LLVM: lib/Analysis/FunctionPropertiesAnalysis.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
24#include
25
26using namespace llvm;
27
28namespace llvm {
31 cl::desc("Whether or not to compute detailed function properties."));
32
35 cl::desc("The minimum number of instructions a basic block should contain "
36 "before being considered big."));
37
40 cl::desc("The minimum number of instructions a basic block should contain "
41 "before being considered medium-sized."));
42}
43
46 cl::desc("The minimum number of arguments a function call must have before "
47 "it is considered having many arguments."));
48
49namespace {
50int64_t getNumBlocksFromCond(const BasicBlock &BB) {
51 int64_t Ret = 0;
52 if (const auto *BI = dyn_cast(BB.getTerminator())) {
53 if (BI->isConditional())
54 Ret += BI->getNumSuccessors();
55 } else if (const auto *SI = dyn_cast(BB.getTerminator())) {
56 Ret += (SI->getNumCases() + (nullptr != SI->getDefaultDest()));
57 }
58 return Ret;
59}
60
61int64_t getUses(const Function &F) {
62 return ((.hasLocalLinkage()) ? 1 : 0) + F.getNumUses();
63}
64}
65
66void FunctionPropertiesInfo::reIncludeBB(const BasicBlock &BB) {
67 updateForBB(BB, +1);
68}
69
70void FunctionPropertiesInfo::updateForBB(const BasicBlock &BB,
75 (Direction * getNumBlocksFromCond(BB));
76 for (const auto &I : BB) {
77 if (auto *CS = dyn_cast(&I)) {
78 const auto *Callee = CS->getCalledFunction();
79 if (Callee && ->isIntrinsic() &&
->isDeclaration())
81 }
82 if (I.getOpcode() == Instruction::Load) {
84 } else if (I.getOpcode() == Instruction::Store) {
86 }
87 }
89
91 unsigned SuccessorCount = succ_size(&BB);
92 if (SuccessorCount == 1)
94 else if (SuccessorCount == 2)
96 else if (SuccessorCount > 2)
98
99 unsigned PredecessorCount = pred_size(&BB);
100 if (PredecessorCount == 1)
102 else if (PredecessorCount == 2)
104 else if (PredecessorCount > 2)
106
111 else
113
114
115
116
117 if (SuccessorCount > 1) {
121 }
122 }
123
125
126 if (const auto *BI = dyn_cast(BB.getTerminator())) {
127 if (!BI->isConditional())
129 }
130
131 for (const Instruction &I : BB.instructionsWithoutDebug()) {
132 if (I.isCast())
134
135 if (I.getType()->isFloatTy())
137 else if (I.getType()->isIntegerTy())
139
140 if (isa(I))
142
143 if (const auto *Call = dyn_cast(&I)) {
144 if (Call->isIndirectCall())
146 else
148
149 if (Call->getType()->isIntegerTy())
151 else if (Call->getType()->isFloatingPointTy())
153 else if (Call->getType()->isPointerTy())
155 else if (Call->getType()->isVectorTy()) {
156 if (Call->getType()->getScalarType()->isIntegerTy())
158 else if (Call->getType()->getScalarType()->isFloatingPointTy())
160 else if (Call->getType()->getScalarType()->isPointerTy())
162 }
163
166
167 for (const auto &Arg : Call->args()) {
168 if (Arg->getType()->isPointerTy()) {
170 break;
171 }
172 }
173 }
174
175#define COUNT_OPERAND(OPTYPE) \
176 if (isa(Operand)) { \
177 OPTYPE##OperandCount += Direction; \
178 continue; \
179 }
180
181 for (unsigned int OperandIndex = 0; OperandIndex < I.getNumOperands();
182 ++OperandIndex) {
183 Value *Operand = I.getOperand(OperandIndex);
192
193
194
196 }
197
198#undef CHECK_OPERAND
199 }
200 }
201}
202
203void FunctionPropertiesInfo::updateAggregateStats(const Function &F,
205
209 std::deque<const Loop *> Worklist;
211 while (!Worklist.empty()) {
212 const auto *L = Worklist.front();
214 std::max(MaxLoopDepth, static_cast<int64_t>(L->getLoopDepth()));
215 Worklist.pop_front();
217 }
218}
219
224}
225
228
230 for (const auto &BB : F)
232 FPI.reIncludeBB(BB);
233 FPI.updateAggregateStats(F, LI);
234 return FPI;
235}
236
238#define PRINT_PROPERTY(PROP_NAME) OS << #PROP_NAME ": " << PROP_NAME << "\n";
239
249
286 }
287
288#undef PRINT_PROPERTY
289
290 OS << "\n";
291}
292
294
298}
299
302 OS << "Printing analysis results of CFA for function "
303 << "'" << F.getName() << "':"
304 << "\n";
307}
308
311 : FPI(FPI), CallSiteBB(*CB.getParent()), Caller(*CallSiteBB.getParent()) {
312 assert(isa(CB) || isa(CB));
313
314
315
317
318
319 LikelyToChangeBBs.insert(&CallSiteBB);
320
321
322 LikelyToChangeBBs.insert(&*Caller.begin());
323
324
325
326
328
329
330
331
332
333
335 for (auto *Succ : successors(&CallSiteBB))
336 if (Inserted.insert(Succ).second)
337 DomTreeUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
338 const_cast<BasicBlock *>(&CallSiteBB),
340
341
342 Inserted.clear();
343
344
345
346
347
348
349
350 if (const auto *II = dyn_cast(&CB)) {
351 const auto *UnwindDest = II->getUnwindDest();
353
354 for (auto *Succ : successors(UnwindDest))
355 if (Inserted.insert(Succ).second)
356 DomTreeUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
357 const_cast<BasicBlock *>(UnwindDest),
359 }
360
361
362
363
364
365
366 Successors.erase(&CallSiteBB);
367
368 for (const auto *BB : Successors)
369 LikelyToChangeBBs.insert(BB);
370
371
372
373
374
375 for (const auto *BB : LikelyToChangeBBs)
376 FPI.updateForBB(*BB, -1);
377}
378
379DominatorTree &FunctionPropertiesUpdater::getUpdatedDominatorTree(
381 auto &DT =
383
385
387 for (auto *Succ : successors(&CallSiteBB))
388 if (Inserted.insert(Succ).second)
389 FinalDomTreeUpdates.push_back({DominatorTree::UpdateKind::Insert,
390 const_cast<BasicBlock *>(&CallSiteBB),
392
393
394
395 for (auto &Upd : DomTreeUpdates)
397 FinalDomTreeUpdates.push_back(Upd);
398
400#ifdef EXPENSIVE_CHECKS
401 assert(DT.verify(DominatorTree::VerificationLevel::Full));
402#endif
403 return DT;
404}
405
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
433 auto &DT = getUpdatedDominatorTree(FAM);
434
435 if (&CallSiteBB != &*Caller.begin())
437
438
439 for (const auto *Succ : Successors)
441 Reinclude.insert(Succ);
442 else
443 Unreachable.insert(Succ);
444
445
446
447
448
449 const auto IncludeSuccessorsMark = Reinclude.size();
450 bool CSInsertion = Reinclude.insert(&CallSiteBB);
451 (void)CSInsertion;
453 for (size_t I = 0; I < Reinclude.size(); ++I) {
454 const auto *BB = Reinclude[I];
455 FPI.reIncludeBB(*BB);
456 if (I >= IncludeSuccessorsMark)
458 }
459
460
461
462
463
464 const auto AlreadyExcludedMark = Unreachable.size();
465 for (size_t I = 0; I < Unreachable.size(); ++I) {
466 const auto *U = Unreachable[I];
467 if (I >= AlreadyExcludedMark)
468 FPI.updateForBB(*U, -1);
469 for (const auto *Succ : successors(U))
471 Unreachable.insert(Succ);
472 }
473
475 FPI.updateAggregateStats(Caller, LI);
476#ifdef EXPENSIVE_CHECKS
477 assert(isUpdateValid(Caller, FPI, FAM));
478#endif
479}
480
481bool FunctionPropertiesUpdater::isUpdateValid(Function &F,
485 DominatorTree::VerificationLevel::Full))
486 return false;
490 return FPI == Fresh;
491}
static const Function * getParent(const Value *V)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define PRINT_PROPERTY(PROP_NAME)
static cl::opt< unsigned > CallWithManyArgumentsThreshold("call-with-many-arguments-threshold", cl::Hidden, cl::init(4), cl::desc("The minimum number of arguments a function call must have before " "it is considered having many arguments."))
#define COUNT_OPERAND(OPTYPE)
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
uint64_t IntrinsicInst * II
FunctionAnalysisManager FAM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
This class represents an incoming formal argument to a Function.
LLVM Basic Block Representation.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
This is an important base class in LLVM.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void applyUpdates(ArrayRef< UpdateType > Updates)
Inform the dominator tree about a sequence of CFG edge insertions and deletions and perform a batch u...
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
FunctionPropertiesInfo run(Function &F, FunctionAnalysisManager &FAM)
int64_t BasicBlocksWithMoreThanTwoSuccessors
int64_t BasicBlocksWithSinglePredecessor
int64_t CallReturnsVectorPointerCount
int64_t CallReturnsPointerCount
int64_t CallWithManyArgumentsCount
int64_t CallReturnsVectorIntCount
int64_t CallReturnsVectorFloatCount
int64_t CastInstructionCount
int64_t BasicBlockCount
Number of basic blocks.
int64_t CriticalEdgeCount
int64_t Uses
Number of uses of this function, plus 1 if the function is callable outside the module.
int64_t InlineAsmOperandCount
int64_t ConstantFPOperandCount
int64_t BasicBlocksWithTwoSuccessors
int64_t InstructionOperandCount
int64_t CallWithPointerArgumentCount
int64_t FloatingPointInstructionCount
int64_t TopLevelLoopCount
int64_t CallReturnsIntegerCount
int64_t BlocksReachedFromConditionalInstruction
Number of blocks reached from a conditional instruction, or that are 'cases' of a SwitchInstr.
static FunctionPropertiesInfo getFunctionPropertiesInfo(const Function &F, const DominatorTree &DT, const LoopInfo &LI)
int64_t GlobalValueOperandCount
int64_t UnconditionalBranchCount
int64_t ArgumentOperandCount
int64_t BasicBlocksWithSingleSuccessor
int64_t BasicBlockOperandCount
int64_t ControlFlowEdgeCount
int64_t BasicBlocksWithTwoPredecessors
int64_t MediumBasicBlocks
int64_t IntegerInstructionCount
int64_t CallReturnsFloatCount
void print(raw_ostream &OS) const
int64_t TotalInstructionCount
int64_t BasicBlocksWithMoreThanTwoPredecessors
int64_t ConstantOperandCount
int64_t ConstantIntOperandCount
int64_t UnknownOperandCount
int64_t DirectCallsToDefinedFunctions
Number of direct calls made from this function to other functions defined in this module.
int64_t IndirectCallCount
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
FunctionPropertiesUpdater(FunctionPropertiesInfo &FPI, CallBase &CB)
void finish(FunctionAnalysisManager &FAM) const
Analysis pass that exposes the LoopInfo for a function.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
LLVM Value Representation.
This class implements an extremely fast bulk output stream that can only output to a stream.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
auto successors(const MachineBasicBlock *BB)
cl::opt< bool > EnableDetailedFunctionProperties("enable-detailed-function-properties", cl::Hidden, cl::init(false), cl::desc("Whether or not to compute detailed function properties."))
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
auto pred_size(const MachineBasicBlock *BB)
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr)
auto succ_size(const MachineBasicBlock *BB)
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
cl::opt< unsigned > BigBasicBlockInstructionThreshold("big-basic-block-instruction-threshold", cl::Hidden, cl::init(500), cl::desc("The minimum number of instructions a basic block should contain " "before being considered big."))
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
cl::opt< unsigned > MediumBasicBlockInstructionThreshold("medium-basic-block-instruction-threshold", cl::Hidden, cl::init(15), cl::desc("The minimum number of instructions a basic block should contain " "before being considered medium-sized."))
A special type used by analysis passes to provide an address that identifies that particular analysis...
Direction
An enum for the direction of the loop.