePrint)
643 return;
644 OS << Prefix << "addrspace(";
646 PrintAddrspaceName && M ? M->getDataLayout().getAddressSpaceName(AS) : "";
647 if (!ASName.empty())
648 OS << "\"" << ASName << "\"";
649 else
650 OS << AS;
651 OS << ")" << Suffix;
652}
653
654
655
656void TypePrinting::print(Type *Ty, raw_ostream &OS) {
658 case Type::VoidTyID: OS << "void"; return;
659 case Type::HalfTyID: OS << "half"; return;
660 case Type::BFloatTyID: OS << "bfloat"; return;
661 case Type::FloatTyID: OS << "float"; return;
662 case Type::DoubleTyID: OS << "double"; return;
663 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
664 case Type::FP128TyID: OS << "fp128"; return;
665 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
666 case Type::LabelTyID: OS << "label"; return;
667 case Type::MetadataTyID:
668 OS << "metadata";
669 return;
670 case Type::X86_AMXTyID: OS << "x86_amx"; return;
671 case Type::TokenTyID: OS << "token"; return;
672 case Type::IntegerTyID:
673 OS << 'i' << cast(Ty)->getBitWidth();
674 return;
675
676 case Type::FunctionTyID: {
678 print(FTy->getReturnType(), OS);
679 OS << " (";
680 ListSeparator LS;
681 for (Type *Ty : FTy->params()) {
682 OS << LS;
684 }
685 if (FTy->isVarArg())
686 OS << LS << "...";
687 OS << ')';
688 return;
689 }
690 case Type::StructTyID: {
692
694 return printStructBody(STy, OS);
695
698
699 incorporateTypes();
700 const auto I = Type2Number.find(STy);
701 if (I != Type2Number.end())
702 OS << '%' << I->second;
703 else
704 OS << "%\"type " << STy << '\"';
705 return;
706 }
707 case Type::PointerTyID: {
709 OS << "ptr";
711 return;
712 }
713 case Type::ArrayTyID: {
715 OS << '[' << ATy->getNumElements() << " x ";
716 print(ATy->getElementType(), OS);
717 OS << ']';
718 return;
719 }
720 case Type::FixedVectorTyID:
721 case Type::ScalableVectorTyID: {
723 ElementCount EC = PTy->getElementCount();
724 OS << "<";
725 if (EC.isScalable())
726 OS << "vscale x ";
727 OS << EC.getKnownMinValue() << " x ";
728 print(PTy->getElementType(), OS);
729 OS << '>';
730 return;
731 }
732 case Type::TypedPointerTyID: {
736 return;
737 }
738 case Type::TargetExtTyID:
740 OS << "target(\"";
742 OS << "\"";
744 OS << ", ";
745 Inner->print(OS, false, true);
746 }
747 for (unsigned IntParam : TETy->int_params())
748 OS << ", " << IntParam;
749 OS << ")";
750 return;
751 }
753}
754
755void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
757 OS << "opaque";
758 return;
759 }
760
762 OS << '<';
763
765 OS << "{}";
766 } else {
767 OS << "{ ";
768 ListSeparator LS;
770 OS << LS;
772 }
773
774 OS << " }";
775 }
777 OS << '>';
778}
779
781
782
783
784
785
786
788public:
789
791
792private:
793
794 const Module* TheModule;
795
796
797 const Function* TheFunction = nullptr;
798 bool FunctionProcessed = false;
799 bool ShouldInitializeAllMetadata;
800
802 ProcessModuleHookFn;
804 ProcessFunctionHookFn;
805
806
808
809
811 unsigned mNext = 0;
812
813
815 unsigned fNext = 0;
816
817
819 unsigned mdnNext = 0;
820
821
823 unsigned asNext = 0;
824
825
827 unsigned ModulePathNext = 0;
828
829
831 unsigned GUIDNext = 0;
832
833
835 unsigned TypeIdNext = 0;
836
837
838
840 unsigned TypeIdCompatibleVtableNext = 0;
841
842public:
843
844
845
846
847
849 bool ShouldInitializeAllMetadata = false);
850
851
852
853
854
855
857 bool ShouldInitializeAllMetadata = false);
858
859
861
864
866
871
873
874 void createMetadataSlot(const MDNode *N) override;
875
876
877
878 int getLocalSlot(const Value *V);
880 int getMetadataSlot(const MDNode *N) override;
882 int getModulePathSlot(StringRef Path);
885 int getTypeIdCompatibleVtableSlot(StringRef Id);
886
887
888
890 TheFunction = F;
891 FunctionProcessed = false;
892 }
893
895
896
897
898
899 void purgeFunction();
900
901
903
906 unsigned mdn_size() const { return mdnMap.size(); }
907 bool mdn_empty() const { return mdnMap.empty(); }
908
909
911
914 unsigned as_size() const { return asMap.size(); }
915 bool as_empty() const { return asMap.empty(); }
916
917
919
920
923
924
925private:
926
927 void CreateModuleSlot(const GlobalValue *V);
928
929
930 void CreateMetadataSlot(const MDNode *N);
931
932
933 void CreateFunctionSlot(const Value *V);
934
935
936 void CreateAttributeSetSlot(AttributeSet AS);
937
938 inline void CreateModulePathSlot(StringRef Path);
940 void CreateTypeIdSlot(StringRef Id);
941 void CreateTypeIdCompatibleVtableSlot(StringRef Id);
942
943
944
945 void processModule();
946
947 int processIndex();
948
949
951
952
953 void processGlobalObjectMetadata(const GlobalObject &GO);
954
955
956 void processFunctionMetadata(const Function &F);
957
958
959 void processInstructionMetadata(const Instruction &I);
960
961
962 void processDbgRecordMetadata(const DbgRecord &DVR);
963};
964
967 : M(M), F(F), Machine(&Machine) {}
968
970 bool ShouldInitializeAllMetadata)
971 : ShouldCreateStorage(M),
972 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
973
975
977 if (!ShouldCreateStorage)
978 return Machine;
979
980 ShouldCreateStorage = false;
981 MachineStorage =
982 std::make_unique(M, ShouldInitializeAllMetadata);
983 Machine = MachineStorage.get();
984 if (ProcessModuleHookFn)
985 Machine->setProcessHook(ProcessModuleHookFn);
986 if (ProcessFunctionHookFn)
987 Machine->setProcessHook(ProcessFunctionHookFn);
988 return Machine;
989}
990
992
994 return;
995
996
997 if (this->F == &F)
998 return;
999 if (this->F)
1000 Machine->purgeFunction();
1001 Machine->incorporateFunction(&F);
1002 this->F = &F;
1003}
1004
1006 assert(F && "No function incorporated");
1007 return Machine->getLocalSlot(V);
1008}
1009
1012 Fn) {
1013 ProcessModuleHookFn = Fn;
1014}
1015
1018 Fn) {
1019 ProcessFunctionHookFn = Fn;
1020}
1021
1024 return new SlotTracker(FA->getParent());
1025
1027 if (I->getParent())
1028 return new SlotTracker(I->getParent()->getParent());
1029
1031 return new SlotTracker(BB->getParent());
1032
1034 return new SlotTracker(GV->getParent());
1035
1037 return new SlotTracker(GA->getParent());
1038
1040 return new SlotTracker(GIF->getParent());
1041
1044
1045 return nullptr;
1046}
1047
1048#if 0
1049#define ST_DEBUG(X) dbgs() << X
1050#else
1051#define ST_DEBUG(X)
1052#endif
1053
1054
1055
1057 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
1058
1059
1060
1062 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
1063 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
1064
1066 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
1067
1069 if (TheModule) {
1070 processModule();
1071 TheModule = nullptr;
1072 }
1073
1074 if (TheFunction && !FunctionProcessed)
1075 processFunction();
1076}
1077
1079 if (!TheIndex)
1080 return 0;
1081 int NumSlots = processIndex();
1082 TheIndex = nullptr;
1083 return NumSlots;
1084}
1085
1086
1087
1088void SlotTracker::processModule() {
1089 ST_DEBUG("begin processModule!\n");
1090
1091
1093 if (!Var.hasName())
1094 CreateModuleSlot(&Var);
1095 processGlobalObjectMetadata(Var);
1096 auto Attrs = Var.getAttributes();
1097 if (Attrs.hasAttributes())
1098 CreateAttributeSetSlot(Attrs);
1099 }
1100
1102 if (.hasName())
1103 CreateModuleSlot(&A);
1104 }
1105
1106 for (const GlobalIFunc &I : TheModule->ifuncs()) {
1107 if (.hasName())
1108 CreateModuleSlot(&I);
1109 processGlobalObjectMetadata(I);
1110 }
1111
1112
1113 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
1114 for (const MDNode *N : NMD.operands())
1115 CreateMetadataSlot(N);
1116 }
1117
1118 for (const Function &F : *TheModule) {
1119 if (.hasName())
1120
1121 CreateModuleSlot(&F);
1122
1123 if (ShouldInitializeAllMetadata)
1124 processFunctionMetadata(F);
1125
1126
1127
1128 AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
1130 CreateAttributeSetSlot(FnAttrs);
1131 }
1132
1133 if (ProcessModuleHookFn)
1134 ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
1135
1136 ST_DEBUG("end processModule!\n");
1137}
1138
1139
1140void SlotTracker::processFunction() {
1141 ST_DEBUG("begin processFunction!\n");
1142 fNext = 0;
1143
1144
1145 if (!ShouldInitializeAllMetadata)
1146 processFunctionMetadata(*TheFunction);
1147
1148
1150 AE = TheFunction->arg_end(); AI != AE; ++AI)
1151 if (!AI->hasName())
1152 CreateFunctionSlot(&*AI);
1153
1154 ST_DEBUG("Inserting Instructions:\n");
1155
1156
1157 for (auto &BB : *TheFunction) {
1158 if (!BB.hasName())
1159 CreateFunctionSlot(&BB);
1160
1161 for (auto &I : BB) {
1162 if (.getType()->isVoidTy() &&
.hasName())
1163 CreateFunctionSlot(&I);
1164
1165
1166
1168
1170 if (Attrs.hasAttributes())
1171 CreateAttributeSetSlot(Attrs);
1172 }
1173 }
1174 }
1175
1176 if (ProcessFunctionHookFn)
1177 ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1178
1179 FunctionProcessed = true;
1180
1181 ST_DEBUG("end processFunction!\n");
1182}
1183
1184
1185int SlotTracker::processIndex() {
1186 ST_DEBUG("begin processIndex!\n");
1188
1189
1190
1191
1192 std::vector ModulePaths;
1193 for (auto &[ModPath, _] : TheIndex->modulePaths())
1194 ModulePaths.push_back(ModPath);
1196 for (auto &ModPath : ModulePaths)
1197 CreateModulePathSlot(ModPath);
1198
1199
1200 GUIDNext = ModulePathNext;
1201
1202 for (auto &GlobalList : *TheIndex)
1203 CreateGUIDSlot(GlobalList.first);
1204
1205
1206 TypeIdCompatibleVtableNext = GUIDNext;
1207 for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1208 CreateTypeIdCompatibleVtableSlot(TId.first);
1209
1210
1211 TypeIdNext = TypeIdCompatibleVtableNext;
1212 for (const auto &TID : TheIndex->typeIds())
1213 CreateTypeIdSlot(TID.second.first);
1214
1215 ST_DEBUG("end processIndex!\n");
1216 return TypeIdNext;
1217}
1218
1219void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1222 for (auto &MD : MDs)
1223 CreateMetadataSlot(MD.second);
1224}
1225
1226void SlotTracker::processFunctionMetadata(const Function &F) {
1227 processGlobalObjectMetadata(F);
1228 for (auto &BB : F) {
1229 for (auto &I : BB) {
1230 for (const DbgRecord &DR : I.getDbgRecordRange())
1231 processDbgRecordMetadata(DR);
1232 processInstructionMetadata(I);
1233 }
1234 }
1235}
1236
1237void SlotTracker::processDbgRecordMetadata(const DbgRecord &DR) {
1238
1239
1240
1241
1243
1244
1245
1246
1248 CreateMetadataSlot(Empty);
1249 if (DVR->getRawVariable())
1250 CreateMetadataSlot(DVR->getRawVariable());
1251 if (DVR->isDbgAssign()) {
1252 if (auto *AssignID = DVR->getRawAssignID())
1255 CreateMetadataSlot(Empty);
1256 }
1258 CreateMetadataSlot(DLR->getRawLabel());
1259 } else {
1261 }
1264}
1265
1266void SlotTracker::processInstructionMetadata(const Instruction &I) {
1267
1269 if (Function *F = CI->getCalledFunction())
1270 if (F->isIntrinsic())
1271 for (auto &Op : I.operands())
1274 CreateMetadataSlot(N);
1275
1276
1278 I.getAllMetadata(MDs);
1279 for (auto &MD : MDs)
1280 CreateMetadataSlot(MD.second);
1281}
1282
1283
1284
1285
1287 ST_DEBUG("begin purgeFunction!\n");
1288 fMap.clear();
1289 TheFunction = nullptr;
1290 FunctionProcessed = false;
1291 ST_DEBUG("end purgeFunction!\n");
1292}
1293
1294
1296
1298
1299
1301 return MI == mMap.end() ? -1 : (int)MI->second;
1302}
1303
1306 Fn) {
1307 ProcessModuleHookFn = Fn;
1308}
1309
1312 Fn) {
1313 ProcessFunctionHookFn = Fn;
1314}
1315
1316
1318
1319
1321
1323
1324
1326 return MI == mdnMap.end() ? -1 : (int)MI->second;
1327}
1328
1329
1331 assert((V) && "Can't get a constant or global slot with this!");
1332
1333
1335
1337 return FI == fMap.end() ? -1 : (int)FI->second;
1338}
1339
1341
1343
1344
1346 return AI == asMap.end() ? -1 : (int)AI->second;
1347}
1348
1350
1352
1353
1354 auto I = ModulePathMap.find(Path);
1355 return I == ModulePathMap.end() ? -1 : (int)I->second;
1356}
1357
1359
1361
1362
1364 return I == GUIDMap.end() ? -1 : (int)I->second;
1365}
1366
1368
1370
1371
1372 auto I = TypeIdMap.find(Id);
1373 return I == TypeIdMap.end() ? -1 : (int)I->second;
1374}
1375
1377
1379
1380
1381 auto I = TypeIdCompatibleVtableMap.find(Id);
1382 return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)I->second;
1383}
1384
1385
1386void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1387 assert(V && "Can't insert a null Value into SlotTracker!");
1388 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1389 assert(!V->hasName() && "Doesn't need a slot!");
1390
1391 unsigned DestSlot = mNext++;
1392 mMap[V] = DestSlot;
1393
1394 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1395 DestSlot << " [");
1396
1401}
1402
1403
1404void SlotTracker::CreateFunctionSlot(const Value *V) {
1405 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1406
1407 unsigned DestSlot = fNext++;
1408 fMap[V] = DestSlot;
1409
1410
1411 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1412 DestSlot << " [o]\n");
1413}
1414
1415
1416void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1417 assert(N && "Can't insert a null Value into SlotTracker!");
1418
1419
1421 return;
1422
1423 unsigned DestSlot = mdnNext;
1424 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1425 return;
1426 ++mdnNext;
1427
1428
1429 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1431 CreateMetadataSlot(Op);
1432}
1433
1434void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1436
1437 if (asMap.try_emplace(AS, asNext).second)
1438 ++asNext;
1439}
1440
1441
1442void SlotTracker::CreateModulePathSlot(StringRef Path) {
1443 ModulePathMap[Path] = ModulePathNext++;
1444}
1445
1446
1448 GUIDMap[GUID] = GUIDNext++;
1449}
1450
1451
1452void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1453 TypeIdMap[Id] = TypeIdNext++;
1454}
1455
1456
1457void SlotTracker::CreateTypeIdCompatibleVtableSlot(StringRef Id) {
1458 TypeIdCompatibleVtableMap[Id] = TypeIdCompatibleVtableNext++;
1459}
1460
1461namespace {
1462
1463struct AsmWriterContext {
1464 TypePrinting *TypePrinter = nullptr;
1465 SlotTracker *Machine = nullptr;
1467
1468 AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1470
1471 static AsmWriterContext &getEmpty() {
1472 static AsmWriterContext EmptyCtx(nullptr, nullptr);
1473 return EmptyCtx;
1474 }
1475
1476
1477
1478 virtual void onWriteMetadataAsOperand(const Metadata *) {}
1479
1480 virtual ~AsmWriterContext() = default;
1481};
1482}
1483
1484
1485
1486
1487
1489 AsmWriterContext &WriterCtx,
1490 bool PrintType = false);
1491
1493 AsmWriterContext &WriterCtx,
1494 bool FromValue = false);
1495
1498 Out << FPO->getFastMathFlags();
1499
1501 if (OBO->hasNoUnsignedWrap())
1502 Out << " nuw";
1503 if (OBO->hasNoSignedWrap())
1504 Out << " nsw";
1506 if (Div->isExact())
1507 Out << " exact";
1509 if (PDI->isDisjoint())
1510 Out << " disjoint";
1512 if (GEP->isInBounds())
1513 Out << " inbounds";
1514 else if (GEP->hasNoUnsignedSignedWrap())
1515 Out << " nusw";
1516 if (GEP->hasNoUnsignedWrap())
1517 Out << " nuw";
1518 if (auto InRange = GEP->getInRange()) {
1519 Out << " inrange(" << InRange->getLower() << ", " << InRange->getUpper()
1520 << ")";
1521 }
1523 if (NNI->hasNonNeg())
1524 Out << " nneg";
1526 if (TI->hasNoUnsignedWrap())
1527 Out << " nuw";
1528 if (TI->hasNoSignedWrap())
1529 Out << " nsw";
1531 if (ICmp->hasSameSign())
1532 Out << " samesign";
1533 }
1534}
1535
1539
1540
1541
1542
1543
1544 bool ignored;
1547 bool isNaN = APF.isNaN();
1548
1549 if (!isInf && !isNaN) {
1552 APF.toString(StrVal, 6, 0, false);
1553
1554
1555
1556
1558 ((StrVal[0] == '-' || StrVal[0] == '+') && isDigit(StrVal[1]))) &&
1559 "[-+]?[0-9] regex does not match!");
1560
1562 Out << StrVal;
1563 return;
1564 }
1565 }
1566
1567
1568
1569
1570
1571 static_assert(sizeof(double) == sizeof(uint64_t),
1572 "assuming that double is 64 bits!");
1574
1575
1576
1577 if (!isDouble) {
1578
1579
1582 &ignored);
1583 if (IsSNAN) {
1585 apf =
1587 }
1588 }
1589
1591 return;
1592 }
1593
1594
1595
1596
1597 Out << "0x";
1600 Out << 'K';
1602 true);
1604 true);
1606 Out << 'L';
1608 true);
1610 true);
1612 Out << 'M';
1614 true);
1616 true);
1618 Out << 'H';
1620 true);
1622 Out << 'R';
1624 true);
1625 } else
1627}
1628
1630 AsmWriterContext &WriterCtx) {
1632 Type *Ty = CI->getType();
1633
1634 if (Ty->isVectorTy()) {
1635 Out << "splat (";
1636 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1637 Out << " ";
1638 }
1639
1640 if (Ty->getScalarType()->isIntegerTy(1))
1641 Out << (CI->getZExtValue() ? "true" : "false");
1642 else
1643 Out << CI->getValue();
1644
1645 if (Ty->isVectorTy())
1646 Out << ")";
1647
1648 return;
1649 }
1650
1652 Type *Ty = CFP->getType();
1653
1654 if (Ty->isVectorTy()) {
1655 Out << "splat (";
1656 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1657 Out << " ";
1658 }
1659
1661
1662 if (Ty->isVectorTy())
1663 Out << ")";
1664
1665 return;
1666 }
1667
1669 Out << "zeroinitializer";
1670 return;
1671 }
1672
1674 Out << "blockaddress(";
1676 Out << ", ";
1678 Out << ")";
1679 return;
1680 }
1681
1683 Out << "dso_local_equivalent ";
1685 return;
1686 }
1687
1689 Out << "no_cfi ";
1691 return;
1692 }
1693
1695 Out << "ptrauth (";
1696
1697
1698 unsigned NumOpsToWrite = 2;
1699 if (!CPA->getOperand(2)->isNullValue())
1700 NumOpsToWrite = 3;
1701 if (!CPA->getOperand(3)->isNullValue())
1702 NumOpsToWrite = 4;
1703 if (!CPA->getOperand(4)->isNullValue())
1704 NumOpsToWrite = 5;
1705
1707 for (unsigned i = 0, e = NumOpsToWrite; i != e; ++i) {
1708 Out << LS;
1710 true);
1711 }
1712 Out << ')';
1713 return;
1714 }
1715
1717 Out << '[';
1719 for (const Value *Op : CA->operands()) {
1720 Out << LS;
1722 }
1723 Out << ']';
1724 return;
1725 }
1726
1728
1729
1730 if (CA->isString()) {
1731 Out << "c\"";
1733 Out << '"';
1734 return;
1735 }
1736
1737 Out << '[';
1739 for (uint64_t i = 0, e = CA->getNumElements(); i != e; ++i) {
1740 Out << LS;
1742 true);
1743 }
1744 Out << ']';
1745 return;
1746 }
1747
1749 if (CS->getType()->isPacked())
1750 Out << '<';
1751 Out << '{';
1752 if (CS->getNumOperands() != 0) {
1753 Out << ' ';
1755 for (const Value *Op : CS->operands()) {
1756 Out << LS;
1758 }
1759 Out << ' ';
1760 }
1761 Out << '}';
1762 if (CS->getType()->isPacked())
1763 Out << '>';
1764 return;
1765 }
1766
1769
1770
1771
1772
1773
1774
1777 Out << "splat (";
1779 Out << ')';
1780 return;
1781 }
1782 }
1783
1784 Out << '<';
1786 for (unsigned i = 0, e = CVVTy->getNumElements(); i != e; ++i) {
1787 Out << LS;
1789 true);
1790 }
1791 Out << '>';
1792 return;
1793 }
1794
1796 Out << "null";
1797 return;
1798 }
1799
1801 Out << "none";
1802 return;
1803 }
1804
1806 Out << "poison";
1807 return;
1808 }
1809
1811 Out << "undef";
1812 return;
1813 }
1814
1816
1817
1818
1819
1820
1821 if (CE->getOpcode() == Instruction::ShuffleVector) {
1822 if (auto *SplatVal = CE->getSplatValue()) {
1824 Out << "splat (";
1826 Out << ')';
1827 return;
1828 }
1829 }
1830 }
1831
1832 Out << CE->getOpcodeName();
1834 Out << " (";
1835
1837 WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1838 Out << ", ";
1839 }
1840
1842 for (const Value *Op : CE->operands()) {
1843 Out << LS;
1845 }
1846
1847 if (CE->isCast()) {
1848 Out << " to ";
1849 WriterCtx.TypePrinter->print(CE->getType(), Out);
1850 }
1851
1852 if (CE->getOpcode() == Instruction::ShuffleVector)
1854
1855 Out << ')';
1856 return;
1857 }
1858
1859 Out << "";
1860}
1861
1863 AsmWriterContext &WriterCtx) {
1864 Out << "!{";
1866 for (const Metadata *MD : Node->operands()) {
1867 Out << LS;
1868 if (!MD) {
1869 Out << "null";
1871 Value *V = MDV->getValue();
1873 } else {
1875 WriterCtx.onWriteMetadataAsOperand(MD);
1876 }
1877 }
1878
1879 Out << "}";
1880}
1881
1882namespace {
1883
1884struct MDFieldPrinter {
1885 raw_ostream &Out;
1886 ListSeparator FS;
1887 AsmWriterContext &WriterCtx;
1888
1889 explicit MDFieldPrinter(raw_ostream &Out)
1890 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1891 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1892 : Out(Out), WriterCtx(Ctx) {}
1893
1894 void printTag(const DINode *N);
1895 void printMacinfoType(const DIMacroNode *N);
1896 void printChecksum(const DIFile::ChecksumInfo &N);
1897 void printString(StringRef Name, StringRef Value,
1898 bool ShouldSkipEmpty = true);
1899 void printMetadata(StringRef Name, const Metadata *MD,
1900 bool ShouldSkipNull = true);
1901 void printMetadataOrInt(StringRef Name, const Metadata *MD, bool IsUnsigned,
1902 bool ShouldSkipZero = true);
1903 template
1904 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1905 void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1906 bool ShouldSkipZero);
1907 void printBool(StringRef Name, bool Value,
1908 std::optional Default = std::nullopt);
1909 void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1911 template <class IntTy, class Stringifier>
1912 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1913 bool ShouldSkipZero = true);
1915 void printNameTableKind(StringRef Name,
1918};
1919
1920}
1921
1922void MDFieldPrinter::printTag(const DINode *N) {
1923 Out << FS << "tag: ";
1925 if (.empty())
1926 Out << Tag;
1927 else
1928 Out << N->getTag();
1929}
1930
1931void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1932 Out << FS << "type: ";
1934 if (.empty())
1935 Out << Type;
1936 else
1937 Out << N->getMacinfoType();
1938}
1939
1940void MDFieldPrinter::printChecksum(
1943 printString("checksum", Checksum.Value, false);
1944}
1945
1947 bool ShouldSkipEmpty) {
1948 if (ShouldSkipEmpty && Value.empty())
1949 return;
1950
1951 Out << FS << Name << ": \"";
1953 Out << "\"";
1954}
1955
1957 AsmWriterContext &WriterCtx) {
1958 if (!MD) {
1959 Out << "null";
1960 return;
1961 }
1963 WriterCtx.onWriteMetadataAsOperand(MD);
1964}
1965
1966void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1967 bool ShouldSkipNull) {
1968 if (ShouldSkipNull && !MD)
1969 return;
1970
1971 Out << FS << Name << ": ";
1973}
1974
1975void MDFieldPrinter::printMetadataOrInt(StringRef Name, const Metadata *MD,
1976 bool IsUnsigned, bool ShouldSkipZero) {
1977 if (!MD)
1978 return;
1979
1982 if (IsUnsigned)
1983 printInt(Name, CV->getZExtValue(), ShouldSkipZero);
1984 else
1985 printInt(Name, CV->getSExtValue(), ShouldSkipZero);
1986 } else
1987 printMetadata(Name, MD);
1988}
1989
1990template
1991void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1992 if (ShouldSkipZero && )
1993 return;
1994
1995 Out << FS << Name << ": " << Int;
1996}
1997
1998void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1999 bool IsUnsigned, bool ShouldSkipZero) {
2000 if (ShouldSkipZero && Int.isZero())
2001 return;
2002
2003 Out << FS << Name << ": ";
2004 Int.print(Out, !IsUnsigned);
2005}
2006
2007void MDFieldPrinter::printBool(StringRef Name, bool Value,
2008 std::optional Default) {
2010 return;
2011 Out << FS << Name << ": " << (Value ? "true" : "false");
2012}
2013
2015 if (!Flags)
2016 return;
2017
2018 Out << FS << Name << ": ";
2019
2022
2024 for (auto F : SplitFlags) {
2026 assert(!StringF.empty() && "Expected valid flag");
2027 Out << FlagsFS << StringF;
2028 }
2029 if (Extra || SplitFlags.empty())
2030 Out << FlagsFS << Extra;
2031}
2032
2033void MDFieldPrinter::printDISPFlags(StringRef Name,
2035
2036
2037 Out << FS << Name << ": ";
2038
2039 if (!Flags) {
2040 Out << 0;
2041 return;
2042 }
2043
2046
2048 for (auto F : SplitFlags) {
2050 assert(!StringF.empty() && "Expected valid flag");
2051 Out << FlagsFS << StringF;
2052 }
2053 if (Extra || SplitFlags.empty())
2054 Out << FlagsFS << Extra;
2055}
2056
2057void MDFieldPrinter::printEmissionKind(StringRef Name,
2060}
2061
2062void MDFieldPrinter::printNameTableKind(StringRef Name,
2065 return;
2067}
2068
2069void MDFieldPrinter::printFixedPointKind(StringRef Name,
2072}
2073
2074template <class IntTy, class Stringifier>
2075void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
2076 Stringifier toString, bool ShouldSkipZero) {
2077 if (ShouldSkipZero && )
2078 return;
2079
2080 Out << FS << Name << ": ";
2082 if (!S.empty())
2083 Out << S;
2084 else
2086}
2087
2089 AsmWriterContext &WriterCtx) {
2090 Out << "!GenericDINode(";
2091 MDFieldPrinter Printer(Out, WriterCtx);
2093 Printer.printString("header", N->getHeader());
2094 if (N->getNumDwarfOperands()) {
2095 Out << Printer.FS << "operands: {";
2097 for (auto &I : N->dwarf_operands()) {
2098 Out << IFS;
2100 }
2101 Out << "}";
2102 }
2103 Out << ")";
2104}
2105
2107 AsmWriterContext &WriterCtx) {
2108 Out << "!DILocation(";
2109 MDFieldPrinter Printer(Out, WriterCtx);
2110
2111 Printer.printInt("line", DL->getLine(), false);
2112 Printer.printInt("column", DL->getColumn());
2113 Printer.printMetadata("scope", DL->getRawScope(), false);
2114 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
2115 Printer.printBool("isImplicitCode", DL->isImplicitCode(),
2116 false);
2117 Printer.printInt("atomGroup", DL->getAtomGroup());
2118 Printer.printInt<unsigned>("atomRank", DL->getAtomRank());
2119 Out << ")";
2120}
2121
2123 AsmWriterContext &WriterCtx) {
2124 Out << "!DIAssignID()";
2125 MDFieldPrinter Printer(Out, WriterCtx);
2126}
2127
2129 AsmWriterContext &WriterCtx) {
2130 Out << "!DISubrange(";
2131 MDFieldPrinter Printer(Out, WriterCtx);
2132
2133 Printer.printMetadataOrInt("count", N->getRawCountNode(),
2134 false,
2135 false);
2136
2137
2138
2139 Printer.printMetadataOrInt("lowerBound", N->getRawLowerBound(),
2140 false,
2141 false);
2142 Printer.printMetadataOrInt("upperBound", N->getRawUpperBound(),
2143 false,
2144 false);
2145 Printer.printMetadataOrInt("stride", N->getRawStride(),
2146 false,
2147 false);
2148
2149 Out << ")";
2150}
2151
2153 AsmWriterContext &WriterCtx) {
2154 Out << "!DIGenericSubrange(";
2155 MDFieldPrinter Printer(Out, WriterCtx);
2156
2157 auto GetConstant = [&](Metadata *Bound) -> std::optional<int64_t> {
2159 if (!BE)
2160 return std::nullopt;
2161 if (BE->isConstant() &&
2163 *BE->isConstant()) {
2164 return static_cast<int64_t>(BE->getElement(1));
2165 }
2166 return std::nullopt;
2167 };
2168
2169 auto *Count = N->getRawCountNode();
2170 if (auto ConstantCount = GetConstant(Count))
2171 Printer.printInt("count", *ConstantCount,
2172 false);
2173 else
2174 Printer.printMetadata("count", Count, true);
2175
2176 auto *LBound = N->getRawLowerBound();
2177 if (auto ConstantLBound = GetConstant(LBound))
2178 Printer.printInt("lowerBound", *ConstantLBound,
2179 false);
2180 else
2181 Printer.printMetadata("lowerBound", LBound, true);
2182
2183 auto *UBound = N->getRawUpperBound();
2184 if (auto ConstantUBound = GetConstant(UBound))
2185 Printer.printInt("upperBound", *ConstantUBound,
2186 false);
2187 else
2188 Printer.printMetadata("upperBound", UBound, true);
2189
2190 auto *Stride = N->getRawStride();
2191 if (auto ConstantStride = GetConstant(Stride))
2192 Printer.printInt("stride", *ConstantStride,
2193 false);
2194 else
2195 Printer.printMetadata("stride", Stride, true);
2196
2197 Out << ")";
2198}
2199
2201 AsmWriterContext &) {
2202 Out << "!DIEnumerator(";
2203 MDFieldPrinter Printer(Out);
2204 Printer.printString("name", N->getName(), false);
2205 Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
2206 false);
2207 if (N->isUnsigned())
2208 Printer.printBool("isUnsigned", true);
2209 Out << ")";
2210}
2211
2213 AsmWriterContext &WriterCtx) {
2214 Out << "!DIBasicType(";
2215 MDFieldPrinter Printer(Out, WriterCtx);
2216 if (N->getTag() != dwarf::DW_TAG_base_type)
2218 Printer.printString("name", N->getName());
2219 Printer.printMetadataOrInt("size", N->getRawSizeInBits(), true);
2220 Printer.printInt("align", N->getAlignInBits());
2221 Printer.printInt("dataSize", N->getDataSizeInBits());
2222 Printer.printDwarfEnum("encoding", N->getEncoding(),
2224 Printer.printInt("num_extra_inhabitants", N->getNumExtraInhabitants());
2225 Printer.printDIFlags("flags", N->getFlags());
2226 Out << ")";
2227}
2228
2230 AsmWriterContext &WriterCtx) {
2231 Out << "!DIFixedPointType(";
2232 MDFieldPrinter Printer(Out, WriterCtx);
2233 if (N->getTag() != dwarf::DW_TAG_base_type)
2235 Printer.printString("name", N->getName());
2236 Printer.printMetadataOrInt("size", N->getRawSizeInBits(), true);
2237 Printer.printInt("align", N->getAlignInBits());
2238 Printer.printDwarfEnum("encoding", N->getEncoding(),
2240 Printer.printDIFlags("flags", N->getFlags());
2241 Printer.printFixedPointKind("kind", N->getKind());
2242 if (N->isRational()) {
2243 bool IsUnsigned = ->isSigned();
2244 Printer.printAPInt("numerator", N->getNumerator(), IsUnsigned, false);
2245 Printer.printAPInt("denominator", N->getDenominator(), IsUnsigned, false);
2246 } else {
2247 Printer.printInt("factor", N->getFactor());
2248 }
2249 Out << ")";
2250}
2251
2253 AsmWriterContext &WriterCtx) {
2254 Out << "!DIStringType(";
2255 MDFieldPrinter Printer(Out, WriterCtx);
2256 if (N->getTag() != dwarf::DW_TAG_string_type)
2258 Printer.printString("name", N->getName());
2259 Printer.printMetadata("stringLength", N->getRawStringLength());
2260 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2261 Printer.printMetadata("stringLocationExpression",
2262 N->getRawStringLocationExp());
2263 Printer.printMetadataOrInt("size", N->getRawSizeInBits(), true);
2264 Printer.printInt("align", N->getAlignInBits());
2265 Printer.printDwarfEnum("encoding", N->getEncoding(),
2267 Out << ")";
2268}
2269
2271 AsmWriterContext &WriterCtx) {
2272 Out << "!DIDerivedType(";
2273 MDFieldPrinter Printer(Out, WriterCtx);
2275 Printer.printString("name", N->getName());
2276 Printer.printMetadata("scope", N->getRawScope());
2277 Printer.printMetadata("file", N->getRawFile());
2278 Printer.printInt("line", N->getLine());
2279 Printer.printMetadata("baseType", N->getRawBaseType(),
2280 false);
2281 Printer.printMetadataOrInt("size", N->getRawSizeInBits(), true);
2282 Printer.printInt("align", N->getAlignInBits());
2283 Printer.printMetadataOrInt("offset", N->getRawOffsetInBits(), true);
2284 Printer.printDIFlags("flags", N->getFlags());
2285 Printer.printMetadata("extraData", N->getRawExtraData());
2286 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2287 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2288 false);
2289 Printer.printMetadata("annotations", N->getRawAnnotations());
2290 if (auto PtrAuthData = N->getPtrAuthData()) {
2291 Printer.printInt("ptrAuthKey", PtrAuthData->key());
2292 Printer.printBool("ptrAuthIsAddressDiscriminated",
2293 PtrAuthData->isAddressDiscriminated());
2294 Printer.printInt("ptrAuthExtraDiscriminator",
2295 PtrAuthData->extraDiscriminator());
2296 Printer.printBool("ptrAuthIsaPointer", PtrAuthData->isaPointer());
2297 Printer.printBool("ptrAuthAuthenticatesNullValues",
2298 PtrAuthData->authenticatesNullValues());
2299 }
2300 Out << ")";
2301}
2302
2304 AsmWriterContext &WriterCtx) {
2305 Out << "!DISubrangeType(";
2306 MDFieldPrinter Printer(Out, WriterCtx);
2307 Printer.printString("name", N->getName());
2308 Printer.printMetadata("scope", N->getRawScope());
2309 Printer.printMetadata("file", N->getRawFile());
2310 Printer.printInt("line", N->getLine());
2311 Printer.printMetadataOrInt("size", N->getRawSizeInBits(), true);
2312 Printer.printInt("align", N->getAlignInBits());
2313 Printer.printDIFlags("flags", N->getFlags());
2314 Printer.printMetadata("baseType", N->getRawBaseType(),
2315 false);
2316 Printer.printMetadata("lowerBound", N->getRawLowerBound());
2317 Printer.printMetadata("upperBound", N->getRawUpperBound());
2318 Printer.printMetadata("stride", N->getRawStride());
2319 Printer.printMetadata("bias", N->getRawBias());
2320 Out << ")";
2321}
2322
2324 AsmWriterContext &WriterCtx) {
2325 Out << "!DICompositeType(";
2326 MDFieldPrinter Printer(Out, WriterCtx);
2328 Printer.printString("name", N->getName());
2329 Printer.printMetadata("scope", N->getRawScope());
2330 Printer.printMetadata("file", N->getRawFile());
2331 Printer.printInt("line", N->getLine());
2332 Printer.printMetadata("baseType", N->getRawBaseType());
2333 Printer.printMetadataOrInt("size", N->getRawSizeInBits(), true);
2334 Printer.printInt("align", N->getAlignInBits());
2335 Printer.printMetadataOrInt("offset", N->getRawOffsetInBits(), true);
2336 Printer.printInt("num_extra_inhabitants", N->getNumExtraInhabitants());
2337 Printer.printDIFlags("flags", N->getFlags());
2338 Printer.printMetadata("elements", N->getRawElements());
2339 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2341 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2342 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2343 Printer.printString("identifier", N->getIdentifier());
2344 Printer.printMetadata("discriminator", N->getRawDiscriminator());
2345 Printer.printMetadata("dataLocation", N->getRawDataLocation());
2346 Printer.printMetadata("associated", N->getRawAssociated());
2347 Printer.printMetadata("allocated", N->getRawAllocated());
2348 if (auto *RankConst = N->getRankConst())
2349 Printer.printInt("rank", RankConst->getSExtValue(),
2350 false);
2351 else
2352 Printer.printMetadata("rank", N->getRawRank(), true);
2353 Printer.printMetadata("annotations", N->getRawAnnotations());
2354 if (auto *Specification = N->getRawSpecification())
2355 Printer.printMetadata("specification", Specification);
2356
2357 if (auto EnumKind = N->getEnumKind())
2359 false);
2360
2361 Printer.printMetadata("bitStride", N->getRawBitStride());
2362 Out << ")";
2363}
2364
2366 AsmWriterContext &WriterCtx) {
2367 Out << "!DISubroutineType(";
2368 MDFieldPrinter Printer(Out, WriterCtx);
2369 Printer.printDIFlags("flags", N->getFlags());
2371 Printer.printMetadata("types", N->getRawTypeArray(),
2372 false);
2373 Out << ")";
2374}
2375
2377 Out << "!DIFile(";
2378 MDFieldPrinter Printer(Out);
2379 Printer.printString("filename", N->getFilename(),
2380 false);
2381 Printer.printString("directory", N->getDirectory(),
2382 false);
2383
2384 if (N->getChecksum())
2385 Printer.printChecksum(*N->getChecksum());
2386 if (N->getSource())
2387 Printer.printString("source", *N->getSource(),
2388 false);
2389 Out << ")";
2390}
2391
2393 AsmWriterContext &WriterCtx) {
2394 Out << "!DICompileUnit(";
2395 MDFieldPrinter Printer(Out, WriterCtx);
2396
2398
2401 "sourceLanguageName",
2404 false);
2405
2407 true);
2408 } else {
2410 false);
2411 }
2412
2413 Printer.printMetadata("file", N->getRawFile(), false);
2414 Printer.printString("producer", N->getProducer());
2415 Printer.printBool("isOptimized", N->isOptimized());
2416 Printer.printString("flags", N->getFlags());
2417 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2418 false);
2419 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2420 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2421 Printer.printMetadata("enums", N->getRawEnumTypes());
2422 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2423 Printer.printMetadata("globals", N->getRawGlobalVariables());
2424 Printer.printMetadata("imports", N->getRawImportedEntities());
2425 Printer.printMetadata("macros", N->getRawMacros());
2426 Printer.printInt("dwoId", N->getDWOId());
2427 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2428 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2429 false);
2430 Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2431 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2432 Printer.printString("sysroot", N->getSysRoot());
2433 Printer.printString("sdk", N->getSDK());
2434 Out << ")";
2435}
2436
2438 AsmWriterContext &WriterCtx) {
2439 Out << "!DISubprogram(";
2440 MDFieldPrinter Printer(Out, WriterCtx);
2441 Printer.printString("name", N->getName());
2442 Printer.printString("linkageName", N->getLinkageName());
2443 Printer.printMetadata("scope", N->getRawScope(), false);
2444 Printer.printMetadata("file", N->getRawFile());
2445 Printer.printInt("line", N->getLine());
2446 Printer.printMetadata("type", N->getRawType());
2447 Printer.printInt("scopeLine", N->getScopeLine());
2448 Printer.printMetadata("containingType", N->getRawContainingType());
2449 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2450 N->getVirtualIndex() != 0)
2451 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2452 Printer.printInt("thisAdjustment", N->getThisAdjustment());
2453 Printer.printDIFlags("flags", N->getFlags());
2454 Printer.printDISPFlags("spFlags", N->getSPFlags());
2455 Printer.printMetadata("unit", N->getRawUnit());
2456 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2457 Printer.printMetadata("declaration", N->getRawDeclaration());
2458 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2459 Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2460 Printer.printMetadata("annotations", N->getRawAnnotations());
2461 Printer.printString("targetFuncName", N->getTargetFuncName());
2462 Printer.printBool("keyInstructions", N->getKeyInstructionsEnabled(), false);
2463 Out << ")";
2464}
2465
2467 AsmWriterContext &WriterCtx) {
2468 Out << "!DILexicalBlock(";
2469 MDFieldPrinter Printer(Out, WriterCtx);
2470 Printer.printMetadata("scope", N->getRawScope(), false);
2471 Printer.printMetadata("file", N->getRawFile());
2472 Printer.printInt("line", N->getLine());
2473 Printer.printInt("column", N->getColumn());
2474 Out << ")";
2475}
2476
2479 AsmWriterContext &WriterCtx) {
2480 Out << "!DILexicalBlockFile(";
2481 MDFieldPrinter Printer(Out, WriterCtx);
2482 Printer.printMetadata("scope", N->getRawScope(), false);
2483 Printer.printMetadata("file", N->getRawFile());
2484 Printer.printInt("discriminator", N->getDiscriminator(),
2485 false);
2486 Out << ")";
2487}
2488
2490 AsmWriterContext &WriterCtx) {
2491 Out << "!DINamespace(";
2492 MDFieldPrinter Printer(Out, WriterCtx);
2493 Printer.printString("name", N->getName());
2494 Printer.printMetadata("scope", N->getRawScope(), false);
2495 Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2496 Out << ")";
2497}
2498
2500 AsmWriterContext &WriterCtx) {
2501 Out << "!DICommonBlock(";
2502 MDFieldPrinter Printer(Out, WriterCtx);
2503 Printer.printMetadata("scope", N->getRawScope(), false);
2504 Printer.printMetadata("declaration", N->getRawDecl(), false);
2505 Printer.printString("name", N->getName());
2506 Printer.printMetadata("file", N->getRawFile());
2507 Printer.printInt("line", N->getLineNo());
2508 Out << ")";
2509}
2510
2512 AsmWriterContext &WriterCtx) {
2513 Out << "!DIMacro(";
2514 MDFieldPrinter Printer(Out, WriterCtx);
2515 Printer.printMacinfoType(N);
2516 Printer.printInt("line", N->getLine());
2517 Printer.printString("name", N->getName());
2518 Printer.printString("value", N->getValue());
2519 Out << ")";
2520}
2521
2523 AsmWriterContext &WriterCtx) {
2524 Out << "!DIMacroFile(";
2525 MDFieldPrinter Printer(Out, WriterCtx);
2526 Printer.printInt("line", N->getLine());
2527 Printer.printMetadata("file", N->getRawFile(), false);
2528 Printer.printMetadata("nodes", N->getRawElements());
2529 Out << ")";
2530}
2531
2533 AsmWriterContext &WriterCtx) {
2534 Out << "!DIModule(";
2535 MDFieldPrinter Printer(Out, WriterCtx);
2536 Printer.printMetadata("scope", N->getRawScope(), false);
2537 Printer.printString("name", N->getName());
2538 Printer.printString("configMacros", N->getConfigurationMacros());
2539 Printer.printString("includePath", N->getIncludePath());
2540 Printer.printString("apinotes", N->getAPINotesFile());
2541 Printer.printMetadata("file", N->getRawFile());
2542 Printer.printInt("line", N->getLineNo());
2543 Printer.printBool("isDecl", N->getIsDecl(), false);
2544 Out << ")";
2545}
2546
2549 AsmWriterContext &WriterCtx) {
2550 Out << "!DITemplateTypeParameter(";
2551 MDFieldPrinter Printer(Out, WriterCtx);
2552 Printer.printString("name", N->getName());
2553 Printer.printMetadata("type", N->getRawType(), false);
2554 Printer.printBool("defaulted", N->isDefault(), false);
2555 Out << ")";
2556}
2557
2560 AsmWriterContext &WriterCtx) {
2561 Out << "!DITemplateValueParameter(";
2562 MDFieldPrinter Printer(Out, WriterCtx);
2563 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2565 Printer.printString("name", N->getName());
2566 Printer.printMetadata("type", N->getRawType());
2567 Printer.printBool("defaulted", N->isDefault(), false);
2568 Printer.printMetadata("value", N->getValue(), false);
2569 Out << ")";
2570}
2571
2573 AsmWriterContext &WriterCtx) {
2574 Out << "!DIGlobalVariable(";
2575 MDFieldPrinter Printer(Out, WriterCtx);
2576 Printer.printString("name", N->getName());
2577 Printer.printString("linkageName", N->getLinkageName());
2578 Printer.printMetadata("scope", N->getRawScope(), false);
2579 Printer.printMetadata("file", N->getRawFile());
2580 Printer.printInt("line", N->getLine());
2581 Printer.printMetadata("type", N->getRawType());
2582 Printer.printBool("isLocal", N->isLocalToUnit());
2583 Printer.printBool("isDefinition", N->isDefinition());
2584 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2585 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2586 Printer.printInt("align", N->getAlignInBits());
2587 Printer.printMetadata("annotations", N->getRawAnnotations());
2588 Out << ")";
2589}
2590
2592 AsmWriterContext &WriterCtx) {
2593 Out << "!DILocalVariable(";
2594 MDFieldPrinter Printer(Out, WriterCtx);
2595 Printer.printString("name", N->getName());
2596 Printer.printInt("arg", N->getArg());
2597 Printer.printMetadata("scope", N->getRawScope(), false);
2598 Printer.printMetadata("file", N->getRawFile());
2599 Printer.printInt("line", N->getLine());
2600 Printer.printMetadata("type", N->getRawType());
2601 Printer.printDIFlags("flags", N->getFlags());
2602 Printer.printInt("align", N->getAlignInBits());
2603 Printer.printMetadata("annotations", N->getRawAnnotations());
2604 Out << ")";
2605}
2606
2608 AsmWriterContext &WriterCtx) {
2609 Out << "!DILabel(";
2610 MDFieldPrinter Printer(Out, WriterCtx);
2611 Printer.printMetadata("scope", N->getRawScope(), false);
2612 Printer.printString("name", N->getName());
2613 Printer.printMetadata("file", N->getRawFile());
2614 Printer.printInt("line", N->getLine());
2615 Printer.printInt("column", N->getColumn());
2616 Printer.printBool("isArtificial", N->isArtificial(), false);
2617 if (N->getCoroSuspendIdx())
2618 Printer.printInt("coroSuspendIdx", *N->getCoroSuspendIdx(),
2619 false);
2620 Out << ")";
2621}
2622
2624 AsmWriterContext &WriterCtx) {
2625 Out << "!DIExpression(";
2627 if (N->isValid()) {
2630 assert(!OpStr.empty() && "Expected valid opcode");
2631
2632 Out << FS << OpStr;
2634 Out << FS << Op.getArg(0);
2636 } else {
2637 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2638 Out << FS << Op.getArg(A);
2639 }
2640 }
2641 } else {
2642 for (const auto &I : N->getElements())
2643 Out << FS << I;
2644 }
2645 Out << ")";
2646}
2647
2649 AsmWriterContext &WriterCtx,
2650 bool FromValue = false) {
2652 "Unexpected DIArgList metadata outside of value argument");
2653 Out << "!DIArgList(";
2655 MDFieldPrinter Printer(Out, WriterCtx);
2656 for (const Metadata *Arg : N->getArgs()) {
2657 Out << FS;
2659 }
2660 Out << ")";
2661}
2662
2665 AsmWriterContext &WriterCtx) {
2666 Out << "!DIGlobalVariableExpression(";
2667 MDFieldPrinter Printer(Out, WriterCtx);
2668 Printer.printMetadata("var", N->getVariable());
2669 Printer.printMetadata("expr", N->getExpression());
2670 Out << ")";
2671}
2672
2674 AsmWriterContext &WriterCtx) {
2675 Out << "!DIObjCProperty(";
2676 MDFieldPrinter Printer(Out, WriterCtx);
2677 Printer.printString("name", N->getName());
2678 Printer.printMetadata("file", N->getRawFile());
2679 Printer.printInt("line", N->getLine());
2680 Printer.printString("setter", N->getSetterName());
2681 Printer.printString("getter", N->getGetterName());
2682 Printer.printInt("attributes", N->getAttributes());
2683 Printer.printMetadata("type", N->getRawType());
2684 Out << ")";
2685}
2686
2688 AsmWriterContext &WriterCtx) {
2689 Out << "!DIImportedEntity(";
2690 MDFieldPrinter Printer(Out, WriterCtx);
2692 Printer.printString("name", N->getName());
2693 Printer.printMetadata("scope", N->getRawScope(), false);
2694 Printer.printMetadata("entity", N->getRawEntity());
2695 Printer.printMetadata("file", N->getRawFile());
2696 Printer.printInt("line", N->getLine());
2697 Printer.printMetadata("elements", N->getRawElements());
2698 Out << ")";
2699}
2700
2702 AsmWriterContext &Ctx) {
2703 if (Node->isDistinct())
2704 Out << "distinct ";
2705 else if (Node->isTemporary())
2706 Out << "<temporary!> ";
2707
2708 switch (Node->getMetadataID()) {
2709 default:
2711#define HANDLE_MDNODE_LEAF(CLASS) \
2712 case Metadata::CLASS##Kind: \
2713 write##CLASS(Out, cast(Node), Ctx); \
2714 break;
2715#include "llvm/IR/Metadata.def"
2716 }
2717}
2718
2719
2720
2722 AsmWriterContext &WriterCtx,
2723 bool PrintType) {
2724 if (PrintType) {
2725 WriterCtx.TypePrinter->print(V->getType(), Out);
2726 Out << ' ';
2727 }
2728
2729 if (V->hasName()) {
2731 return;
2732 }
2733
2736 assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2738 return;
2739 }
2740
2742 Out << "asm ";
2743 if (IA->hasSideEffects())
2744 Out << "sideeffect ";
2745 if (IA->isAlignStack())
2746 Out << "alignstack ";
2747
2749 Out << "inteldialect ";
2750 if (IA->canThrow())
2751 Out << "unwind ";
2752 Out << '"';
2754 Out << "\", \"";
2756 Out << '"';
2757 return;
2758 }
2759
2762 true);
2763 return;
2764 }
2765
2766 char Prefix = '%';
2767 int Slot;
2768 auto *Machine = WriterCtx.Machine;
2769
2772 Slot = Machine->getGlobalSlot(GV);
2773 Prefix = '@';
2774 } else {
2775 Slot = Machine->getLocalSlot(V);
2776
2777
2778
2779
2780 if (Slot == -1)
2782 Slot = Machine->getLocalSlot(V);
2784 }
2785 }
2787
2789 Slot = Machine->getGlobalSlot(GV);
2790 Prefix = '@';
2791 } else {
2792 Slot = Machine->getLocalSlot(V);
2793 }
2796 } else {
2797 Slot = -1;
2798 }
2799
2800 if (Slot != -1)
2801 Out << Prefix << Slot;
2802 else
2803 Out << "";
2804}
2805
2807 AsmWriterContext &WriterCtx,
2808 bool FromValue) {
2809
2810
2813 return;
2814 }
2817 return;
2818 }
2819
2821 std::unique_ptr MachineStorage;
2823 if (!WriterCtx.Machine) {
2824 MachineStorage = std::make_unique(WriterCtx.Context);
2825 WriterCtx.Machine = MachineStorage.get();
2826 }
2828 if (Slot == -1) {
2831 return;
2832 }
2833
2834
2835 Out << "<" << N << ">";
2836 } else
2837 Out << '!' << Slot;
2838 return;
2839 }
2840
2842 Out << "!\"";
2844 Out << '"';
2845 return;
2846 }
2847
2849 assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2851 "Unexpected function-local metadata outside of value argument");
2852
2854}
2855
2856namespace {
2857
2858class AssemblyWriter {
2859 formatted_raw_ostream &Out;
2860 const Module *TheModule = nullptr;
2861 const ModuleSummaryIndex *TheIndex = nullptr;
2862 std::unique_ptr SlotTrackerStorage;
2864 TypePrinting TypePrinter;
2865 AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2866 SetVector<const Comdat *> Comdats;
2867 bool IsForDebug;
2868 bool ShouldPreserveUseListOrder;
2871
2873 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2874
2875public:
2876
2877 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2878 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2879 bool ShouldPreserveUseListOrder = false);
2880
2881 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2882 const ModuleSummaryIndex *Index, bool IsForDebug);
2883
2885 return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2886 }
2887
2888 void printMDNodeBody(const MDNode *MD);
2889 void printNamedMDNode(const NamedMDNode *NMD);
2890
2891 void printModule(const Module *M);
2892
2893 void writeOperand(const Value *Op, bool PrintType);
2894 void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2895 void writeOperandBundles(const CallBase *Call);
2896 void writeSyncScope(const LLVMContext &Context,
2898 void writeAtomic(const LLVMContext &Context,
2901 void writeAtomicCmpXchg(const LLVMContext &Context,
2905
2906 void writeAllMDNodes();
2907 void writeMDNode(unsigned Slot, const MDNode *Node);
2908 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2909 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2910 void writeAllAttributeGroups();
2911
2912 void printTypeIdentities();
2913 void printGlobal(const GlobalVariable *GV);
2914 void printAlias(const GlobalAlias *GA);
2915 void printIFunc(const GlobalIFunc *GI);
2916 void printComdat(const Comdat *C);
2917 void printFunction(const Function *F);
2918 void printArgument(const Argument *FA, AttributeSet Attrs);
2920 void printInstructionLine(const Instruction &I);
2921 void printInstruction(const Instruction &I);
2922 void printDbgMarker(const DbgMarker &DPI);
2923 void printDbgVariableRecord(const DbgVariableRecord &DVR);
2924 void printDbgLabelRecord(const DbgLabelRecord &DLR);
2925 void printDbgRecord(const DbgRecord &DR);
2926 void printDbgRecordLine(const DbgRecord &DR);
2927
2928 void printUseListOrder(const Value *V, ArrayRef Shuffle);
2929 void printUseLists(const Function *F);
2930
2931 void printModuleSummaryIndex();
2932 void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2933 void printSummary(const GlobalValueSummary &Summary);
2934 void printAliasSummary(const AliasSummary *AS);
2935 void printGlobalVarSummary(const GlobalVarSummary *GS);
2936 void printFunctionSummary(const FunctionSummary *FS);
2937 void printTypeIdSummary(const TypeIdSummary &TIS);
2939 void printTypeTestResolution(const TypeTestResolution &TTRes);
2940 void printArgs(ArrayRef<uint64_t> Args);
2941 void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2942 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2943 void printVFuncId(const FunctionSummary::VFuncId VFId);
2945 const char *Tag);
2947 const char *Tag);
2948
2949private:
2950
2951 void printMetadataAttachments(
2952 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2953 StringRef Separator);
2954
2955
2956
2957 void printInfoComment(const Value &V, bool isMaterializable = false);
2958
2959
2960
2961 void printGCRelocateComment(const GCRelocateInst &Relocate);
2962};
2963
2964}
2965
2968 bool IsForDebug, bool ShouldPreserveUseListOrder)
2969 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2970 IsForDebug(IsForDebug),
2971 ShouldPreserveUseListOrder(
2974 : ShouldPreserveUseListOrder) {
2975 if (!TheModule)
2976 return;
2977 for (const GlobalObject &GO : TheModule->global_objects())
2979 Comdats.insert(C);
2980}
2981
2984 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(nullptr),
2985 IsForDebug(IsForDebug),
2987
2988void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2989 if (!Operand) {
2990 Out << "<null operand!>";
2991 return;
2992 }
2995}
2996
2997void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2999 switch (SSID) {
3001 break;
3002 }
3003 default: {
3004 if (SSNs.empty())
3005 Context.getSyncScopeNames(SSNs);
3006
3007 Out << " syncscope(\"";
3009 Out << "\")";
3010 break;
3011 }
3012 }
3013}
3014
3015void AssemblyWriter::writeAtomic(const LLVMContext &Context,
3018 if (Ordering == AtomicOrdering::NotAtomic)
3019 return;
3020
3021 writeSyncScope(Context, SSID);
3023}
3024
3025void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
3029 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
3030 FailureOrdering != AtomicOrdering::NotAtomic);
3031
3032 writeSyncScope(Context, SSID);
3033 Out << " " << toIRString(SuccessOrdering);
3034 Out << " " << toIRString(FailureOrdering);
3035}
3036
3037void AssemblyWriter::writeParamOperand(const Value *Operand,
3038 AttributeSet Attrs) {
3039 if (!Operand) {
3040 Out << "<null operand!>";
3041 return;
3042 }
3043
3044
3045 TypePrinter.print(Operand->getType(), Out);
3046
3047 if (Attrs.hasAttributes()) {
3048 Out << ' ';
3049 writeAttributeSet(Attrs);
3050 }
3051 Out << ' ';
3052
3055}
3056
3057void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
3059 return;
3060
3061 Out << " [ ";
3062
3063 ListSeparator LS;
3066
3067 Out << LS << '"';
3069 Out << '"';
3070
3071 Out << '(';
3072
3073 ListSeparator InnerLS;
3075 for (const auto &Input : BU.Inputs) {
3076 Out << InnerLS;
3077 if (Input == nullptr)
3078 Out << "<null operand bundle!>";
3079 else
3081 }
3082
3083 Out << ')';
3084 }
3085
3086 Out << " ]";
3087}
3088
3089void AssemblyWriter::printModule(const Module *M) {
3090 Machine.initializeIfNeeded();
3091
3092 if (ShouldPreserveUseListOrder)
3094
3095 if (->getModuleIdentifier().empty() &&
3096
3097
3098 M->getModuleIdentifier().find('\n') == std:🧵:npos)
3099 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
3100
3101 if (->getSourceFileName().empty()) {
3102 Out << "source_filename = \"";
3104 Out << "\"\n";
3105 }
3106
3107 const std::string &DL = M->getDataLayoutStr();
3109 Out << "target datalayout = \"" << DL << "\"\n";
3110 if (->getTargetTriple().empty())
3111 Out << "target triple = \"" << M->getTargetTriple().str() << "\"\n";
3112
3113 if (->getModuleInlineAsm().empty()) {
3114 Out << '\n';
3115
3116
3117 StringRef Asm = M->getModuleInlineAsm();
3118 do {
3119 StringRef Front;
3120 std::tie(Front, Asm) = Asm.split('\n');
3121
3122
3123
3124 Out << "module asm \"";
3126 Out << "\"\n";
3127 } while (.empty());
3128 }
3129
3130 printTypeIdentities();
3131
3132
3133 if (!Comdats.empty())
3134 Out << '\n';
3135 for (const Comdat *C : Comdats) {
3136 printComdat(C);
3137 if (C != Comdats.back())
3138 Out << '\n';
3139 }
3140
3141
3142 if (->global_empty()) Out << '\n';
3143 for (const GlobalVariable &GV : M->globals()) {
3144 printGlobal(&GV); Out << '\n';
3145 }
3146
3147
3148 if (->alias_empty()) Out << "\n";
3149 for (const GlobalAlias &GA : M->aliases())
3150 printAlias(&GA);
3151
3152
3153 if (->ifunc_empty()) Out << "\n";
3154 for (const GlobalIFunc &GI : M->ifuncs())
3155 printIFunc(&GI);
3156
3157
3158 for (const Function &F : *M) {
3159 Out << '\n';
3160 printFunction(&F);
3161 }
3162
3163
3164 printUseLists(nullptr);
3165
3166
3167 if (.as_empty()) {
3168 Out << '\n';
3169 writeAllAttributeGroups();
3170 }
3171
3172
3173 if (->named_metadata_empty()) Out << '\n';
3174
3175 for (const NamedMDNode &Node : M->named_metadata())
3176 printNamedMDNode(&Node);
3177
3178
3179 if (.mdn_empty()) {
3180 Out << '\n';
3181 writeAllMDNodes();
3182 }
3183}
3184
3185void AssemblyWriter::printModuleSummaryIndex() {
3187 int NumSlots = Machine.initializeIndexIfNeeded();
3188
3189 Out << "\n";
3190
3191
3192
3193 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
3194 std::string RegularLTOModuleName =
3196 moduleVec.resize(TheIndex->modulePaths().size());
3197 for (auto &[ModPath, ModHash] : TheIndex->modulePaths())
3198 moduleVec[Machine.getModulePathSlot(ModPath)] = std::make_pair(
3199
3200
3201 ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
3202
3203 unsigned i = 0;
3204 for (auto &ModPair : moduleVec) {
3205 Out << "^" << i++ << " = module: (";
3206 Out << "path: \"";
3208 Out << "\", hash: (";
3209 ListSeparator FS;
3210 for (auto Hash : ModPair.second)
3211 Out << FS << Hash;
3212 Out << "))\n";
3213 }
3214
3215
3216
3217 for (auto &GlobalList : *TheIndex) {
3218 auto GUID = GlobalList.first;
3219 for (auto &Summary : GlobalList.second.getSummaryList())
3221 }
3222
3223
3224 for (auto &GlobalList : *TheIndex) {
3225 auto GUID = GlobalList.first;
3226 auto VI = TheIndex->getValueInfo(GlobalList);
3227 printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
3228 }
3229
3230
3231 for (const auto &TID : TheIndex->typeIds()) {
3232 Out << "^" << Machine.getTypeIdSlot(TID.second.first)
3233 << " = typeid: (name: \"" << TID.second.first << "\"";
3234 printTypeIdSummary(TID.second.second);
3235 Out << ") ; guid = " << TID.first << "\n";
3236 }
3237
3238
3239 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
3241 Out << "^" << Machine.getTypeIdCompatibleVtableSlot(TId.first)
3242 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
3243 printTypeIdCompatibleVtableSummary(TId.second);
3244 Out << ") ; guid = " << GUID << "\n";
3245 }
3246
3247
3248 if (TheIndex->getFlags()) {
3249 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
3250 ++NumSlots;
3251 }
3252
3253 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
3254 << "\n";
3255}
3256
3257static const char *
3259 switch (K) {
3261 return "indir";
3263 return "singleImpl";
3265 return "branchFunnel";
3266 }
3267 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
3268}
3269
3272 switch (K) {
3274 return "indir";
3276 return "uniformRetVal";
3278 return "uniqueRetVal";
3280 return "virtualConstProp";
3281 }
3282 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
3283}
3284
3286 switch (K) {
3288 return "unknown";
3290 return "unsat";
3292 return "byteArray";
3294 return "inline";
3296 return "single";
3298 return "allOnes";
3299 }
3301}
3302
3303void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3306
3307
3308
3310 Out << ", alignLog2: " << TTRes.AlignLog2;
3312 Out << ", sizeM1: " << TTRes.SizeM1;
3314
3315 Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3317 Out << ", inlineBits: " << TTRes.InlineBits;
3318
3319 Out << ")";
3320}
3321
3322void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3323 Out << ", summary: (";
3324 printTypeTestResolution(TIS.TTRes);
3325 if (!TIS.WPDRes.empty()) {
3326 Out << ", wpdResolutions: (";
3327 ListSeparator FS;
3328 for (auto &WPDRes : TIS.WPDRes) {
3329 Out << FS;
3330 Out << "(offset: " << WPDRes.first << ", ";
3331 printWPDRes(WPDRes.second);
3332 Out << ")";
3333 }
3334 Out << ")";
3335 }
3336 Out << ")";
3337}
3338
3339void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3341 Out << ", summary: (";
3342 ListSeparator FS;
3343 for (auto &P : TI) {
3344 Out << FS;
3345 Out << "(offset: " << P.AddressPointOffset << ", ";
3346 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3347 Out << ")";
3348 }
3349 Out << ")";
3350}
3351
3352void AssemblyWriter::printArgs(ArrayRef<uint64_t> Args) {
3354}
3355
3356void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3357 Out << "wpdRes: (kind: ";
3359
3361 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3362
3363 if (!WPDRes.ResByArg.empty()) {
3364 Out << ", resByArg: (";
3365 ListSeparator FS;
3366 for (auto &ResByArg : WPDRes.ResByArg) {
3367 Out << FS;
3368 printArgs(ResByArg.first);
3369 Out << ", byArg: (kind: ";
3371 if (ResByArg.second.TheKind ==
3373 ResByArg.second.TheKind ==
3375 Out << ", info: " << ResByArg.second.Info;
3376
3377
3378
3379 if (ResByArg.second.Byte || ResByArg.second.Bit)
3380 Out << ", byte: " << ResByArg.second.Byte
3381 << ", bit: " << ResByArg.second.Bit;
3382
3383 Out << ")";
3384 }
3385 Out << ")";
3386 }
3387 Out << ")";
3388}
3389
3391 switch (SK) {
3393 return "alias";
3395 return "function";
3397 return "variable";
3398 }
3400}
3401
3402void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3403 Out << ", aliasee: ";
3404
3405
3406
3408 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3409 else
3410 Out << "null";
3411}
3412
3413void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3414 auto VTableFuncs = GS->vTableFuncs();
3415 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3416 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3417 << "constant: " << GS->VarFlags.Constant;
3418 if (!VTableFuncs.empty())
3419 Out << ", "
3420 << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3421 Out << ")";
3422
3423 if (!VTableFuncs.empty()) {
3424 Out << ", vTableFuncs: (";
3425 ListSeparator FS;
3426 for (auto &P : VTableFuncs) {
3427 Out << FS;
3428 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3429 << ", offset: " << P.VTableOffset;
3430 Out << ")";
3431 }
3432 Out << ")";
3433 }
3434}
3435
3437 switch (LT) {
3439 return "external";
3441 return "private";
3443 return "internal";
3445 return "linkonce";
3447 return "linkonce_odr";
3449 return "weak";
3451 return "weak_odr";
3453 return "common";
3455 return "appending";
3457 return "extern_weak";
3459 return "available_externally";
3460 }
3462}
3463
3464
3465
3466
3472
3474 switch (Vis) {
3476 return "default";
3478 return "hidden";
3480 return "protected";
3481 }
3483}
3484
3486 switch (IK) {
3488 return "definition";
3490 return "declaration";
3491 }
3493}
3494
3495void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3496 Out << ", insts: " << FS->instCount();
3497 if (FS->fflags().anyFlagSet())
3498 Out << ", " << FS->fflags();
3499
3500 if (->calls().empty()) {
3501 Out << ", calls: (";
3502 ListSeparator IFS;
3503 for (auto &Call : FS->calls()) {
3504 Out << IFS;
3505 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3506 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3508 else if (Call.second.RelBlockFreq)
3509 Out << ", relbf: " << Call.second.RelBlockFreq;
3510
3511
3512 if (Call.second.HasTailCall)
3513 Out << ", tail: 1";
3514 Out << ")";
3515 }
3516 Out << ")";
3517 }
3518
3519 if (const auto *TIdInfo = FS->getTypeIdInfo())
3520 printTypeIdInfo(*TIdInfo);
3521
3522
3523
3524 auto AllocTypeName = [](uint8_t Type) -> const char * {
3525 switch (Type) {
3526 case (uint8_t)AllocationType::None:
3527 return "none";
3528 case (uint8_t)AllocationType::NotCold:
3529 return "notcold";
3530 case (uint8_t)AllocationType::Cold:
3531 return "cold";
3532 case (uint8_t)AllocationType::Hot:
3533 return "hot";
3534 }
3536 };
3537
3538 if (->allocs().empty()) {
3539 Out << ", allocs: (";
3540 ListSeparator AFS;
3541 for (auto &AI : FS->allocs()) {
3542 Out << AFS;
3543 Out << "(versions: (";
3544 ListSeparator VFS;
3545 for (auto V : AI.Versions) {
3546 Out << VFS;
3547 Out << AllocTypeName(V);
3548 }
3549 Out << "), memProf: (";
3550 ListSeparator MIBFS;
3551 for (auto &MIB : AI.MIBs) {
3552 Out << MIBFS;
3553 Out << "(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3554 Out << ", stackIds: (";
3555 ListSeparator SIDFS;
3556 for (auto Id : MIB.StackIdIndices) {
3557 Out << SIDFS;
3558 Out << TheIndex->getStackIdAtIndex(Id);
3559 }
3560 Out << "))";
3561 }
3562 Out << "))";
3563 }
3564 Out << ")";
3565 }
3566
3567 if (->callsites().empty()) {
3568 Out << ", callsites: (";
3569 ListSeparator SNFS;
3570 for (auto &CI : FS->callsites()) {
3571 Out << SNFS;
3572 if (CI.Callee)
3573 Out << "(callee: ^" << Machine.getGUIDSlot(CI.Callee.getGUID());
3574 else
3575 Out << "(callee: null";
3576 Out << ", clones: (";
3577 ListSeparator VFS;
3578 for (auto V : CI.Clones) {
3579 Out << VFS;
3580 Out << V;
3581 }
3582 Out << "), stackIds: (";
3583 ListSeparator SIDFS;
3584 for (auto Id : CI.StackIdIndices) {
3585 Out << SIDFS;
3586 Out << TheIndex->getStackIdAtIndex(Id);
3587 }
3588 Out << "))";
3589 }
3590 Out << ")";
3591 }
3592
3593 auto PrintRange = [&](const ConstantRange &Range) {
3595 };
3596
3597 if (->paramAccesses().empty()) {
3598 Out << ", params: (";
3599 ListSeparator IFS;
3600 for (auto &PS : FS->paramAccesses()) {
3601 Out << IFS;
3602 Out << "(param: " << PS.ParamNo;
3603 Out << ", offset: ";
3604 PrintRange(PS.Use);
3605 if (!PS.Calls.empty()) {
3606 Out << ", calls: (";
3607 ListSeparator IFS;
3608 for (auto &Call : PS.Calls) {
3609 Out << IFS;
3610 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3611 Out << ", param: " << Call.ParamNo;
3612 Out << ", offset: ";
3613 PrintRange(Call.Offsets);
3614 Out << ")";
3615 }
3616 Out << ")";
3617 }
3618 Out << ")";
3619 }
3620 Out << ")";
3621 }
3622}
3623
3624void AssemblyWriter::printTypeIdInfo(
3625 const FunctionSummary::TypeIdInfo &TIDInfo) {
3626 Out << ", typeIdInfo: (";
3627 ListSeparator TIDFS;
3628 if (!TIDInfo.TypeTests.empty()) {
3629 Out << TIDFS;
3630 Out << "typeTests: (";
3631 ListSeparator FS;
3632 for (auto &GUID : TIDInfo.TypeTests) {
3633 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3634 if (TidIter.first == TidIter.second) {
3635 Out << FS;
3636 Out << GUID;
3637 continue;
3638 }
3639
3640 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
3641 Out << FS;
3642 auto Slot = Machine.getTypeIdSlot(TypeIdPair.first);
3644 Out << "^" << Slot;
3645 }
3646 }
3647 Out << ")";
3648 }
3650 Out << TIDFS;
3652 }
3654 Out << TIDFS;
3656 }
3658 Out << TIDFS;
3660 "typeTestAssumeConstVCalls");
3661 }
3663 Out << TIDFS;
3665 "typeCheckedLoadConstVCalls");
3666 }
3667 Out << ")";
3668}
3669
3670void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3671 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3672 if (TidIter.first == TidIter.second) {
3673 Out << "vFuncId: (";
3674 Out << "guid: " << VFId.GUID;
3675 Out << ", offset: " << VFId.Offset;
3676 Out << ")";
3677 return;
3678 }
3679
3680 ListSeparator FS;
3681 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
3682 Out << FS;
3683 Out << "vFuncId: (";
3684 auto Slot = Machine.getTypeIdSlot(TypeIdPair.first);
3686 Out << "^" << Slot;
3687 Out << ", offset: " << VFId.Offset;
3688 Out << ")";
3689 }
3690}
3691
3692void AssemblyWriter::printNonConstVCalls(
3694 Out << Tag << ": (";
3695 ListSeparator FS;
3696 for (auto &VFuncId : VCallList) {
3697 Out << FS;
3698 printVFuncId(VFuncId);
3699 }
3700 Out << ")";
3701}
3702
3703void AssemblyWriter::printConstVCalls(
3705 Out << Tag << ": (";
3706 ListSeparator FS;
3707 for (auto &ConstVCall : VCallList) {
3708 Out << FS;
3709 Out << "(";
3710 printVFuncId(ConstVCall.VFunc);
3711 if (!ConstVCall.Args.empty()) {
3712 Out << ", ";
3713 printArgs(ConstVCall.Args);
3714 }
3715 Out << ")";
3716 }
3717 Out << ")";
3718}
3719
3720void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3721 GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3724 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3725 << ", flags: (";
3727 Out << ", visibility: "
3730 Out << ", live: " << GVFlags.Live;
3731 Out << ", dsoLocal: " << GVFlags.DSOLocal;
3732 Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3733 Out << ", importType: "
3735 Out << ")";
3736
3741 else
3743
3744 auto RefList = Summary.refs();
3745 if (!RefList.empty()) {
3746 Out << ", refs: (";
3747 ListSeparator FS;
3748 for (auto &Ref : RefList) {
3749 Out << FS;
3750 if (Ref.isReadOnly())
3751 Out << "readonly ";
3752 else if (Ref.isWriteOnly())
3753 Out << "writeonly ";
3754 Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3755 }
3756 Out << ")";
3757 }
3758
3759 Out << ")";
3760}
3761
3762void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3763 Out << "^" << Slot << " = gv: (";
3764 if (VI.hasName() && .name().empty())
3765 Out << "name: \"" << VI.name() << "\"";
3766 else
3767 Out << "guid: " << VI.getGUID();
3768 if (.getSummaryList().empty()) {
3769 Out << ", summaries: (";
3770 ListSeparator FS;
3771 for (auto &Summary : VI.getSummaryList()) {
3772 Out << FS;
3773 printSummary(*Summary);
3774 }
3775 Out << ")";
3776 }
3777 Out << ")";
3778 if (VI.hasName() && .name().empty())
3779 Out << " ; guid = " << VI.getGUID();
3780 Out << "\n";
3781}
3782
3785 if (Name.empty()) {
3786 Out << " ";
3787 } else {
3788 unsigned char FirstC = static_cast<unsigned char>(Name[0]);
3789 if (isalpha(FirstC) || FirstC == '-' || FirstC == '$' || FirstC == '.' ||
3790 FirstC == '_')
3791 Out << FirstC;
3792 else
3793 Out << '\\' << hexdigit(FirstC >> 4) << hexdigit(FirstC & 0x0F);
3794 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3795 unsigned char C = Name[i];
3796 if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
3797 Out << C;
3798 else
3800 }
3801 }
3802}
3803
3804void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3805 Out << '!';
3807 Out << " = !{";
3808 ListSeparator LS;
3809 for (const MDNode *Op : NMD->operands()) {
3810 Out << LS;
3811
3812
3815 continue;
3816 }
3817
3819 if (Slot == -1)
3820 Out << "";
3821 else
3822 Out << '!' << Slot;
3823 }
3824 Out << "}\n";
3825}
3826
3829 switch (Vis) {
3833 }
3834}
3835
3839 Out << "dso_local ";
3840}
3841
3844 switch (SCT) {
3848 }
3849}
3850
3853 switch (TLM) {
3855 break;
3857 Out << "thread_local ";
3858 break;
3860 Out << "thread_local(localdynamic) ";
3861 break;
3863 Out << "thread_local(initialexec) ";
3864 break;
3866 Out << "thread_local(localexec) ";
3867 break;
3868 }
3869}
3870
3872 switch (UA) {
3874 return "";
3876 return "local_unnamed_addr";
3878 return "unnamed_addr";
3879 }
3881}
3882
3886 if ()
3887 return;
3888
3890 Out << ',';
3891 Out << " comdat";
3892
3893 if (GO.getName() == C->getName())
3894 return;
3895
3896 Out << '(';
3898 Out << ')';
3899}
3900
3901void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3903 Out << "; Materializable\n";
3904
3905 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3907 Out << " = ";
3908
3910 Out << "external ";
3911
3918 if (!UA.empty())
3919 Out << UA << ' ';
3920
3922 "", " ");
3924 Out << (GV->isConstant() ? "constant " : "global ");
3926
3928 Out << ' ';
3930 }
3931
3933 Out << ", section \"";
3935 Out << '"';
3936 }
3938 Out << ", partition \"";
3940 Out << '"';
3941 }
3943 Out << ", code_model \"";
3944 switch (*CM) {
3946 Out << "tiny";
3947 break;
3949 Out << "small";
3950 break;
3952 Out << "kernel";
3953 break;
3955 Out << "medium";
3956 break;
3958 Out << "large";
3959 break;
3960 }
3961 Out << '"';
3962 }
3963
3968 Out << ", no_sanitize_address";
3970 Out << ", no_sanitize_hwaddress";
3972 Out << ", sanitize_memtag";
3974 Out << ", sanitize_address_dyninit";
3975 }
3976
3978 if (MaybeAlign A = GV->getAlign())
3979 Out << ", align " << A->value();
3980
3983 printMetadataAttachments(MDs, ", ");
3984
3986 if (Attrs.hasAttributes())
3987 Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3988
3990}
3991
3992void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3994 Out << "; Materializable\n";
3995
3996 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3998 Out << " = ";
3999
4006 if (!UA.empty())
4007 Out << UA << ' ';
4008
4009 Out << "alias ";
4010
4012 Out << ", ";
4013
4014 if (const Constant *Aliasee = GA->getAliasee()) {
4016 } else {
4017 TypePrinter.print(GA->getType(), Out);
4018 Out << " <>";
4019 }
4020
4022 Out << ", partition \"";
4024 Out << '"';
4025 }
4026
4028 Out << '\n';
4029}
4030
4031void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
4033 Out << "; Materializable\n";
4034
4035 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
4037 Out << " = ";
4038
4042
4043 Out << "ifunc ";
4044
4046 Out << ", ";
4047
4048 if (const Constant *Resolver = GI->getResolver()) {
4050 } else {
4051 TypePrinter.print(GI->getType(), Out);
4052 Out << " <>";
4053 }
4054
4056 Out << ", partition \"";
4058 Out << '"';
4059 }
4062 if (!MDs.empty()) {
4063 printMetadataAttachments(MDs, ", ");
4064 }
4065
4067 Out << '\n';
4068}
4069
4070void AssemblyWriter::printComdat(const Comdat *C) {
4071 C->print(Out);
4072}
4073
4074void AssemblyWriter::printTypeIdentities() {
4075 if (TypePrinter.empty())
4076 return;
4077
4078 Out << '\n';
4079
4080
4081 auto &NumberedTypes = TypePrinter.getNumberedTypes();
4082 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
4083 Out << '%' << I << " = type ";
4084
4085
4086
4087 TypePrinter.printStructBody(NumberedTypes[I], Out);
4088 Out << '\n';
4089 }
4090
4091 auto &NamedTypes = TypePrinter.getNamedTypes();
4092 for (StructType *NamedType : NamedTypes) {
4094 Out << " = type ";
4095
4096
4097
4098 TypePrinter.printStructBody(NamedType, Out);
4099 Out << '\n';
4100 }
4101}
4102
4103
4104void AssemblyWriter::printFunction(const Function *F) {
4105 if (F->isMaterializable())
4106 Out << "; Materializable\n";
4107 else if (AnnotationWriter)
4109
4110 const AttributeList &Attrs = F->getAttributes();
4111 if (Attrs.hasFnAttrs()) {
4112 AttributeSet AS = Attrs.getFnAttrs();
4113 std::string AttrStr;
4114
4115 for (const Attribute &Attr : AS) {
4116 if (!Attr.isStringAttribute()) {
4117 if (!AttrStr.empty()) AttrStr += ' ';
4118 AttrStr += Attr.getAsString();
4119 }
4120 }
4121
4122 if (!AttrStr.empty())
4123 Out << "; Function Attrs: " << AttrStr << '\n';
4124 }
4125
4127 Out << "; Unknown intrinsic\n";
4128
4129 Machine.incorporateFunction(F);
4130
4131 if (F->isDeclaration()) {
4132 Out << "declare";
4134 F->getAllMetadata(MDs);
4135 printMetadataAttachments(MDs, " ");
4136 Out << ' ';
4137 } else
4138 Out << "define ";
4139
4144
4145
4146 if (F->getCallingConv() != CallingConv::C) {
4148 Out << " ";
4149 }
4150
4151 FunctionType *FT = F->getFunctionType();
4152 if (Attrs.hasRetAttrs())
4153 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
4154 TypePrinter.print(F->getReturnType(), Out);
4155 AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
4156 Out << ' ';
4158 Out << '(';
4159
4160
4161 if (F->isDeclaration() && !IsForDebug) {
4162
4163 ListSeparator LS;
4164 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
4165 Out << LS;
4166
4167 TypePrinter.print(FT->getParamType(I), Out);
4168
4169 AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
4171 Out << ' ';
4172 writeAttributeSet(ArgAttrs);
4173 }
4174 }
4175 } else {
4176
4177 ListSeparator LS;
4178 for (const Argument &Arg : F->args()) {
4179 Out << LS;
4180 printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
4181 }
4182 }
4183
4184
4185 if (FT->isVarArg()) {
4186 if (FT->getNumParams()) Out << ", ";
4187 Out << "...";
4188 }
4189 Out << ')';
4191 if (!UA.empty())
4192 Out << ' ' << UA;
4193
4194
4195
4197 bool ForcePrintAddressSpace =
4198 || Mod->getDataLayout().getProgramAddressSpace() != 0;
4200 "", ForcePrintAddressSpace);
4201 if (Attrs.hasFnAttrs())
4202 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
4203 if (F->hasSection()) {
4204 Out << " section \"";
4206 Out << '"';
4207 }
4208 if (F->hasPartition()) {
4209 Out << " partition \"";
4211 Out << '"';
4212 }
4214 if (MaybeAlign A = F->getAlign())
4215 Out << " align " << A->value();
4216 if (F->hasGC())
4217 Out << " gc \"" << F->getGC() << '"';
4218 if (F->hasPrefixData()) {
4219 Out << " prefix ";
4220 writeOperand(F->getPrefixData(), true);
4221 }
4222 if (F->hasPrologueData()) {
4223 Out << " prologue ";
4224 writeOperand(F->getPrologueData(), true);
4225 }
4226 if (F->hasPersonalityFn()) {
4227 Out << " personality ";
4228 writeOperand(F->getPersonalityFn(), true);
4229 }
4230
4232 if (auto *MDProf = F->getMetadata(LLVMContext::MD_prof)) {
4233 Out << " ";
4234 MDProf->print(Out, TheModule, true);
4235 }
4236 }
4237
4238 if (F->isDeclaration()) {
4239 Out << '\n';
4240 } else {
4242 F->getAllMetadata(MDs);
4243 printMetadataAttachments(MDs, " ");
4244
4245 Out << " {";
4246
4247 for (const BasicBlock &BB : *F)
4249
4250
4251 printUseLists(F);
4252
4253 Out << "}\n";
4254 }
4255
4256 Machine.purgeFunction();
4257}
4258
4259
4260
4261void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
4262
4263 TypePrinter.print(Arg->getType(), Out);
4264
4265
4266 if (Attrs.hasAttributes()) {
4267 Out << ' ';
4268 writeAttributeSet(Attrs);
4269 }
4270
4271
4273 Out << ' ';
4275 } else {
4277 assert(Slot != -1 && "expect argument in function here");
4278 Out << " %" << Slot;
4279 }
4280}
4281
4282
4283void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
4285 if (BB->hasName()) {
4286 Out << "\n";
4288 Out << ':';
4289 } else if (!IsEntryBlock) {
4290 Out << "\n";
4291 int Slot = Machine.getLocalSlot(BB);
4292 if (Slot != -1)
4293 Out << Slot << ":";
4294 else
4295 Out << ":";
4296 }
4297
4298 if (!IsEntryBlock) {
4299
4301 Out << ";";
4303 Out << " No predecessors!";
4304 } else {
4305 Out << " preds = ";
4308 Out << LS;
4309 writeOperand(Pred, false);
4310 }
4311 }
4312 }
4313
4314 Out << "\n";
4315
4317
4318
4320 for (const DbgRecord &DR : I.getDbgRecordRange())
4321 printDbgRecordLine(DR);
4322 printInstructionLine(I);
4323 }
4324
4326}
4327
4328
4329void AssemblyWriter::printInstructionLine(const Instruction &I) {
4330 printInstruction(I);
4331 Out << '\n';
4332}
4333
4334
4335
4336void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
4337 Out << " ; (";
4338 writeOperand(Relocate.getBasePtr(), false);
4339 Out << ", ";
4341 Out << ")";
4342}
4343
4344
4345
4346void AssemblyWriter::printInfoComment(const Value &V, bool isMaterializable) {
4348 printGCRelocateComment(*Relocate);
4349
4350 if (AnnotationWriter && !isMaterializable)
4352
4355 if (I->getDebugLoc()) {
4356 Out << " ; ";
4357 I->getDebugLoc().print(Out);
4358 }
4359 }
4360 }
4363 if (auto *MD = I->getMetadata(LLVMContext::MD_prof)) {
4364 Out << " ; ";
4365 MD->print(Out, TheModule, true);
4366 }
4367 }
4368 }
4369
4371 Out << " ; " << &V;
4372}
4373
4376 if (Operand == nullptr) {
4377 Out << " <cannot get addrspace!>";
4378 return;
4379 }
4380
4381
4382
4383
4384
4387 bool ForcePrintAddrSpace =
4388 || Mod->getDataLayout().getProgramAddressSpace() != 0;
4390 ForcePrintAddrSpace);
4391}
4392
4393
4394void AssemblyWriter::printInstruction(const Instruction &I) {
4396
4397
4398 Out << " ";
4399
4400
4401 if (I.hasName()) {
4403 Out << " = ";
4404 } else if (.getType()->isVoidTy()) {
4405
4406 int SlotNum = Machine.getLocalSlot(&I);
4407 if (SlotNum == -1)
4408 Out << " = ";
4409 else
4410 Out << '%' << SlotNum << " = ";
4411 }
4412
4414 if (CI->isMustTailCall())
4415 Out << "musttail ";
4416 else if (CI->isTailCall())
4417 Out << "tail ";
4418 else if (CI->isNoTailCall())
4419 Out << "notail ";
4420 }
4421
4422
4423 Out << I.getOpcodeName();
4424
4425
4428 Out << " atomic";
4429
4431 Out << " weak";
4432
4433
4438 Out << " volatile";
4439
4440
4442
4443
4445 Out << ' ' << CI->getPredicate();
4446
4447
4450
4451
4452 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
4453
4454
4457 Out << ' ';
4458 writeOperand(BI.getCondition(), true);
4459 Out << ", ";
4460 writeOperand(BI.getSuccessor(0), true);
4461 Out << ", ";
4462 writeOperand(BI.getSuccessor(1), true);
4463
4466
4467 Out << ' ';
4468 writeOperand(SI.getCondition(), true);
4469 Out << ", ";
4470 writeOperand(SI.getDefaultDest(), true);
4471 Out << " [";
4472 for (auto Case : SI.cases()) {
4473 Out << "\n ";
4474 writeOperand(Case.getCaseValue(), true);
4475 Out << ", ";
4476 writeOperand(Case.getCaseSuccessor(), true);
4477 }
4478 Out << "\n ]";
4480
4481 Out << ' ';
4482 writeOperand(Operand, true);
4483 Out << ", [";
4484
4485 ListSeparator LS;
4486 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4487 Out << LS;
4488 writeOperand(I.getOperand(i), true);
4489 }
4490 Out << ']';
4492 Out << ' ';
4493 TypePrinter.print(I.getType(), Out);
4494 Out << ' ';
4495
4496 ListSeparator LS;
4497 for (const auto &[V, Block] :
4498 zip_equal(PN->incoming_values(), PN->blocks())) {
4499 Out << LS << "[ ";
4500 writeOperand(V, false);
4501 Out << ", ";
4502 writeOperand(Block, false);
4503 Out << " ]";
4504 }
4506 Out << ' ';
4507 writeOperand(I.getOperand(0), true);
4508 Out << ", ";
4511 Out << ' ';
4512 writeOperand(I.getOperand(0), true); Out << ", ";
4513 writeOperand(I.getOperand(1), true);
4514 Out << ", ";
4517 Out << ' ';
4518 TypePrinter.print(I.getType(), Out);
4519 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4520 Out << '\n';
4521
4522 if (LPI->isCleanup())
4523 Out << " cleanup";
4524
4525 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4526 if (i != 0 || LPI->isCleanup()) Out << "\n";
4527 if (LPI->isCatch(i))
4528 Out << " catch ";
4529 else
4530 Out << " filter ";
4531
4532 writeOperand(LPI->getClause(i), true);
4533 }
4535 Out << " within ";
4536 writeOperand(CatchSwitch->getParentPad(), false);
4537 Out << " [";
4538 ListSeparator LS;
4539 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4540 Out << LS;
4541 writeOperand(PadBB, true);
4542 }
4543 Out << "] unwind ";
4544 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4545 writeOperand(UnwindDest, true);
4546 else
4547 Out << "to caller";
4549 Out << " within ";
4550 writeOperand(FPI->getParentPad(), false);
4551 Out << " [";
4552 ListSeparator LS;
4553 for (const Value *Op : FPI->arg_operands()) {
4554 Out << LS;
4555 writeOperand(Op, true);
4556 }
4557 Out << ']';
4559 Out << " void";
4561 Out << " from ";
4562 writeOperand(CRI->getOperand(0), false);
4563
4564 Out << " to ";
4565 writeOperand(CRI->getOperand(1), true);
4567 Out << " from ";
4568 writeOperand(CRI->getOperand(0), false);
4569
4570 Out << " unwind ";
4571 if (CRI->hasUnwindDest())
4572 writeOperand(CRI->getOperand(1), true);
4573 else
4574 Out << "to caller";
4576
4577 if (CI->getCallingConv() != CallingConv::C) {
4578 Out << " ";
4580 }
4581
4582 Operand = CI->getCalledOperand();
4583 FunctionType *FTy = CI->getFunctionType();
4584 Type *RetTy = FTy->getReturnType();
4585 const AttributeList &PAL = CI->getAttributes();
4586
4587 if (PAL.hasRetAttrs())
4588 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4589
4590
4592
4593
4594
4595
4596 Out << ' ';
4597 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4598 Out << ' ';
4599 writeOperand(Operand, false);
4600 Out << '(';
4601 bool HasPrettyPrintedArgs =
4604
4605 ListSeparator LS;
4606 Function *CalledFunc = CI->getCalledFunction();
4607 auto PrintArgComment = [&](unsigned ArgNo) {
4608 const auto *ConstArg = dyn_cast(CI->getArgOperand(ArgNo));
4609 if (!ConstArg)
4610 return;
4611 std::string ArgComment;
4612 raw_string_ostream ArgCommentStream(ArgComment);
4615 if (ArgComment.empty())
4616 return;
4617 Out << "/* " << ArgComment << " */ ";
4618 };
4619 if (HasPrettyPrintedArgs) {
4620 for (unsigned ArgNo = 0, NumArgs = CI->arg_size(); ArgNo < NumArgs;
4621 ++ArgNo) {
4622 Out << LS;
4623 PrintArgComment(ArgNo);
4624 writeParamOperand(CI->getArgOperand(ArgNo), PAL.getParamAttrs(ArgNo));
4625 }
4626 } else {
4627 for (unsigned ArgNo = 0, NumArgs = CI->arg_size(); ArgNo < NumArgs;
4628 ++ArgNo) {
4629 Out << LS;
4630 writeParamOperand(CI->getArgOperand(ArgNo), PAL.getParamAttrs(ArgNo));
4631 }
4632 }
4633
4634
4635 if (CI->isMustTailCall() && CI->getParent() &&
4636 CI->getParent()->getParent() &&
4637 CI->getParent()->getParent()->isVarArg()) {
4638 if (CI->arg_size() > 0)
4639 Out << ", ";
4640 Out << "...";
4641 }
4642
4643 Out << ')';
4644 if (PAL.hasFnAttrs())
4645 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4646
4647 writeOperandBundles(CI);
4649 Operand = II->getCalledOperand();
4650 FunctionType *FTy = II->getFunctionType();
4651 Type *RetTy = FTy->getReturnType();
4652 const AttributeList &PAL = II->getAttributes();
4653
4654
4655 if (II->getCallingConv() != CallingConv::C) {
4656 Out << " ";
4658 }
4659
4660 if (PAL.hasRetAttrs())
4661 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4662
4663
4665
4666
4667
4668
4669
4670 Out << ' ';
4671 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4672 Out << ' ';
4673 writeOperand(Operand, false);
4674 Out << '(';
4675 ListSeparator LS;
4676 for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4677 Out << LS;
4678 writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4679 }
4680
4681 Out << ')';
4682 if (PAL.hasFnAttrs())
4683 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4684
4685 writeOperandBundles(II);
4686
4687 Out << "\n to ";
4688 writeOperand(II->getNormalDest(), true);
4689 Out << " unwind ";
4690 writeOperand(II->getUnwindDest(), true);
4692 Operand = CBI->getCalledOperand();
4693 FunctionType *FTy = CBI->getFunctionType();
4694 Type *RetTy = FTy->getReturnType();
4695 const AttributeList &PAL = CBI->getAttributes();
4696
4697
4698 if (CBI->getCallingConv() != CallingConv::C) {
4699 Out << " ";
4701 }
4702
4703 if (PAL.hasRetAttrs())
4704 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4705
4706
4707
4708
4709
4710 Out << ' ';
4711 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4712 Out << ' ';
4713 writeOperand(Operand, false);
4714 Out << '(';
4715 ListSeparator ArgLS;
4716 for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4717 Out << ArgLS;
4718 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4719 }
4720
4721 Out << ')';
4722 if (PAL.hasFnAttrs())
4723 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4724
4725 writeOperandBundles(CBI);
4726
4727 Out << "\n to ";
4728 writeOperand(CBI->getDefaultDest(), true);
4729 Out << " [";
4730 ListSeparator DestLS;
4731 for (const BasicBlock *Dest : CBI->getIndirectDests()) {
4732 Out << DestLS;
4733 writeOperand(Dest, true);
4734 }
4735 Out << ']';
4737 Out << ' ';
4738 if (AI->isUsedWithInAlloca())
4739 Out << "inalloca ";
4740 if (AI->isSwiftError())
4741 Out << "swifterror ";
4742 TypePrinter.print(AI->getAllocatedType(), Out);
4743
4744
4745
4746
4747
4748 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4749 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4750 Out << ", ";
4751 writeOperand(AI->getArraySize(), true);
4752 }
4753 if (MaybeAlign A = AI->getAlign()) {
4754 Out << ", align " << A->value();
4755 }
4756
4758 ", ");
4760 if (Operand) {
4761 Out << ' ';
4762 writeOperand(Operand, true);
4763 }
4764 Out << " to ";
4765 TypePrinter.print(I.getType(), Out);
4767 if (Operand) {
4768 Out << ' ';
4769 writeOperand(Operand, true);
4770 }
4771 Out << ", ";
4772 TypePrinter.print(I.getType(), Out);
4773 } else if (Operand) {
4775 Out << ' ';
4776 TypePrinter.print(GEP->getSourceElementType(), Out);
4777 Out << ',';
4779 Out << ' ';
4780 TypePrinter.print(LI->getType(), Out);
4781 Out << ',';
4782 }
4783
4784
4785
4786
4787 bool PrintAllTypes = false;
4789
4790
4791
4795 PrintAllTypes = true;
4796 } else {
4797 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4798 Operand = I.getOperand(i);
4799
4800
4801 if (Operand && Operand->getType() != TheType) {
4802 PrintAllTypes = true;
4803 break;
4804 }
4805 }
4806 }
4807
4808 if (!PrintAllTypes) {
4809 Out << ' ';
4810 TypePrinter.print(TheType, Out);
4811 }
4812
4813 Out << ' ';
4814 ListSeparator LS;
4815 for (const Value *Op : I.operands()) {
4816 Out << LS;
4817 writeOperand(Op, PrintAllTypes);
4818 }
4819 }
4820
4821
4823 if (LI->isAtomic())
4824 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4825 if (MaybeAlign A = LI->getAlign())
4826 Out << ", align " << A->value();
4828 if (SI->isAtomic())
4829 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4830 if (MaybeAlign A = SI->getAlign())
4831 Out << ", align " << A->value();
4833 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4834 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4835 Out << ", align " << CXI->getAlign().value();
4837 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4838 RMWI->getSyncScopeID());
4839 Out << ", align " << RMWI->getAlign().value();
4841 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4843 printShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4844 }
4845
4846
4849 printMetadataAttachments(InstMD, ", ");
4850
4851
4852 printInfoComment(I);
4853}
4854
4855void AssemblyWriter::printDbgMarker(const DbgMarker &Marker) {
4856
4857
4859 printDbgRecord(DPR);
4860 Out << "\n";
4861 }
4862
4863 Out << " DbgMarker -> { ";
4865 Out << " }";
4866}
4867
4868void AssemblyWriter::printDbgRecord(const DbgRecord &DR) {
4870 printDbgVariableRecord(*DVR);
4872 printDbgLabelRecord(*DLR);
4873 else
4875}
4876
4877void AssemblyWriter::printDbgVariableRecord(const DbgVariableRecord &DVR) {
4879 Out << "#dbg_";
4880 switch (DVR.getType()) {
4881 case DbgVariableRecord::LocationType::Value:
4882 Out << "value";
4883 break;
4884 case DbgVariableRecord::LocationType::Declare:
4885 Out << "declare";
4886 break;
4887 case DbgVariableRecord::LocationType::DeclareValue:
4888 Out << "declare_value";
4889 break;
4890 case DbgVariableRecord::LocationType::Assign:
4891 Out << "assign";
4892 break;
4893 default:
4895 "Tried to print a DbgVariableRecord with an invalid LocationType!");
4896 }
4897
4898 auto PrintOrNull = [&](Metadata *M) {
4899 if (!M)
4900 Out << "(null)";
4901 else
4903 };
4904
4905 Out << "(";
4907 Out << ", ";
4909 Out << ", ";
4911 Out << ", ";
4914 Out << ", ";
4916 Out << ", ";
4918 Out << ", ";
4919 }
4921 Out << ")";
4922}
4923
4924
4925
4926void AssemblyWriter::printDbgRecordLine(const DbgRecord &DR) {
4927
4928 Out << " ";
4929 printDbgRecord(DR);
4930 Out << '\n';
4931}
4932
4933void AssemblyWriter::printDbgLabelRecord(const DbgLabelRecord &Label) {
4935 Out << "#dbg_label(";
4937 Out << ", ";
4939 Out << ")";
4940}
4941
4942void AssemblyWriter::printMetadataAttachments(
4943 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4944 StringRef Separator) {
4945 if (MDs.empty())
4946 return;
4947
4948 if (MDNames.empty())
4949 MDs[0].second->getContext().getMDKindNames(MDNames);
4950
4952 for (const auto &I : MDs) {
4954 Out << Separator;
4955 if (Kind < MDNames.size()) {
4956 Out << "!";
4958 } else
4959 Out << "!<unknown kind #" << Kind << ">";
4960 Out << ' ';
4962 }
4963}
4964
4965void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4966 Out << '!' << Slot << " = ";
4967 printMDNodeBody(Node);
4968 Out << "\n";
4969}
4970
4971void AssemblyWriter::writeAllMDNodes() {
4976
4977 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4978 writeMDNode(i, Nodes[i]);
4979 }
4980}
4981
4982void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4985}
4986
4987void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4990 return;
4991 }
4992
4993 Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4995 Out << '(';
4996 TypePrinter.print(Ty, Out);
4997 Out << ')';
4998 }
4999}
5000
5001void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
5002 bool InAttrGroup) {
5003 ListSeparator LS(" ");
5004 for (const auto &Attr : AttrSet) {
5005 Out << LS;
5006 writeAttribute(Attr, InAttrGroup);
5007 }
5008}
5009
5010void AssemblyWriter::writeAllAttributeGroups() {
5011 std::vector<std::pair<AttributeSet, unsigned>> asVec;
5012 asVec.resize(Machine.as_size());
5013
5016
5017 for (const auto &I : asVec)
5018 Out << "attributes #" << I.second << " = { "
5019 << I.first.getAsString(true) << " }\n";
5020}
5021
5022void AssemblyWriter::printUseListOrder(const Value *V,
5023 ArrayRef Shuffle) {
5025 if (IsInFunction)
5026 Out << " ";
5027
5028 Out << "uselistorder";
5029 if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast(V)) {
5030 Out << "_bb ";
5031 writeOperand(BB->getParent(), false);
5032 Out << ", ";
5033 writeOperand(BB, false);
5034 } else {
5035 Out << " ";
5036 writeOperand(V, true);
5037 }
5038
5039 assert(Shuffle.size() >= 2 && "Shuffle too small");
5041}
5042
5043void AssemblyWriter::printUseLists(const Function *F) {
5044 auto It = UseListOrders.find(F);
5045 if (It == UseListOrders.end())
5046 return;
5047
5048 Out << "\n; uselistorder directives\n";
5049 for (const auto &Pair : It->second)
5050 printUseListOrder(Pair.first, Pair.second);
5051}
5052
5053
5054
5055
5056
5058 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
5061 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW, IsForDebug,
5062 ShouldPreserveUseListOrder);
5063 W.printFunction(this);
5064}
5065
5067 bool ShouldPreserveUseListOrder,
5068 bool IsForDebug) const {
5071 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
5072 IsForDebug,
5073 ShouldPreserveUseListOrder);
5074 W.printBasicBlock(this);
5075}
5076
5078 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
5081 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
5082 ShouldPreserveUseListOrder);
5083 W.printModule(this);
5084}
5085
5089 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
5090 W.printNamedMDNode(this);
5091}
5092
5094 bool IsForDebug) const {
5095 std::optional LocalST;
5098 SlotTable = ST;
5099 else {
5101 SlotTable = &*LocalST;
5102 }
5103
5105 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
5106 W.printNamedMDNode(this);
5107}
5108
5111 ROS << " = comdat ";
5112
5115 ROS << "any";
5116 break;
5118 ROS << "exactmatch";
5119 break;
5121 ROS << "largest";
5122 break;
5124 ROS << "nodeduplicate";
5125 break;
5127 ROS << "samesize";
5128 break;
5129 }
5130
5131 ROS << '\n';
5132}
5133
5135 TypePrinting TP;
5136 TP.print(const_cast<Type*>(this), OS);
5137
5138 if (NoDetails)
5139 return;
5140
5141
5144 OS << " = type ";
5145 TP.printStructBody(STy, OS);
5146 }
5147}
5148
5151 if (Function *F = CI->getCalledFunction())
5152 if (F->isIntrinsic())
5153 for (auto &Op : I.operands())
5156 return true;
5157 return false;
5158}
5159
5161
5163 print(ROS, MST, IsForDebug);
5164}
5165
5167
5169 print(ROS, MST, IsForDebug);
5170}
5171
5173 bool IsForDebug) const {
5175 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5179 if (F)
5181 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5182 W.printDbgMarker(*this);
5183}
5184
5186
5188 print(ROS, MST, IsForDebug);
5189}
5190
5192 bool IsForDebug) const {
5194 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5198 ? Marker->getParent()->getParent()
5199 : nullptr;
5200 if (F)
5202 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5203 W.printDbgVariableRecord(*this);
5204}
5205
5207 bool IsForDebug) const {
5209 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5213 Marker->getParent() ? Marker->getParent()->getParent() : nullptr;
5214 if (F)
5216
5217 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5218 W.printDbgLabelRecord(*this);
5219}
5220
5222 bool ShouldInitializeAllMetadata = false;
5226 ShouldInitializeAllMetadata = true;
5227
5229 print(ROS, MST, IsForDebug);
5230}
5231
5233 bool IsForDebug) const {
5235 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5238 auto IncorporateFunction = [&](const Function *F) {
5239 if (F)
5241 };
5242
5244 IncorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
5245 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
5246 W.printInstruction(*I);
5248 IncorporateFunction(BB->getParent());
5249 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
5250 W.printBasicBlock(BB);
5252 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
5254 W.printGlobal(V);
5256 W.printFunction(F);
5258 W.printAlias(A);
5260 W.printIFunc(I);
5261 else
5266 TypePrinting TypePrinter;
5267 TypePrinter.print(C->getType(), OS);
5268 OS << ' ';
5269 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
5272 this->printAsOperand(OS, true, MST);
5273 } else {
5275 }
5276}
5277
5278
5279
5280
5285 AsmWriterContext WriterCtx(nullptr, Machine, M);
5287 return true;
5288 }
5289 return false;
5290}
5291
5298
5300 const Module *M) const {
5301 if (!M)
5303
5304 if (!PrintType)
5306 return;
5307
5312}
5313
5316 if (!PrintType)
5318 return;
5319
5321}
5322
5323
5325 AsmWriterContext &WriterCtx) {
5328
5331 return;
5332
5333 OS << " = ";
5335}
5336
5337namespace {
5338struct MDTreeAsmWriterContext : public AsmWriterContext {
5339 unsigned Level;
5340
5341 using EntryTy = std::pair<unsigned, std::string>;
5343
5344
5345 SmallPtrSet<const Metadata *, 4> Visited;
5346
5347 raw_ostream &MainOS;
5348
5349 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
5350 raw_ostream &OS, const Metadata *InitMD)
5351 : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
5352
5353 void onWriteMetadataAsOperand(const Metadata *MD) override {
5354 if (!Visited.insert(MD).second)
5355 return;
5356
5357 std::string Str;
5358 raw_string_ostream SS(Str);
5360
5361
5362 Buffer.emplace_back(std::make_pair(Level, ""));
5363 unsigned InsertIdx = Buffer.size() - 1;
5364
5366 Buffer[InsertIdx].second = std::move(SS.str());
5368 }
5369
5370 ~MDTreeAsmWriterContext() override {
5371 for (const auto &Entry : Buffer) {
5372 MainOS << "\n";
5373 unsigned NumIndent = Entry.first * 2U;
5374 MainOS.indent(NumIndent) << Entry.second;
5375 }
5376 }
5377};
5378}
5379
5382 bool OnlyAsOperand, bool PrintAsTree = false) {
5384
5385 TypePrinting TypePrinter(M);
5386
5387 std::unique_ptr WriterCtx;
5388 if (PrintAsTree && !OnlyAsOperand)
5389 WriterCtx = std::make_unique(
5390 &TypePrinter, MST.getMachine(), M, OS, &MD);
5391 else
5392 WriterCtx =
5393 std::make_unique(&TypePrinter, MST.getMachine(), M);
5394
5396
5399 return;
5400
5401 OS << " = ";
5403}
5404
5409
5411 const Module *M) const {
5413}
5414
5420
5425
5431
5433 const Module *M) const {
5435 true);
5436}
5437
5441 AssemblyWriter W(OS, SlotTable, this, IsForDebug);
5442 W.printModuleSummaryIndex();
5443}
5444
5446 unsigned UB) const {
5448 if (!ST)
5449 return;
5450
5451 for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
5452 if (I.second >= LB && I.second < UB)
5453 L.push_back(std::make_pair(I.second, I.first));
5454}
5455
5456#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5457
5460
5461
5467
5468
5471
5472
5475
5476
5482
5483
5486
5487
5490
5493
5499
5502
5506 dbgs() << '\n';
5507}
5508
5509
5512#endif
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static void writeDIMacro(raw_ostream &Out, const DIMacro *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2511
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:1956
static void writeDIGlobalVariableExpression(raw_ostream &Out, const DIGlobalVariableExpression *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2663
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2323
static void writeDIFixedPointType(raw_ostream &Out, const DIFixedPointType *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2229
static void printDSOLocation(const GlobalValue &GV, formatted_raw_ostream &Out)
Definition AsmWriter.cpp:3836
static const char * getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)
Definition AsmWriter.cpp:3258
static void writeDISubrangeType(raw_ostream &Out, const DISubrangeType *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2303
static void writeAPFloatInternal(raw_ostream &Out, const APFloat &APF)
Definition AsmWriter.cpp:1536
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, ModuleSlotTracker &MST, const Module *M, bool OnlyAsOperand, bool PrintAsTree=false)
Definition AsmWriter.cpp:5380
static void writeDIStringType(raw_ostream &Out, const DIStringType *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2252
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)
Definition AsmWriter.cpp:3467
static cl::opt< bool > PreserveAssemblyUseListOrder("preserve-ll-uselistorder", cl::Hidden, cl::init(false), cl::desc("Preserve use-list order when writing LLVM assembly."))
static std::vector< unsigned > predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM)
Definition AsmWriter.cpp:227
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2572
static void orderValue(const Value *V, OrderMap &OM)
Definition AsmWriter.cpp:135
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2212
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)
Definition AsmWriter.cpp:3871
static const char * getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)
Definition AsmWriter.cpp:3270
static void writeMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, AsmWriterContext &Ctx)
Definition AsmWriter.cpp:2701
static void writeDIModule(raw_ostream &Out, const DIModule *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2532
static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &)
Definition AsmWriter.cpp:2376
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2365
static cl::opt< bool > PrintAddrspaceName("print-addrspace-name", cl::Hidden, cl::init(false), cl::desc("Print address space names"))
static void writeOptimizationInfo(raw_ostream &Out, const User *U)
Definition AsmWriter.cpp:1496
static bool isReferencingMDNode(const Instruction &I)
Definition AsmWriter.cpp:5149
#define CC_VLS_CASE(ABI_VLEN)
static void writeDILabel(raw_ostream &Out, const DILabel *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2607
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2270
static void printMetadataIdentifier(StringRef Name, formatted_raw_ostream &Out)
Definition AsmWriter.cpp:3783
static void printShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef< int > Mask)
Definition AsmWriter.cpp:523
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2687
static const Module * getModuleFromDPI(const DbgMarker *Marker)
Definition AsmWriter.cpp:339
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, ModuleSlotTracker &MST)
Definition AsmWriter.cpp:5292
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2673
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2437
static const char * getSummaryKindName(GlobalValueSummary::SummaryKind SK)
Definition AsmWriter.cpp:3390
static OrderMap orderModule(const Module *M)
Definition AsmWriter.cpp:155
static const char * getVisibilityName(GlobalValue::VisibilityTypes Vis)
Definition AsmWriter.cpp:3473
static void printCallingConv(unsigned cc, raw_ostream &Out)
Definition AsmWriter.cpp:349
static void printAddressSpace(const Module *M, unsigned AS, raw_ostream &OS, StringRef Prefix=" ", StringRef Suffix="", bool ForcePrint=false)
Definition AsmWriter.cpp:639
static cl::opt< bool > PrintInstDebugLocs("print-inst-debug-locs", cl::Hidden, cl::desc("Pretty print debug locations of instructions when dumping"))
static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD, AsmWriterContext &WriterCtx)
Recursive version of printMetadataImpl.
Definition AsmWriter.cpp:5324
static SlotTracker * createSlotTracker(const Value *V)
Definition AsmWriter.cpp:1022
static void writeDILocation(raw_ostream &Out, const DILocation *DL, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2106
static void writeDINamespace(raw_ostream &Out, const DINamespace *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2489
DenseMap< const Function *, MapVector< const Value *, std::vector< unsigned > > > UseListOrderMap
Definition AsmWriter.cpp:123
static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2499
static UseListOrderMap predictUseListOrder(const Module *M)
Definition AsmWriter.cpp:288
static void printThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, formatted_raw_ostream &Out)
Definition AsmWriter.cpp:3851
static std::string getLinkageName(GlobalValue::LinkageTypes LT)
Definition AsmWriter.cpp:3436
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2088
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2591
static const char * getTTResKindName(TypeTestResolution::Kind K)
Definition AsmWriter.cpp:3285
static void writeDITemplateTypeParameter(raw_ostream &Out, const DITemplateTypeParameter *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2547
static const char * getImportTypeName(GlobalValueSummary::ImportKind IK)
Definition AsmWriter.cpp:3485
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2392
static const Module * getModuleFromVal(const Value *V)
Definition AsmWriter.cpp:313
static void printLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix)
Turn the specified name into an 'LLVM name', which is either prefixed with % (if the string only cont...
Definition AsmWriter.cpp:496
static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, raw_ostream &Out)
Definition AsmWriter.cpp:4374
static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2152
static void writeDISubrange(raw_ostream &Out, const DISubrange *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2128
static void writeDILexicalBlockFile(raw_ostream &Out, const DILexicalBlockFile *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2477
static void writeConstantInternal(raw_ostream &Out, const Constant *CV, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:1629
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, AsmWriterContext &)
Definition AsmWriter.cpp:2200
static void writeAsOperandInternal(raw_ostream &Out, const Value *V, AsmWriterContext &WriterCtx, bool PrintType=false)
Definition AsmWriter.cpp:2721
static void printVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out)
Definition AsmWriter.cpp:3827
static cl::opt< bool > PrintProfData("print-prof-data", cl::Hidden, cl::desc("Pretty print perf data (branch weights, etc) when dumping"))
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:1862
static void writeDIExpression(raw_ostream &Out, const DIExpression *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2623
static cl::opt< bool > PrintInstAddrs("print-inst-addrs", cl::Hidden, cl::desc("Print addresses of instructions when dumping"))
static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2122
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2466
PrefixType
Definition AsmWriter.cpp:454
@ GlobalPrefix
Definition AsmWriter.cpp:455
@ LabelPrefix
Definition AsmWriter.cpp:457
@ LocalPrefix
Definition AsmWriter.cpp:458
@ NoPrefix
Definition AsmWriter.cpp:459
@ ComdatPrefix
Definition AsmWriter.cpp:456
static void maybePrintComdat(formatted_raw_ostream &Out, const GlobalObject &GO)
Definition AsmWriter.cpp:3883
static void printDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, formatted_raw_ostream &Out)
Definition AsmWriter.cpp:3842
static bool printWithoutType(const Value &V, raw_ostream &O, SlotTracker *Machine, const Module *M)
Print without a type, skipping the TypePrinting object.
Definition AsmWriter.cpp:5281
#define ST_DEBUG(X)
Definition AsmWriter.cpp:1051
static void writeDIArgList(raw_ostream &Out, const DIArgList *N, AsmWriterContext &WriterCtx, bool FromValue=false)
Definition AsmWriter.cpp:2648
static void writeDITemplateValueParameter(raw_ostream &Out, const DITemplateValueParameter *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2558
static const Value * skipMetadataWrapper(const Value *V)
Look for a value that might be wrapped as metadata, e.g.
Definition AsmWriter.cpp:128
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, AsmWriterContext &WriterCtx)
Definition AsmWriter.cpp:2522
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil pretty DXIL Metadata Pretty Printer
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
GlobalValue::SanitizerMetadata SanitizerMetadata
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file contains an interface for creating legacy passes to print out IR in various granularities.
Module.h This file contains the declarations for the Module class.
This defines the Use class.
Machine Check Debug Module
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
ModuleSummaryIndex.h This file contains the declarations the classes that hold the module index and s...
static bool processFunction(Function &F, NVPTXTargetMachine &TM)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
Function const char TargetMachine * Machine
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
static StringRef getName(Value *V)
This file provides utility classes that use RAII to save and restore values.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallString class.
This file defines the SmallVector class.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
static UseListOrderStack predictUseListOrder(const Module &M)
static const fltSemantics & IEEEsingle()
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static const fltSemantics & x87DoubleExtended()
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & IEEEhalf()
static const fltSemantics & PPCDoubleDouble()
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for SNaN values.
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const
const fltSemantics & getSemantics() const
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Abstract interface of slot tracker storage.
virtual ~AbstractSlotTrackerStorage()
const GlobalValueSummary & getAliasee() const
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
virtual void emitBasicBlockStartAnnot(const BasicBlock *, formatted_raw_ostream &)
emitBasicBlockStartAnnot - This may be implemented to emit a string right after the basic block label...
virtual void emitBasicBlockEndAnnot(const BasicBlock *, formatted_raw_ostream &)
emitBasicBlockEndAnnot - This may be implemented to emit a string right after the basic block.
virtual void emitFunctionAnnot(const Function *, formatted_raw_ostream &)
emitFunctionAnnot - This may be implemented to emit a string right before the start of a function.
virtual void emitInstructionAnnot(const Instruction *, formatted_raw_ostream &)
emitInstructionAnnot - This may be implemented to emit a string right before an instruction is emitte...
virtual void printInfoComment(const Value &, formatted_raw_ostream &)
printInfoComment - This may be implemented to emit a comment to the right of an instruction or global...
virtual ~AssemblyAnnotationWriter()
static LLVM_ABI StringRef getOperationName(BinOp Op)
This class holds the attributes for a particular argument, parameter, function, or return value.
bool hasAttributes() const
Return true if attributes exists in this set.
LLVM_ABI std::string getAsString(bool InAttrGrp=false) const
The Attribute is converted to a string of equivalent mnemonic.
LLVM_ABI Attribute::AttrKind getKindAsEnum() const
Return the attribute's kind as an enum (Attribute::AttrKind).
LLVM_ABI bool isTypeAttribute() const
Return true if the attribute is a type attribute.
LLVM_ABI Type * getValueAsType() const
Return the attribute's value as a Type.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
Definition AsmWriter.cpp:5066
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
AttributeList getAttributes() const
Return the attributes for this call.
bool hasOperandBundles() const
Return true if this User has any operand bundles.
LLVM_ABI void print(raw_ostream &OS, bool IsForDebug=false) const
Definition AsmWriter.cpp:5109
LLVM_ABI void dump() const
Definition AsmWriter.cpp:5485
@ Largest
The linker will choose the largest COMDAT.
@ SameSize
The data referenced by the COMDAT must be the same size.
@ Any
The linker may choose any COMDAT.
@ NoDeduplicate
No deduplication is performed.
@ ExactMatch
The data referenced by the COMDAT must be the same.
SelectionKind getSelectionKind() const
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
List of ValueAsMetadata, to be used as an argument to a dbg.value intrinsic.
Basic type, like 'int' or 'float'.
static LLVM_ABI const char * nameTableKindString(DebugNameTableKind PK)
static LLVM_ABI const char * emissionKindString(DebugEmissionKind EK)
A lightweight wrapper around an expression operand.
static LLVM_ABI const char * fixedPointKindString(FixedPointKind)
A pair of DIGlobalVariable and DIExpression.
An imported module (C++ using directive or similar).
Macro Info DWARF-like metadata node.
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Tagged DWARF-like metadata node.
static LLVM_ABI DIFlags splitFlags(DIFlags Flags, SmallVectorImpl< DIFlags > &SplitFlags)
Split up a flags bitfield.
static LLVM_ABI StringRef getFlagString(DIFlags Flag)
Wrapper structure that holds a language name and its version.
uint32_t getVersion() const
Returns language version. Only valid for versioned language names.
bool hasVersionedName() const
uint16_t getName() const
Returns a versioned or unversioned language name.
String type, Fortran CHARACTER(n)
Subprogram description. Uses SubclassData1.
static LLVM_ABI DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl< DISPFlags > &SplitFlags)
Split up a flags bitfield for easier printing.
static LLVM_ABI StringRef getFlagString(DISPFlags Flag)
DISPFlags
Debug info subprogram flags.
Type array for a subprogram.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Definition AsmWriter.cpp:5185
Per-instruction record of debug-info.
LLVM_ABI void dump() const
Definition AsmWriter.cpp:5463
Instruction * MarkedInstr
Link back to the Instruction that owns this marker.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on DbgMarker.
Definition AsmWriter.cpp:5160
LLVM_ABI const BasicBlock * getParent() const
simple_ilist< DbgRecord > StoredDbgRecords
List of DbgRecords, the non-instruction equivalent of llvm.dbg.
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
LLVM_ABI void dump() const
Definition AsmWriter.cpp:5470
DbgMarker * Marker
Marker that this DbgRecord is linked into.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Definition AsmWriter.cpp:5166
MDNode * getRawExpression() const
MDNode * getRawAddressExpression() const
Metadata * getRawAssignID() const
MDNode * getRawVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
Metadata * getRawAddress() const
MDNode * getAsMDNode() const
Return this as a bar MDNode.
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the function to an output stream with an optional AssemblyAnnotationWriter.
Definition AsmWriter.cpp:5057
const Function & getFunction() const
const Argument * const_arg_iterator
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
Generic tagged DWARF-like metadata node.
const Constant * getAliasee() const
const Constant * getResolver() const
StringRef getSection() const
Get the custom section of this global if it has one.
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
const Comdat * getComdat() const
bool hasSection() const
Check if this global has a custom object file section.
SummaryKind
Sububclass discriminator (for dyn_cast<> et al.)
bool hasPartition() const
static LLVM_ABI GUID getGUIDAssumingExternalLinkage(StringRef GlobalName)
Return a 64-bit global unique ID constructed from the name of a global symbol.
LLVM_ABI const SanitizerMetadata & getSanitizerMetadata() const
bool hasExternalLinkage() const
VisibilityTypes getVisibility() const
bool isImplicitDSOLocal() const
LinkageTypes getLinkage() const
uint64_t GUID
Declare a type to represent a global unique identifier for a global value.
ThreadLocalMode getThreadLocalMode() const
DLLStorageClassTypes
Storage classes of global values for PE targets.
@ DLLExportStorageClass
Function to be accessible from DLL.
@ DLLImportStorageClass
Function to be imported from DLL.
bool hasSanitizerMetadata() const
LLVM_ABI StringRef getPartition() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
VisibilityTypes
An enumeration for the kinds of visibility of global values.
@ DefaultVisibility
The GV is visible.
@ HiddenVisibility
The GV is hidden.
@ ProtectedVisibility
The GV is protected.
LLVM_ABI bool isMaterializable() const
If this function's Module is being lazily streamed in functions from disk or some other source,...
UnnamedAddr getUnnamedAddr() const
LinkageTypes
An enumeration for the kinds of linkage for global values.
@ PrivateLinkage
Like Internal, but omit from symbol table.
@ CommonLinkage
Tentative definitions.
@ InternalLinkage
Rename collisions when linking (static functions).
@ LinkOnceAnyLinkage
Keep one copy of function when linking (inline)
@ WeakODRLinkage
Same, but only replaced by something equivalent.
@ ExternalLinkage
Externally visible function.
@ WeakAnyLinkage
Keep one copy of named function when linking (weak)
@ AppendingLinkage
Special purpose, only applies to global arrays.
@ AvailableExternallyLinkage
Available for inspection, not emission.
@ ExternalWeakLinkage
ExternalWeak linkage description.
@ LinkOnceODRLinkage
Same, but only replaced by something equivalent.
DLLStorageClassTypes getDLLStorageClass() const
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isExternallyInitialized() const
bool hasInitializer() const
Definitions have initializers, declarations don't.
AttributeSet getAttributes() const
Return the attribute set for this global.
std::optional< CodeModel::Model > getCodeModel() const
Get the custom code model of this global if it has one.
MaybeAlign getAlign() const
Returns the alignment of the given variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
A helper class to return the specified delimiter string after the first invocation of operator String...
LLVM_ABI void printTree(raw_ostream &OS, const Module *M=nullptr) const
Print in tree shape.
Definition AsmWriter.cpp:5426
LLVM_ABI void dumpTree() const
User-friendly dump in tree shape.
Definition AsmWriter.cpp:5501
This class implements a map that also provides access to all stored values in a deterministic order.
Manage lifetime of a slot tracker for printing IR.
const Module * getModule() const
ModuleSlotTracker(SlotTracker &Machine, const Module *M, const Function *F=nullptr)
Wrap a preinitialized SlotTracker.
Definition AsmWriter.cpp:965
virtual ~ModuleSlotTracker()
Destructor to clean up storage.
std::vector< std::pair< unsigned, const MDNode * > > MachineMDNodeListType
int getLocalSlot(const Value *V)
Return the slot number of the specified local value.
Definition AsmWriter.cpp:1005
void collectMDNodes(MachineMDNodeListType &L, unsigned LB, unsigned UB) const
Definition AsmWriter.cpp:5445
SlotTracker * getMachine()
Lazily creates a slot tracker.
Definition AsmWriter.cpp:976
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
Definition AsmWriter.cpp:1010
void incorporateFunction(const Function &F)
Incorporate the given function.
Definition AsmWriter.cpp:991
Class to hold module path string table and global value map, and encapsulate methods for operating on...
static constexpr const char * getRegularLTOModuleName()
LLVM_ABI void dump() const
Dump to stderr (for debugging).
Definition AsmWriter.cpp:5511
LLVM_ABI void print(raw_ostream &OS, bool IsForDebug=false) const
Print to an output stream.
Definition AsmWriter.cpp:5438
A Module instance is used to store all the information related to an LLVM module.
iterator_range< alias_iterator > aliases()
iterator_range< global_iterator > globals()
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the module to an output stream with an optional AssemblyAnnotationWriter.
Definition AsmWriter.cpp:5077
void dump() const
Dump the module to stderr (for debugging).
Definition AsmWriter.cpp:5478
LLVM_ABI void dump() const
Definition AsmWriter.cpp:5489
LLVM_ABI StringRef getName() const
LLVM_ABI void print(raw_ostream &ROS, bool IsForDebug=false) const
Definition AsmWriter.cpp:5086
iterator_range< op_iterator > operands()
unsigned getAddressSpace() const
Return the address space of the Pointer type.
This class provides computation of slot numbers for LLVM Assembly writing.
Definition AsmWriter.cpp:787
DenseMap< const Value *, unsigned > ValueMap
ValueMap - A mapping of Values to slot numbers.
Definition AsmWriter.cpp:790
bool mdn_empty() const
Definition AsmWriter.cpp:907
int getMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
Definition AsmWriter.cpp:1320
~SlotTracker() override=default
int getTypeIdCompatibleVtableSlot(StringRef Id)
Definition AsmWriter.cpp:1376
int getModulePathSlot(StringRef Path)
Definition AsmWriter.cpp:1349
bool as_empty() const
Definition AsmWriter.cpp:915
unsigned mdn_size() const
Definition AsmWriter.cpp:906
SlotTracker(const SlotTracker &)=delete
void purgeFunction()
After calling incorporateFunction, use this method to remove the most recently incorporated function ...
Definition AsmWriter.cpp:1286
mdn_iterator mdn_end()
Definition AsmWriter.cpp:905
int getTypeIdSlot(StringRef Id)
Definition AsmWriter.cpp:1367
void initializeIfNeeded()
These functions do the actual initialization.
Definition AsmWriter.cpp:1068
int getGlobalSlot(const GlobalValue *V)
getGlobalSlot - Get the slot number of a global value.
Definition AsmWriter.cpp:1295
as_iterator as_begin()
Definition AsmWriter.cpp:912
const Function * getFunction() const
Definition AsmWriter.cpp:894
unsigned getNextMetadataSlot() override
Definition AsmWriter.cpp:872
DenseMap< GlobalValue::GUID, unsigned >::iterator guid_iterator
GUID map iterators.
Definition AsmWriter.cpp:918
void incorporateFunction(const Function *F)
If you'd like to deal with a function instead of just a module, use this method to get its data into ...
Definition AsmWriter.cpp:889
int getLocalSlot(const Value *V)
Return the slot number of the specified value in it's type plane.
Definition AsmWriter.cpp:1330
int getAttributeGroupSlot(AttributeSet AS)
Definition AsmWriter.cpp:1340
SlotTracker(const Module *M, bool ShouldInitializeAllMetadata=false)
Construct from a module.
Definition AsmWriter.cpp:1056
void createMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
Definition AsmWriter.cpp:1317
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
Definition AsmWriter.cpp:1304
DenseMap< const MDNode *, unsigned >::iterator mdn_iterator
MDNode map iterators.
Definition AsmWriter.cpp:902
as_iterator as_end()
Definition AsmWriter.cpp:913
unsigned as_size() const
Definition AsmWriter.cpp:914
SlotTracker & operator=(const SlotTracker &)=delete
int getGUIDSlot(GlobalValue::GUID GUID)
Definition AsmWriter.cpp:1358
mdn_iterator mdn_begin()
Definition AsmWriter.cpp:904
int initializeIndexIfNeeded()
Definition AsmWriter.cpp:1078
DenseMap< AttributeSet, unsigned >::iterator as_iterator
AttributeSet map iterators.
Definition AsmWriter.cpp:910
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
ArrayRef< Type * > elements() const
unsigned getNumElements() const
Random access to the elements.
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition.
bool isOpaque() const
Return true if this is a type with an identity that has no body specified yet.
LLVM_ABI StringRef getName() const
Return the name for this struct type if it has an identity.
ArrayRef< Type * > type_params() const
Return the type parameters for this particular target extension type.
ArrayRef< unsigned > int_params() const
Return the integer parameters for this particular target extension type.
TypeFinder - Walk over a module, identifying all of the types that are used by the module.
void run(const Module &M, bool onlyNamed)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI StringRef getTargetExtName() const
Type(LLVMContext &C, TypeID tid)
LLVM_ABI void dump() const
Definition AsmWriter.cpp:5474
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false, bool NoDetails=false) const
Print the current type.
Definition AsmWriter.cpp:5134
TypeID getTypeID() const
Return the type id for the type.
Type * getElementType() const
unsigned getAddressSpace() const
Return the address space of the Pointer type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
Definition AsmWriter.cpp:5221
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
iterator_range< user_iterator > users()
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
Definition AsmWriter.cpp:5299
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void dump() const
Support for debugging, callable in GDB: V->dump()
Definition AsmWriter.cpp:5459
formatted_raw_ostream - A raw_ostream that wraps another one and keeps track of line and column posit...
formatted_raw_ostream & PadToColumn(unsigned NewCol)
PadToColumn - Align the output to some column number.
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
LLVM_ABI StringRef SourceLanguageNameString(SourceLanguageName Lang)
LLVM_ABI StringRef EnumKindString(unsigned EnumKind)
LLVM_ABI StringRef LanguageString(unsigned Language)
LLVM_ABI StringRef AttributeEncodingString(unsigned Encoding)
LLVM_ABI StringRef ConventionString(unsigned Convention)
LLVM_ABI StringRef MacinfoString(unsigned Encoding)
LLVM_ABI StringRef OperationEncodingString(unsigned Encoding)
LLVM_ABI StringRef TagString(unsigned Tag)
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AArch64_VectorCall
Used between AArch64 Advanced SIMD functions.
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
@ RISCV_VectorCall
Calling convention used for RISC-V V-extension.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AVR_SIGNAL
Used for AVR signal routines.
@ Swift
Calling convention for Swift.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AArch64_SVE_VectorCall
Used between AArch64 SVE functions.
@ ARM_APCS
ARM Procedure Calling Standard (obsolete, but still used on some targets).
@ CHERIoT_CompartmentCall
Calling convention used for CHERIoT when crossing a protection boundary.
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
@ AVR_INTR
Used for AVR interrupt routines.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ DUMMY_HHVM
Placeholders for HHVM calling conventions (deprecated, removed).
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ ARM_AAPCS
ARM Architecture Procedure Calling Standard calling convention (aka EABI).
@ CHERIoT_CompartmentCallee
Calling convention used for the callee of CHERIoT_CompartmentCall.
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
Preserve X2-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ CHERIoT_LibraryCall
Calling convention used for CHERIoT for cross-library calls to a stateless compartment.
@ CXX_FAST_TLS
Used for access functions.
@ X86_INTR
x86 hardware interrupt context.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
Preserve X0-X13, X19-X29, SP, Z0-Z31, P0-P15.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1
Preserve X1-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ X86_ThisCall
Similar to X86_StdCall.
@ PTX_Device
Call to a PTX device function.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ X86_StdCall
stdcall is mostly used by the Win32 API.
@ SPIR_FUNC
Used for SPIR non-kernel device functions.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ MSP430_INTR
Used for MSP430 interrupt routines.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ Intel_OCL_BI
Used for Intel OpenCL built-ins.
@ PreserveNone
Used for runtime calls that preserves none general registers.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ PTX_Kernel
Call to a PTX kernel. Passes all arguments in parameter space.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
@ GRAAL
Used by GraalVM. Two additional registers are reserved.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
@ X86_RegCall
Register calling convention used for parameters transfer optimization.
@ M68k_RTD
Used for M68k rtd-based CC (similar to X86's stdcall).
@ C
The default llvm calling convention, compatible with C.
@ X86_FastCall
'fast' analog of X86_StdCall.
LLVM_ABI void printImmArg(ID IID, unsigned ArgIdx, raw_ostream &OS, const Constant *ImmArgVal)
Print the argument info for the arguments with ArgInfo.
LLVM_ABI bool hasPrettyPrintedArgs(ID id)
Returns true if the intrinsic has pretty printed immediate arguments.
@ System
Synchronized with respect to all concurrently executing threads.
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_convert
Only used in LLVM metadata.
Context & getContext() const
This is an optimization pass for GlobalISel generic memory operations.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr, unsigned DynamicVGPRBlockSize=0)
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
InterleavedRange< Range > interleaved(const Range &R, StringRef Separator=", ", StringRef Prefix="", StringRef Suffix="")
Output range R as a sequence of interleaved elements.
const char * getHotnessName(CalleeInfo::HotnessType HT)
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI void printEscapedString(StringRef Name, raw_ostream &Out)
Print each character of the specified string, escaping it if it is not printable or if it is an escap...
const char * toIRString(AtomicOrdering ao)
String used by LLVM IR to represent atomic ordering.
auto dyn_cast_or_null(const Y &Val)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
char hexdigit(unsigned X, bool LowerCase=false)
hexdigit - Return the hexadecimal character for the given number X (which should be less than 16).
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
FunctionAddr VTableAddr Count
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
FormattedNumber format_hex_no_prefix(uint64_t N, unsigned Width, bool Upper=false)
format_hex_no_prefix - Output N as a fixed width hexadecimal.
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Ref
The access may reference the value stored in memory.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral=false, bool UpperCase=true, bool InsertSeparators=false)
LLVM_ABI Printable printBasicBlock(const BasicBlock *BB)
Print BasicBlock BB as an operand or print "" if BB is a nullptr.
Definition AsmWriter.cpp:4283
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
auto predecessors(const MachineBasicBlock *BB)
bool pred_empty(const BasicBlock *BB)
std::vector< TypeIdOffsetVtableInfo > TypeIdCompatibleVtableInfo
List of vtable definitions decorated by a particular type identifier, and their corresponding offsets...
@ Default
The result values are uniform if and only if all operands are uniform.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name)
Print out a name of an LLVM value without any prefixes.
Definition AsmWriter.cpp:462
A single checksum, represented by a Kind and a Value (a string).
T Value
The string value of the checksum.
StringRef getKindAsString() const
std::vector< ConstVCall > TypeCheckedLoadConstVCalls
std::vector< VFuncId > TypeCheckedLoadVCalls
std::vector< ConstVCall > TypeTestAssumeConstVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
std::vector< GlobalValue::GUID > TypeTests
List of type identifiers used by this function in llvm.type.test intrinsics referenced by something o...
std::vector< VFuncId > TypeTestAssumeVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
unsigned DSOLocal
Indicates that the linker resolved the symbol to a definition from within the same linkage unit.
unsigned CanAutoHide
In the per-module summary, indicates that the global value is linkonce_odr and global unnamed addr (s...
unsigned ImportType
This field is written by the ThinLTO indexing step to postlink combined summary.
unsigned NotEligibleToImport
Indicate if the global value cannot be imported (e.g.
unsigned Linkage
The linkage type of the associated global value.
unsigned Visibility
Indicates the visibility.
unsigned Live
In per-module summary, indicate that the global value must be considered a live root for index-based ...
StringRef getTagName() const
Return the tag of this operand bundle as a string.
A utility class that uses RAII to save and restore the value of a variable.
std::map< uint64_t, WholeProgramDevirtResolution > WPDRes
Mapping from byte offset to whole-program devirt resolution for that (typeid, byte offset) pair.
Kind
Specifies which kind of type check we should emit for this byte array.
@ Unknown
Unknown (analysis not performed, don't lower)
@ Single
Single element (last example in "Short Inline Bit Vectors")
@ Inline
Inlined bit vector ("Short Inline Bit Vectors")
@ Unsat
Unsatisfiable type (i.e. no global has this type metadata)
@ AllOnes
All-ones bit vector ("Eliminating Bit Vector Checks for All-Ones Bit Vectors")
@ ByteArray
Test a byte array (first example)
unsigned SizeM1BitWidth
Range of size-1 expressed as a bit width.
enum llvm::TypeTestResolution::Kind TheKind
@ UniformRetVal
Uniform return value optimization.
@ VirtualConstProp
Virtual constant propagation.
@ UniqueRetVal
Unique return value optimization.
@ Indir
Just do a regular virtual call.
enum llvm::WholeProgramDevirtResolution::Kind TheKind
std::map< std::vector< uint64_t >, ByArg > ResByArg
Resolutions for calls with all constant integer arguments (excluding the first argument,...
std::string SingleImplName
@ SingleImpl
Single implementation devirtualization.
@ Indir
Just do a regular virtual call.
@ BranchFunnel
When retpoline mitigation is enabled, use a branch funnel that is defined in the merged module.
Function object to check whether the second component of a container supported by std::get (like std:...