LLVM: lib/CodeGen/HardwareLoops.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
44
45#define DEBUG_TYPE "hardware-loops"
46
47#define HW_LOOPS_NAME "Hardware Loop Insertion"
48
49using namespace llvm;
50
53 cl::desc("Force hardware loops intrinsics to be inserted"));
54
58 cl::desc("Force hardware loop counter to be updated through a phi"));
59
62 cl::desc("Force allowance of nested hardware loops"));
63
66 cl::desc("Set the loop decrement value"));
67
70 cl::desc("Set the loop counter bitwidth"));
71
75 cl::desc("Force generation of loop guard intrinsic"));
76
77STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
78
79#ifndef NDEBUG
82 dbgs() << "HWLoops: " << DebugMsg;
83 if (I)
85 else
86 dbgs() << '.';
87 dbgs() << '\n';
88}
89#endif
90
93 BasicBlock *CodeRegion = L->getHeader();
95
96 if (I) {
97 CodeRegion = I->getParent();
98
99
100 if (I->getDebugLoc())
102 }
103
105 R << "hardware-loop not created: ";
106 return R;
107}
108
109namespace {
110
111 void reportHWLoopFailure(const StringRef Msg, const StringRef ORETag,
115 }
116
118
119 class HardwareLoopsLegacy : public FunctionPass {
120 public:
121 static char ID;
122
123 HardwareLoopsLegacy() : FunctionPass(ID) {
125 }
126
128
129 void getAnalysisUsage(AnalysisUsage &AU) const override {
132 AU.addRequired();
134 AU.addRequired();
135 AU.addPreserved();
136 AU.addRequired();
137 AU.addRequired();
138 AU.addRequired();
139 AU.addPreserved();
140 }
141 };
142
143 class HardwareLoopsImpl {
144 public:
145 HardwareLoopsImpl(ScalarEvolution &SE, LoopInfo &LI, bool PreserveLCSSA,
146 DominatorTree &DT, const TargetTransformInfo &TTI,
147 TargetLibraryInfo *TLI, AssumptionCache &AC,
148 OptimizationRemarkEmitter *ORE, HardwareLoopOptions &Opts)
149 : SE(SE), LI(LI), PreserveLCSSA(PreserveLCSSA), DT(DT), TTI(TTI),
150 TLI(TLI), AC(AC), ORE(ORE), Opts(Opts) {}
151
153
154 private:
155
156 bool TryConvertLoop(Loop *L, LLVMContext &Ctx);
157
158
159
160 bool TryConvertLoop(HardwareLoopInfo &HWLoopInfo);
161
162 ScalarEvolution &SE;
163 LoopInfo &LI;
164 bool PreserveLCSSA;
165 DominatorTree &DT;
166 const TargetTransformInfo &TTI;
167 TargetLibraryInfo *TLI = nullptr;
168 AssumptionCache &AC;
169 OptimizationRemarkEmitter *ORE;
170 HardwareLoopOptions &Opts;
171 bool MadeChange = false;
172 };
173
174 class HardwareLoop {
175
176 Value *InitLoopCount();
177
178
179 Value *InsertIterationSetup(Value *LoopCountInit);
180
181
182 void InsertLoopDec();
183
184
186
187
188
189
190 PHINode *InsertPHICounter(Value *NumElts, Value *EltsRem);
191
192
193
194 void UpdateBranch(Value *EltsRem);
195
196 public:
197 HardwareLoop(HardwareLoopInfo &Info, ScalarEvolution &SE,
198 OptimizationRemarkEmitter *ORE, HardwareLoopOptions &Opts)
199 : SE(SE), ORE(ORE), Opts(Opts), L(Info.L),
200 M(L->getHeader()->getModule()), ExitCount(Info.ExitCount),
201 CountType(Info.CountType), ExitBranch(Info.ExitBranch),
202 LoopDecrement(Info.LoopDecrement), UsePHICounter(Info.CounterInReg),
203 UseLoopGuard(Info.PerformEntryTest) {}
204
205 void Create();
206
207 private:
208 ScalarEvolution &SE;
209 OptimizationRemarkEmitter *ORE = nullptr;
210 HardwareLoopOptions &Opts;
211 Loop *L = nullptr;
213 const SCEV *ExitCount = nullptr;
214 Type *CountType = nullptr;
215 BranchInst *ExitBranch = nullptr;
216 Value *LoopDecrement = nullptr;
217 bool UsePHICounter = false;
218 bool UseLoopGuard = false;
220 };
221}
222
223char HardwareLoopsLegacy::ID = 0;
224
225bool HardwareLoopsLegacy::runOnFunction(Function &F) {
226 if (skipFunction(F))
227 return false;
228
229 LLVM_DEBUG(dbgs() << "HWLoops: Running on " << F.getName() << "\n");
230
231 auto &LI = getAnalysis().getLoopInfo();
232 auto &SE = getAnalysis().getSE();
233 auto &DT = getAnalysis().getDomTree();
234 auto &TTI = getAnalysis().getTTI(F);
235 auto *ORE = &getAnalysis().getORE();
236 auto *TLIP = getAnalysisIfAvailable();
237 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
238 auto &AC = getAnalysis().getAssumptionCache(F);
239 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
240
241 HardwareLoopOptions Opts;
254
255 HardwareLoopsImpl Impl(SE, LI, PreserveLCSSA, DT, TTI, TLI, AC, ORE, Opts);
256 return Impl.run(F);
257}
258
268
269 HardwareLoopsImpl Impl(SE, LI, true, DT, TTI, TLI, AC, ORE, Opts);
273
279 return PA;
280}
281
282bool HardwareLoopsImpl::run(Function &F) {
284 for (Loop *L : LI)
285 if (L->isOutermost())
286 TryConvertLoop(L, Ctx);
287 return MadeChange;
288}
289
290
291
292bool HardwareLoopsImpl::TryConvertLoop(Loop *L, LLVMContext &Ctx) {
293
294 bool AnyChanged = false;
295 for (Loop *SL : *L)
296 AnyChanged |= TryConvertLoop(SL, Ctx);
297 if (AnyChanged) {
298 reportHWLoopFailure("nested hardware-loops not supported", "HWLoopNested",
299 ORE, L);
300 return true;
301 }
302
303 LLVM_DEBUG(dbgs() << "HWLoops: Loop " << L->getHeader()->getName() << "\n");
304
305 HardwareLoopInfo HWLoopInfo(L);
306 if (!HWLoopInfo.canAnalyze(LI)) {
307 reportHWLoopFailure("cannot analyze loop, irreducible control flow",
308 "HWLoopCannotAnalyze", ORE, L);
309 return false;
310 }
311
312 if (!Opts.Force &&
314 reportHWLoopFailure("it's not profitable to create a hardware-loop",
315 "HWLoopNotProfitable", ORE, L);
316 return false;
317 }
318
319
320 if (Opts.Bitwidth.has_value()) {
322 }
323
325 HWLoopInfo.LoopDecrement =
326 ConstantInt::get(HWLoopInfo.CountType, Opts.Decrement.value());
327
328 MadeChange |= TryConvertLoop(HWLoopInfo);
329 return MadeChange && (!HWLoopInfo.IsNestingLegal && !Opts.ForceNested);
330}
331
332bool HardwareLoopsImpl::TryConvertLoop(HardwareLoopInfo &HWLoopInfo) {
333
335 LLVM_DEBUG(dbgs() << "HWLoops: Try to convert profitable loop: " << *L);
336
339
340
341
342 reportHWLoopFailure("loop is not a candidate", "HWLoopNoCandidate", ORE, L);
343 return false;
344 }
345
348 "Hardware Loop must have set exit info.");
349
350 BasicBlock *Preheader = L->getLoopPreheader();
351
352
353 if (!Preheader)
355 if (!Preheader)
356 return false;
357
358 HardwareLoop HWLoop(HWLoopInfo, SE, ORE, Opts);
359 HWLoop.Create();
360 ++NumHWLoops;
361 return true;
362}
363
364void HardwareLoop::Create() {
365 LLVM_DEBUG(dbgs() << "HWLoops: Converting loop..\n");
366
367 Value *LoopCountInit = InitLoopCount();
368 if (!LoopCountInit) {
369 reportHWLoopFailure("could not safely create a loop count expression",
370 "HWLoopNotSafe", ORE, L);
371 return;
372 }
373
374 Value *Setup = InsertIterationSetup(LoopCountInit);
375
376 if (UsePHICounter || Opts.ForcePhi) {
377 Instruction *LoopDec = InsertLoopRegDec(LoopCountInit);
378 Value *EltsRem = InsertPHICounter(Setup, LoopDec);
380 UpdateBranch(LoopDec);
381 } else
382 InsertLoopDec();
383
384
385
386 for (auto *I : L->blocks())
388}
389
391 BasicBlock *Preheader = L->getLoopPreheader();
393 return false;
394
397 return false;
398
400 if (BI->isUnconditional() || (BI->getCondition()))
401 return false;
402
403
404
406 LLVM_DEBUG(dbgs() << " - Found condition: " << *ICmp << "\n");
407 if (!ICmp->isEquality())
408 return false;
409
413 return false;
414 };
415
416
417 Value *CountBefZext =
419
420 if (!IsCompareZero(ICmp, Count, 0) && !IsCompareZero(ICmp, Count, 1) &&
421 !IsCompareZero(ICmp, CountBefZext, 0) &&
422 !IsCompareZero(ICmp, CountBefZext, 1))
423 return false;
424
426 if (BI->getSuccessor(SuccIdx) != Preheader)
427 return false;
428
429 return true;
430}
431
432Value *HardwareLoop::InitLoopCount() {
433 LLVM_DEBUG(dbgs() << "HWLoops: Initialising loop counter value:\n");
434
435
436
437 SCEVExpander SCEVE(SE, "loopcnt");
439 ExitCount->getType() != CountType)
441
443
444
445
446
447
450 LLVM_DEBUG(dbgs() << " - Attempting to use test.set counter.\n");
452 UseLoopGuard = true;
453 } else
454 UseLoopGuard = false;
455
460
461
462 if (!SCEVE.isSafeToExpandAt(ExitCount, Predecessor->getTerminator()))
463 UseLoopGuard = false;
464 else
465 BB = Predecessor;
466 }
467
468 if (!SCEVE.isSafeToExpandAt(ExitCount, BB->getTerminator())) {
469 LLVM_DEBUG(dbgs() << "- Bailing, unsafe to expand ExitCount "
470 << *ExitCount << "\n");
471 return nullptr;
472 }
473
474 Value *Count = SCEVE.expandCodeFor(ExitCount, CountType,
476
477
478
479
480
481
482
483
485 BeginBB = UseLoopGuard ? BB : L->getLoopPreheader();
487 << " - Expanded Count in " << BB->getName() << "\n"
488 << " - Will insert set counter intrinsic into: "
489 << BeginBB->getName() << "\n");
491}
492
493Value* HardwareLoop::InsertIterationSetup(Value *LoopCountInit) {
496 Builder.setIsFPConstrained(true);
498 bool UsePhi = UsePHICounter || Opts.ForcePhi;
500 ? (UsePhi ? Intrinsic::test_start_loop_iterations
501 : Intrinsic::test_set_loop_iterations)
502 : (UsePhi ? Intrinsic::start_loop_iterations
503 : Intrinsic::set_loop_iterations);
504 Value *LoopSetup = Builder.CreateIntrinsic(ID, Ty, LoopCountInit);
505
506
507 if (UseLoopGuard) {
510 "Expected conditional branch");
511
512 Value *SetCount =
513 UsePhi ? Builder.CreateExtractValue(LoopSetup, 1) : LoopSetup;
515 LoopGuard->setCondition(SetCount);
516 if (LoopGuard->getSuccessor(0) != L->getLoopPreheader())
517 LoopGuard->swapSuccessors();
518 }
519 LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop counter: " << *LoopSetup
520 << "\n");
521 if (UsePhi && UseLoopGuard)
522 LoopSetup = Builder.CreateExtractValue(LoopSetup, 0);
523 return !UsePhi ? LoopCountInit : LoopSetup;
524}
525
526void HardwareLoop::InsertLoopDec() {
528 if (ExitBranch->getParent()->getParent()->getAttributes().hasFnAttr(
529 Attribute::StrictFP))
530 CondBuilder.setIsFPConstrained(true);
531
533 Value *NewCond = CondBuilder.CreateIntrinsic(Intrinsic::loop_decrement,
537
538
541
542
543
545
546 LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop dec: " << *NewCond << "\n");
547}
548
551 if (ExitBranch->getParent()->getParent()->getAttributes().hasFnAttr(
552 Attribute::StrictFP))
553 CondBuilder.setIsFPConstrained(true);
554
556 Value *Call = CondBuilder.CreateIntrinsic(Intrinsic::loop_decrement_reg,
558
559 LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop dec: " << *Call << "\n");
561}
562
563PHINode* HardwareLoop::InsertPHICounter(Value *NumElts, Value *EltsRem) {
564 BasicBlock *Preheader = L->getLoopPreheader();
567 IRBuilder<> Builder(Header, Header->getFirstNonPHIIt());
568 PHINode *Index = Builder.CreatePHI(NumElts->getType(), 2);
569 Index->addIncoming(NumElts, Preheader);
570 Index->addIncoming(EltsRem, Latch);
571 LLVM_DEBUG(dbgs() << "HWLoops: PHI Counter: " << *Index << "\n");
573}
574
575void HardwareLoop::UpdateBranch(Value *EltsRem) {
578 CondBuilder.CreateICmpNE(EltsRem, ConstantInt::get(EltsRem->getType(), 0));
581
582
585
586
587
589}
590
597
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool runOnFunction(Function &F, bool PostInlining)
static cl::opt< bool > ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops"))
#define HW_LOOPS_NAME
Definition HardwareLoops.cpp:47
static cl::opt< unsigned > CounterBitWidth("hardware-loop-counter-bitwidth", cl::Hidden, cl::init(32), cl::desc("Set the loop counter bitwidth"))
static OptimizationRemarkAnalysis createHWLoopAnalysis(StringRef RemarkName, Loop *L, Instruction *I)
Definition HardwareLoops.cpp:92
static cl::opt< bool > ForceGuardLoopEntry("force-hardware-loop-guard", cl::Hidden, cl::init(false), cl::desc("Force generation of loop guard intrinsic"))
static void debugHWLoopFailure(const StringRef DebugMsg, Instruction *I)
Definition HardwareLoops.cpp:80
static cl::opt< unsigned > LoopDecrement("hardware-loop-decrement", cl::Hidden, cl::init(1), cl::desc("Set the loop decrement value"))
static cl::opt< bool > ForceHardwareLoops("force-hardware-loops", cl::Hidden, cl::init(false), cl::desc("Force hardware loops intrinsics to be inserted"))
static bool CanGenerateTest(Loop *L, Value *Count)
Definition HardwareLoops.cpp:390
static cl::opt< bool > ForceHardwareLoopPHI("force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi"))
Defines an IR pass for the creation of hardware loops.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Machine Check Debug Module
MachineInstr unsigned OpIdx
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
This pass exposes codegen information to IR-level passes.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
A function analysis which provides an AssumptionCache.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setCondition(Value *V)
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Predicate getPredicate() const
Return the predicate for this instruction.
Analysis pass which computes a DominatorTree.
FunctionPass class - This class is used to implement most global optimizations.
AttributeList getAttributes() const
Return the attribute list for this Function.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Definition HardwareLoops.cpp:259
This instruction compares its operands according to the predicate given to the constructor.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
Analysis pass that exposes the LoopInfo for a function.
Represents a single loop in the control flow graph.
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
Query the target whether it would be profitable to convert the given loop into a hardware loop.
bool isPointerTy() const
True if this is an instance of PointerType.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
int getNumOccurrences() const
const ParentTy * getParent() const
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ BasicBlock
Various leaf nodes.
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI BasicBlock * InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
InsertPreheaderForLoop - Once we discover that a loop doesn't have a preheader, this method is called...
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
LLVM_ABI bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
FunctionAddr VTableAddr Count
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI void initializeHardwareLoopsLegacyPass(PassRegistry &)
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI FunctionPass * createHardwareLoopsLegacyPass()
Create Hardware Loop pass.
Definition HardwareLoops.cpp:598
LLVM_ABI bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
std::optional< bool > Force
HardwareLoopOptions & setForceNested(bool Force)
std::optional< bool > ForceGuard
std::optional< unsigned > Decrement
HardwareLoopOptions & setDecrement(unsigned Count)
HardwareLoopOptions & setForceGuard(bool Force)
HardwareLoopOptions & setForce(bool Force)
HardwareLoopOptions & setCounterBitwidth(unsigned Width)
std::optional< unsigned > Bitwidth
HardwareLoopOptions & setForcePhi(bool Force)
std::optional< bool > ForcePhi
std::optional< bool > ForceNested
bool getForceNested() const