LLVM: lib/IR/Instructions.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
48#include
49#include
50#include
51#include
52#include
53
54using namespace llvm;
55
57 "disable-i2p-p2i-opt", cl::init(false),
58 cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
59
60
61
62
63
64std::optional
69 if ()
70 return std::nullopt;
71 assert(.isScalable() && "Array elements cannot have a scalable size");
72 auto CheckedProd =
74 if (!CheckedProd)
75 return std::nullopt;
77 }
79}
80
81std::optional
85 return std::nullopt;
88 if (!CheckedProd)
89 return std::nullopt;
91}
92
93
94
95
96
97
98
101 return "both values to select must have same type";
102
104 return "select values cannot have token type";
105
107
109 return "vector select condition element type must be i1";
111 if (!ET)
112 return "selected values for vector select must be vectors";
114 return "vector select requires selected vectors to have "
115 "the same vector length as select condition";
117 return "select condition must be i1 or ";
118 }
119 return nullptr;
120}
121
122
123
124
125
126PHINode::PHINode(const PHINode &PN)
128 ReservedSpace(PN.getNumOperands()) {
134}
135
136
137
140
141
142
143
144
145
148
149
150 Op<-1>().set(nullptr);
152
153
155
158 }
159 return Removed;
160}
161
163 bool DeletePHIIfEmpty) {
166 if (Predicate(Idx))
167 RemoveIndices.insert(Idx);
168
169 if (RemoveIndices.empty())
170 return;
171
172
174 return RemoveIndices.contains(U.getOperandNo());
175 });
177 U.set(nullptr);
178
179
183 });
184
186
187
189
192 }
193}
194
195
196
197
198
199void PHINode::growOperands() {
201 unsigned NumOps = e + e / 2;
202 if (NumOps < 2) NumOps = 2;
203
204 ReservedSpace = NumOps;
205 growHungoffUses(ReservedSpace, true);
206}
207
208
209
211
215 if (ConstantValue != this)
216 return nullptr;
217
219 }
220 if (ConstantValue == this)
222 return ConstantValue;
223}
224
225
226
227
228
229
231 Value *ConstantValue = nullptr;
235 if (ConstantValue && ConstantValue != Incoming)
236 return false;
238 }
239 }
240 return true;
241}
242
243
244
245
246
247LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
248 const Twine &NameStr,
251 init(NumReservedValues, NameStr);
252}
253
254LandingPadInst::LandingPadInst(const LandingPadInst &LP)
256 ReservedSpace(LP.getNumOperands()) {
261 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
263
265}
266
268 const Twine &NameStr,
270 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
271}
272
273void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
274 ReservedSpace = NumReservedValues;
279}
280
281
282
283void LandingPadInst::growOperands(unsigned Size) {
285 if (ReservedSpace >= e + Size) return;
286 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
288}
289
292 growOperands(1);
293 assert(OpNo < ReservedSpace && "Growing didn't work!");
296}
297
298
299
300
301
305 case Instruction::Call:
307 case Instruction::Invoke:
309 case Instruction::CallBr:
311 default:
313 }
314}
315
321 if (ChildOB.getTagName() != OpB.getTag())
323 }
326}
327
329
331 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
333}
334
341
342
343
346 return CI->isMustTailCall();
347 return false;
348}
349
350
353 return CI->isTailCall();
354 return false;
355}
356
359 return F->getIntrinsicID();
361}
362
365
367 Mask |= F->getAttributes().getRetNoFPClass();
368 return Mask;
369}
370
373
375 Mask |= F->getAttributes().getParamNoFPClass(i);
376 return Mask;
377}
378
380 Attribute CallAttr = Attrs.getRetAttr(Attribute::Range);
383 FnAttr = F->getRetAttribute(Attribute::Range);
384
389 if (FnAttr.isValid())
390 return FnAttr.getRange();
391 return std::nullopt;
392}
393
396 return true;
397
400 return true;
401
402 return false;
403}
404
406 unsigned Index;
407
408 if (Attrs.hasAttrSomewhere(Kind, &Index))
409 return getArgOperand(Index - AttributeList::FirstArgIndex);
411 if (F->getAttributes().hasAttrSomewhere(Kind, &Index))
412 return getArgOperand(Index - AttributeList::FirstArgIndex);
413
414 return nullptr;
415}
416
417
419 assert(ArgNo < arg_size() && "Param index out of bounds!");
420
421 if (Attrs.hasParamAttr(ArgNo, Kind))
422 return true;
423
425 if ()
426 return false;
427
428 if (->getAttributes().hasParamAttr(ArgNo, Kind))
429 return false;
430
431
432 switch (Kind) {
433 case Attribute::ReadNone:
435 case Attribute::ReadOnly:
437 case Attribute::WriteOnly:
439 default:
440 return true;
441 }
442}
443
445 bool AllowUndefOrPoison) const {
447 "Argument must be a pointer");
448 if (paramHasAttr(ArgNo, Attribute::NonNull) &&
449 (AllowUndefOrPoison || paramHasAttr(ArgNo, Attribute::NoUndef)))
450 return true;
451
452 if (paramHasAttr(ArgNo, Attribute::Dereferenceable) &&
456 return true;
457
458 return false;
459}
460
461bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
463 return F->getAttributes().hasFnAttr(Kind);
464
465 return false;
466}
467
468bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
470 return F->getAttributes().hasFnAttr(Kind);
471
472 return false;
473}
474
475template
476Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const {
477 if constexpr (std::is_same_v<AK, Attribute::AttrKind>) {
478
479
480 assert(Kind != Attribute::Memory && "Use getMemoryEffects() instead");
481 }
482
484 return F->getAttributes().getFnAttr(Kind);
485
487}
488
492CallBase::getFnAttrOnCalledFunction(StringRef Kind) const;
493
494template
495Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
496 AK Kind) const {
498
500 return F->getAttributes().getParamAttr(ArgNo, Kind);
501
503}
504template LLVM_ABI Attribute CallBase::getParamAttrOnCalledFunction(
507CallBase::getParamAttrOnCalledFunction(unsigned ArgNo, StringRef Kind) const;
508
514
517 const unsigned BeginIndex) {
518 auto It = op_begin() + BeginIndex;
519 for (auto &B : Bundles)
520 It = std::copy(B.input_begin(), B.input_end(), It);
521
523 auto BI = Bundles.begin();
524 unsigned CurrentIndex = BeginIndex;
525
527 assert(BI != Bundles.end() && "Incorrect allocation?");
528
529 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
530 BOI.Begin = CurrentIndex;
531 BOI.End = CurrentIndex + BI->input_size();
532 CurrentIndex = BOI.End;
533 BI++;
534 }
535
536 assert(BI == Bundles.end() && "Incorrect allocation?");
537
538 return It;
539}
540
542
543
544
547 if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
548 return BOI;
549
550 llvm_unreachable("Did not find operand bundle for operand!");
551 }
552
556 "The Idx isn't in the operand bundle");
557
558
559
560 constexpr unsigned NumberScaling = 1024;
561
565
566 while (Begin != End) {
567 unsigned ScaledOperandPerBundle =
568 NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
569 Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
570 ScaledOperandPerBundle);
571 if (Current >= End)
572 Current = std::prev(End);
573 assert(Current < End && Current >= Begin &&
574 "the operand bundle doesn't cover every value in the range");
576 break;
578 Begin = Current + 1;
579 else
580 End = Current;
581 }
582
584 "the operand bundle doesn't cover every value in the range");
585 return *Current;
586}
587
592 return CB;
593
597 return Create(CB, Bundles, InsertPt);
598}
599
603 bool CreateNew = false;
604
607 if (Bundle.getTagID() == ID) {
608 CreateNew = true;
609 continue;
610 }
612 }
613
614 return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
615}
616
627
636
642
647 }
649
651 }
652 ME &= FnME;
653 }
654 return ME;
655}
659
660
667
668
675
676
683
684
685
692
693
694
701
702
703
711
714
715
718
721 CI &= Fn->getAttributes().getParamAttrs(OpNo).getCaptureInfo();
722 return CI;
723 }
724
725
728
729
733}
734
736 for (unsigned I = 0, E = arg_size(); I < E; ++I) {
738 continue;
739
742 CI &= Fn->getAttributes().getParamAttrs(I).getCaptureInfo();
744 return true;
745 }
746 return false;
747}
748
749
750
751
752
755 this->FTy = FTy;
757 "NumOperands not set up?");
758
759#ifndef NDEBUG
762 "Calling a function with bad signature!");
763
764 for (unsigned i = 0; i != Args.size(); ++i)
767 "Calling a function with a bad signature!");
768#endif
769
770
771
774
776 (void)It;
777 assert(It + 1 == op_end() && "Should add up!");
778
780}
781
783 this->FTy = FTy;
786
788
790}
791
795 InsertBefore) {
796 init(Ty, Func, Name);
797}
798
802 "Wrong number of operands allocated");
805
810}
811
815
817 Args, OpB, CI->getName(), InsertPt);
823 return NewCI;
824}
825
826
827
828
830 if (T == 0) {
831 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
832 "div by 0. Ignoring. Likely the function "
834 << " has 0 entry count, and contains call instructions "
835 "with non-zero prof info.");
836 return;
837 }
839}
840
841
842
843
844
848 const Twine &NameStr) {
849 this->FTy = FTy;
850
853 "NumOperands not set up?");
854
855#ifndef NDEBUG
858 "Invoking a function with bad signature");
859
860 for (unsigned i = 0, e = Args.size(); i != e; i++)
863 "Invoking a function with a bad signature!");
864#endif
865
866
867
872
874 (void)It;
875 assert(It + 3 == op_end() && "Should add up!");
876
878}
879
883 "Wrong number of operands allocated");
885 std::copy(II.op_begin(), II.op_end(), op_begin());
886 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
889}
890
893 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
894
896 II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
897 II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
898 NewII->setCallingConv(II->getCallingConv());
899 NewII->SubclassOptionalData = II->SubclassOptionalData;
900 NewII->setAttributes(II->getAttributes());
901 NewII->setDebugLoc(II->getDebugLoc());
902 return NewII;
903}
904
908
910 if (T == 0) {
911 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
912 "div by 0. Ignoring. Likely the function "
914 << " has 0 entry count, and contains call instructions "
915 "with non-zero prof info.");
916 return;
917 }
919}
920
921
922
923
924
929 const Twine &NameStr) {
930 this->FTy = FTy;
931
933 IndirectDests.size(),
935 "NumOperands not set up?");
936
937#ifndef NDEBUG
940 "Calling a function with bad signature");
941
942 for (unsigned i = 0, e = Args.size(); i != e; i++)
945 "Calling a function with a bad signature!");
946#endif
947
948
949
951 NumIndirectDests = IndirectDests.size();
953 for (unsigned i = 0; i != NumIndirectDests; ++i)
956
958 (void)It;
959 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
960
962}
963
968 "Wrong number of operands allocated");
974 NumIndirectDests = CBI.NumIndirectDests;
975}
976
980
988 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
989 return NewCBI;
990}
991
992
993
994
995
1000 "Wrong number of operands allocated");
1004}
1005
1009 InsertBefore) {
1010 if (retVal)
1011 Op<0>() = retVal;
1012}
1013
1014
1015
1016
1017
1018ResumeInst::ResumeInst(const ResumeInst &RI)
1020 AllocMarker) {
1022}
1023
1026 AllocMarker, InsertBefore) {
1028}
1029
1030
1031
1032
1033
1034CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI,
1038 "Wrong number of operands allocated");
1039 setSubclassDataInstruction::OpaqueField(
1044}
1045
1046void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1047 if (UnwindBB)
1048 setSubclassData(true);
1049
1050 Op<0>() = CleanupPad;
1051 if (UnwindBB)
1052 Op<1>() = UnwindBB;
1053}
1054
1055CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1060 init(CleanupPad, UnwindBB);
1061}
1062
1063
1064
1065
1066void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1067 Op<0>() = CatchPad;
1069}
1070
1071CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1073 AllocMarker) {
1076}
1077
1078CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1081 AllocMarker, InsertBefore) {
1082 init(CatchPad, BB);
1083}
1084
1085
1086
1087
1088
1089CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1090 unsigned NumReservedValues,
1091 const Twine &NameStr,
1094 InsertBefore) {
1095 if (UnwindDest)
1096 ++NumReservedValues;
1097 init(ParentPad, UnwindDest, NumReservedValues + 1);
1099}
1100
1101CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1108 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1110}
1111
1112void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1113 unsigned NumReservedValues) {
1114 assert(ParentPad && NumReservedValues);
1115
1116 ReservedSpace = NumReservedValues;
1119
1120 Op<0>() = ParentPad;
1121 if (UnwindDest) {
1124 }
1125}
1126
1127
1128
1129void CatchSwitchInst::growOperands(unsigned Size) {
1131 assert(NumOperands >= 1);
1132 if (ReservedSpace >= NumOperands + Size)
1133 return;
1134 ReservedSpace = (NumOperands + Size / 2) * 2;
1136}
1137
1140 growOperands(1);
1141 assert(OpNo < ReservedSpace && "Growing didn't work!");
1144}
1145
1147
1149 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1150 *CurDst = *(CurDst + 1);
1151
1152 *EndDst = nullptr;
1153
1155}
1156
1157
1158
1159
1161 const Twine &NameStr) {
1166}
1167
1171 "Wrong number of operands allocated");
1174}
1175
1178 const Twine &NameStr,
1181 init(ParentPad, Args, NameStr);
1182}
1183
1184
1185
1186
1187
1191 AllocMarker, InsertBefore) {}
1192
1193
1194
1195
1196
1197void BranchInst::AssertOK() {
1200 "May only branch on boolean predicates!");
1201}
1202
1207 assert(IfTrue && "Branch destination may not be null!");
1208 Op<-1>() = IfTrue;
1209}
1210
1215
1217 Op<-2>() = IfFalse;
1218 Op<-1>() = IfTrue;
1219#ifndef NDEBUG
1220 AssertOK();
1221#endif
1222}
1223
1228 "Wrong number of operands allocated");
1229
1234 }
1237}
1238
1241 "Cannot swap successors of an unconditional branch");
1243
1244
1245
1247}
1248
1249
1250
1251
1252
1254 if (!Amt)
1256 else {
1258 "Passed basic block into allocation size parameter! Use other ctor");
1260 "Allocation array size is not an integer!");
1261 }
1262 return Amt;
1263}
1264
1267 "Insertion position cannot be null when alignment not provided!");
1270 "BB must be in a Function when alignment not provided!");
1272 return DL.getPrefTypeAlign(Ty);
1273}
1274
1277 : AllocaInst(Ty, AddrSpace, nullptr, Name, InsertBefore) {}
1278
1281 : AllocaInst(Ty, AddrSpace, ArraySize,
1283 InsertBefore) {}
1284
1290 AllocatedType(Ty) {
1292 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1294}
1295
1298 return !CI->isOne();
1299 return true;
1300}
1301
1302
1303
1304
1313
1314
1315
1316
1317
1318void LoadInst::AssertOK() {
1320 "Ptr must have pointer type.");
1321}
1322
1325 "Insertion position cannot be null when alignment not provided!");
1328 "BB must be in a Function when alignment not provided!");
1330 return DL.getABITypeAlign(Ty);
1331}
1332
1336
1341
1346
1357
1358
1359
1360
1361
1362void StoreInst::AssertOK() {
1365 "Ptr must have pointer type!");
1366}
1367
1370
1376
1381
1386 InsertBefore) {
1392 AssertOK();
1393}
1394
1395
1396
1397
1398
1399void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1405 Op<2>() = NewVal;
1410
1412 "All operands must be non-null!");
1414 "Ptr must have pointer type!");
1416 "Cmp type and NewVal type must be same!");
1417}
1418
1420 Align Alignment,
1427 AtomicCmpXchg, AllocMarker, InsertBefore) {
1428 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1429}
1430
1431
1432
1433
1434
1439 "atomicrmw instructions can only be atomic.");
1441 "atomicrmw instructions cannot be unordered.");
1448
1451 "Ptr must have pointer type!");
1453 "AtomicRMW instructions must be atomic!");
1454}
1455
1459 : Instruction(Val->getType(), AtomicRMW, AllocMarker, InsertBefore) {
1460 Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1461}
1462
1464 switch (Op) {
1466 return "xchg";
1468 return "add";
1470 return "sub";
1472 return "and";
1474 return "nand";
1476 return "or";
1478 return "xor";
1480 return "max";
1482 return "min";
1484 return "umax";
1486 return "umin";
1488 return "fadd";
1490 return "fsub";
1492 return "fmax";
1494 return "fmin";
1496 return "fmaximum";
1498 return "fminimum";
1500 return "uinc_wrap";
1502 return "udec_wrap";
1504 return "usub_cond";
1506 return "usub_sat";
1508 return "";
1509 }
1510
1512}
1513
1514
1515
1516
1517
1520 : Instruction(Type::getVoidTy(C), Fence, AllocMarker, InsertBefore) {
1523}
1524
1525
1526
1527
1528
1530 const Twine &Name) {
1532 "NumOperands not initialized?");
1536}
1537
1538GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI,
1541 SourceElementType(GEPI.SourceElementType),
1542 ResultElementType(GEPI.ResultElementType) {
1544 "Wrong number of operands allocated");
1547}
1548
1551 if (!Struct->indexValid(Idx))
1552 return nullptr;
1553 return Struct->getTypeAtIndex(Idx);
1554 }
1556 return nullptr;
1558 return Array->getElementType();
1560 return Vector->getElementType();
1561 return nullptr;
1562}
1563
1566 if (Idx >= Struct->getNumElements())
1567 return nullptr;
1568 return Struct->getElementType(Idx);
1569 }
1571 return Array->getElementType();
1573 return Vector->getElementType();
1574 return nullptr;
1575}
1576
1577template
1579 if (IdxList.empty())
1580 return Ty;
1581 for (IndexTy V : IdxList.slice(1)) {
1583 if (!Ty)
1584 return Ty;
1585 }
1586 return Ty;
1587}
1588
1592
1597
1601
1602
1603
1604
1606 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1608 if (!CI->isZero()) return false;
1609 } else {
1610 return false;
1611 }
1612 }
1613 return true;
1614}
1615
1616
1617
1618
1620 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1622 return false;
1623 }
1624 return true;
1625}
1626
1630
1633 if (B)
1635 else
1638}
1639
1643
1647
1651
1655
1661
1665 APInt &ConstantOffset) const {
1666
1668 ConstantOffset);
1669}
1670
1671
1672
1673
1674
1675ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1676 const Twine &Name,
1679 ExtractElement, AllocMarker, InsertBef) {
1680 assert(isValidOperands(Val, Index) &&
1681 "Invalid extractelement instruction operands!");
1683 Op<1>() = Index;
1685}
1686
1688 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1689 return false;
1690 return true;
1691}
1692
1693
1694
1695
1696
1697InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1698 const Twine &Name,
1700 : Instruction(Vec->getType(), InsertElement, AllocMarker, InsertBef) {
1702 "Invalid insertelement instruction operands!");
1705 Op<2>() = Index;
1707}
1708
1710 const Value *Index) {
1712 return false;
1713
1715 return false;
1716
1717 if (!Index->getType()->isIntegerTy())
1718 return false;
1719 return true;
1720}
1721
1722
1723
1724
1725
1727 assert(V && "Cannot create placeholder of nullptr V");
1729}
1730
1735
1737 const Twine &Name,
1740 InsertBefore) {}
1741
1743 const Twine &Name,
1748 ShuffleVector, AllocMarker, InsertBefore) {
1750 "Invalid shuffle vector instruction operands!");
1751
1758}
1759
1761 const Twine &Name,
1766 ShuffleVector, AllocMarker, InsertBefore) {
1768 "Invalid shuffle vector instruction operands!");
1773}
1774
1777 int NumMaskElts = ShuffleMask.size();
1779 for (int i = 0; i != NumMaskElts; ++i) {
1783 continue;
1784 }
1785 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1786 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1787 NewMask[i] = MaskElt;
1788 }
1791}
1792
1795
1797 return false;
1798
1799
1800 int V1Size =
1802 for (int Elem : Mask)
1804 return false;
1805
1808 return false;
1809
1810 return true;
1811}
1812
1814 const Value *Mask) {
1815
1817 return false;
1818
1819
1820
1822 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
1824 return false;
1825
1826
1828 return true;
1829
1830
1831
1833 return false;
1834
1836
1838 return !CI->uge(V1Size * 2);
1839
1841 for (Value *Op : MV->operands()) {
1843 if (CI->uge(V1Size*2))
1844 return false;
1846 return false;
1847 }
1848 }
1849 return true;
1850 }
1851
1854 i != e; ++i)
1855 if (CDS->getElementAsInteger(i) >= V1Size*2)
1856 return false;
1857 return true;
1858 }
1859
1860 return false;
1861}
1862
1866
1869 Result.append(EC.getKnownMinValue(), MaskVal);
1870 return;
1871 }
1872
1873 assert(!EC.isScalable() &&
1874 "Scalable vector shuffle mask must be undef or zeroinitializer");
1875
1876 unsigned NumElts = EC.getFixedValue();
1877
1878 Result.reserve(NumElts);
1879
1881 for (unsigned i = 0; i != NumElts; ++i)
1882 Result.push_back(CDS->getElementAsInteger(i));
1883 return;
1884 }
1885 for (unsigned i = 0; i != NumElts; ++i) {
1886 Constant *C = Mask->getAggregateElement(i);
1889 }
1890}
1891
1893 ShuffleMask.assign(Mask.begin(), Mask.end());
1895}
1896
1898 Type *ResultTy) {
1903 if (Mask[0] == 0)
1906 }
1908 for (int Elem : Mask) {
1911 else
1913 }
1915}
1916
1918 assert(!Mask.empty() && "Shuffle mask must contain elements");
1919 bool UsesLHS = false;
1920 bool UsesRHS = false;
1921 for (int I : Mask) {
1922 if (I == -1)
1923 continue;
1924 assert(I >= 0 && I < (NumOpElts * 2) &&
1925 "Out-of-bounds shuffle mask element");
1926 UsesLHS |= (I < NumOpElts);
1927 UsesRHS |= (I >= NumOpElts);
1928 if (UsesLHS && UsesRHS)
1929 return false;
1930 }
1931
1932 return UsesLHS || UsesRHS;
1933}
1934
1940
1943 return false;
1944 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1945 if (Mask[i] == -1)
1946 continue;
1947 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1948 return false;
1949 }
1950 return true;
1951}
1952
1954 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1955 return false;
1956
1957
1959}
1960
1962 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1963 return false;
1965 return false;
1966
1967
1968 if (NumSrcElts < 2)
1969 return false;
1970
1971 for (int I = 0, E = Mask.size(); I < E; ++I) {
1972 if (Mask[I] == -1)
1973 continue;
1974 if (Mask[I] != (NumSrcElts - 1 - I) &&
1975 Mask[I] != (NumSrcElts + NumSrcElts - 1 - I))
1976 return false;
1977 }
1978 return true;
1979}
1980
1982 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1983 return false;
1985 return false;
1986 for (int I = 0, E = Mask.size(); I < E; ++I) {
1987 if (Mask[I] == -1)
1988 continue;
1989 if (Mask[I] != 0 && Mask[I] != NumSrcElts)
1990 return false;
1991 }
1992 return true;
1993}
1994
1996 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1997 return false;
1998
2000 return false;
2001 for (int I = 0, E = Mask.size(); I < E; ++I) {
2002 if (Mask[I] == -1)
2003 continue;
2004 if (Mask[I] != I && Mask[I] != (NumSrcElts + I))
2005 return false;
2006 }
2007 return true;
2008}
2009
2011
2012
2013
2014
2015
2016
2017 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
2018 return false;
2019
2020 int Sz = Mask.size();
2022 return false;
2023
2024
2025 if (Mask[0] != 0 && Mask[0] != 1)
2026 return false;
2027
2028
2029
2030 if ((Mask[1] - Mask[0]) != NumSrcElts)
2031 return false;
2032
2033
2034
2035 for (int I = 2; I < Sz; ++I) {
2036 int MaskEltVal = Mask[I];
2037 if (MaskEltVal == -1)
2038 return false;
2039 int MaskEltPrevVal = Mask[I - 2];
2040 if (MaskEltVal - MaskEltPrevVal != 2)
2041 return false;
2042 }
2043 return true;
2044}
2045
2047 int &Index) {
2048 if (Mask.size() != static_cast<unsigned>(NumSrcElts))
2049 return false;
2050
2051 int StartIndex = -1;
2052 for (int I = 0, E = Mask.size(); I != E; ++I) {
2053 int MaskEltVal = Mask[I];
2054 if (MaskEltVal == -1)
2055 continue;
2056
2057 if (StartIndex == -1) {
2058
2059
2060 if (MaskEltVal < I || NumSrcElts <= (MaskEltVal - I))
2061 return false;
2062
2063 StartIndex = MaskEltVal - I;
2064 continue;
2065 }
2066
2067
2068 if (MaskEltVal != (StartIndex + I))
2069 return false;
2070 }
2071
2072 if (StartIndex == -1)
2073 return false;
2074
2075
2076 Index = StartIndex;
2077 return true;
2078}
2079
2081 int NumSrcElts, int &Index) {
2082
2084 return false;
2085
2086
2087 if (NumSrcElts <= (int)Mask.size())
2088 return false;
2089
2090
2091 int SubIndex = -1;
2092 for (int i = 0, e = Mask.size(); i != e; ++i) {
2093 int M = Mask[i];
2094 if (M < 0)
2095 continue;
2096 int Offset = (M % NumSrcElts) - i;
2097 if (0 <= SubIndex && SubIndex != Offset)
2098 return false;
2100 }
2101
2102 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2103 Index = SubIndex;
2104 return true;
2105 }
2106 return false;
2107}
2108
2110 int NumSrcElts, int &NumSubElts,
2111 int &Index) {
2112 int NumMaskElts = Mask.size();
2113
2114
2115 if (NumMaskElts < NumSrcElts)
2116 return false;
2117
2118
2120 return false;
2121
2122
2126 bool Src0Identity = true;
2127 bool Src1Identity = true;
2128
2129 for (int i = 0; i != NumMaskElts; ++i) {
2130 int M = Mask[i];
2131 if (M < 0) {
2132 UndefElts.setBit(i);
2133 continue;
2134 }
2135 if (M < NumSrcElts) {
2137 Src0Identity &= (M == i);
2138 continue;
2139 }
2141 Src1Identity &= (M == (i + NumSrcElts));
2142 }
2143 assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2144 "unknown shuffle elements");
2146 "2-source shuffle not found");
2147
2148
2149
2152 int Src0Hi = NumMaskElts - Src0Elts.countl_zero();
2153 int Src1Hi = NumMaskElts - Src1Elts.countl_zero();
2154
2155
2156
2157 if (Src0Identity) {
2158 int NumSub1Elts = Src1Hi - Src1Lo;
2159 ArrayRef Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2161 NumSubElts = NumSub1Elts;
2162 Index = Src1Lo;
2163 return true;
2164 }
2165 }
2166
2167
2168
2169 if (Src1Identity) {
2170 int NumSub0Elts = Src0Hi - Src0Lo;
2171 ArrayRef Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2173 NumSubElts = NumSub0Elts;
2174 Index = Src0Lo;
2175 return true;
2176 }
2177 }
2178
2179 return false;
2180}
2181
2183
2184
2186 return false;
2187
2190 if (NumMaskElts <= NumOpElts)
2191 return false;
2192
2193
2196 return false;
2197
2198
2199 for (int i = NumOpElts; i < NumMaskElts; ++i)
2200 if (Mask[i] != -1)
2201 return false;
2202
2203 return true;
2204}
2205
2207
2208
2210 return false;
2211
2214 if (NumMaskElts >= NumOpElts)
2215 return false;
2216
2218}
2219
2221
2223 return false;
2224
2225
2226
2228 return false;
2229
2232 if (NumMaskElts != NumOpElts * 2)
2233 return false;
2234
2235
2236
2237
2238
2240}
2241
2243 int ReplicationFactor, int VF) {
2244 assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
2245 "Unexpected mask size.");
2246
2247 for (int CurrElt : seq(VF)) {
2248 ArrayRef CurrSubMask = Mask.take_front(ReplicationFactor);
2249 assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
2250 "Run out of mask?");
2251 Mask = Mask.drop_front(ReplicationFactor);
2252 if ((CurrSubMask, [CurrElt](int MaskElt) {
2253 return MaskElt == PoisonMaskElem || MaskElt == CurrElt;
2254 }))
2255 return false;
2256 }
2257 assert(Mask.empty() && "Did not consume the whole mask?");
2258
2259 return true;
2260}
2261
2263 int &ReplicationFactor, int &VF) {
2264
2266 ReplicationFactor =
2267 Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
2268 if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2269 return false;
2270 VF = Mask.size() / ReplicationFactor;
2272 }
2273
2274
2275
2276
2277
2278
2279
2280
2281 int Largest = -1;
2282 for (int MaskElt : Mask) {
2284 continue;
2285
2286 if (MaskElt < Largest)
2287 return false;
2288 Largest = std::max(Largest, MaskElt);
2289 }
2290
2291
2292 for (int PossibleReplicationFactor :
2294 if (Mask.size() % PossibleReplicationFactor != 0)
2295 continue;
2296 int PossibleVF = Mask.size() / PossibleReplicationFactor;
2298 PossibleVF))
2299 continue;
2300 ReplicationFactor = PossibleReplicationFactor;
2301 VF = PossibleVF;
2302 return true;
2303 }
2304
2305 return false;
2306}
2307
2309 int &VF) const {
2310
2311
2313 return false;
2314
2316 if (ShuffleMask.size() % VF != 0)
2317 return false;
2318 ReplicationFactor = ShuffleMask.size() / VF;
2319
2321}
2322
2324 if (VF <= 0 || Mask.size() < static_cast<unsigned>(VF) ||
2325 Mask.size() % VF != 0)
2326 return false;
2327 for (unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) {
2330 continue;
2332 for (int Idx : SubMask) {
2334 Used.set(Idx);
2335 }
2336 if (!Used.all())
2337 return false;
2338 }
2339 return true;
2340}
2341
2342
2344
2345
2347 return false;
2349 return false;
2350
2352}
2353
2356
2357
2358 if (!OpTy)
2359 return false;
2361
2362 return isInterleaveMask(ShuffleMask, Factor, OpNumElts * 2);
2363}
2364
2366 ArrayRef Mask, unsigned Factor, unsigned NumInputElts,
2368 unsigned NumElts = Mask.size();
2369 if (NumElts % Factor)
2370 return false;
2371
2372 unsigned LaneLen = NumElts / Factor;
2374 return false;
2375
2376 StartIndexes.resize(Factor);
2377
2378
2379
2380
2381 unsigned I = 0, J;
2382 for (; I < Factor; I++) {
2383 unsigned SavedLaneValue;
2384 unsigned SavedNoUndefs = 0;
2385
2386
2387 for (J = 0; J < LaneLen - 1; J++) {
2388
2389 unsigned Lane = J * Factor + I;
2390 unsigned NextLane = Lane + Factor;
2391 int LaneValue = Mask[Lane];
2392 int NextLaneValue = Mask[NextLane];
2393
2394
2395 if (LaneValue >= 0 && NextLaneValue >= 0 &&
2396 LaneValue + 1 != NextLaneValue)
2397 break;
2398
2399
2400 if (LaneValue >= 0 && NextLaneValue < 0) {
2401 SavedLaneValue = LaneValue;
2402 SavedNoUndefs = 1;
2403 }
2404
2405
2406
2407
2408
2409
2410 if (SavedNoUndefs > 0 && LaneValue < 0) {
2411 SavedNoUndefs++;
2412 if (NextLaneValue >= 0 &&
2413 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
2414 break;
2415 }
2416 }
2417
2418 if (J < LaneLen - 1)
2419 return false;
2420
2421 int StartMask = 0;
2422 if (Mask[I] >= 0) {
2423
2424 StartMask = Mask[I];
2425 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
2426
2427 StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
2428 } else if (SavedNoUndefs > 0) {
2429
2430 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
2431 }
2432
2433
2434 if (StartMask < 0)
2435 return false;
2436
2437 if (StartMask + LaneLen > NumInputElts)
2438 return false;
2439
2440 StartIndexes[I] = StartMask;
2441 }
2442
2443 return true;
2444}
2445
2446
2447
2448
2450 unsigned Factor,
2451 unsigned &Index) {
2452
2453 for (unsigned Idx = 0; Idx < Factor; Idx++) {
2454 unsigned I = 0;
2455
2456
2457
2458 for (; I < Mask.size(); I++)
2459 if (Mask[I] >= 0 && static_cast<unsigned>(Mask[I]) != Idx + I * Factor)
2460 break;
2461
2462 if (I == Mask.size()) {
2463 Index = Idx;
2464 return true;
2465 }
2466 }
2467
2468 return false;
2469}
2470
2471
2472
2473
2474
2476 int NumElts = Mask.size();
2477 assert((NumElts % NumSubElts) == 0 && "Illegal shuffle mask");
2478
2479 int RotateAmt = -1;
2480 for (int i = 0; i != NumElts; i += NumSubElts) {
2481 for (int j = 0; j != NumSubElts; ++j) {
2482 int M = Mask[i + j];
2483 if (M < 0)
2484 continue;
2485 if (M < i || M >= i + NumSubElts)
2486 return -1;
2487 int Offset = (NumSubElts - (M - (i + j))) % NumSubElts;
2488 if (0 <= RotateAmt && Offset != RotateAmt)
2489 return -1;
2491 }
2492 }
2493 return RotateAmt;
2494}
2495
2497 ArrayRef Mask, unsigned EltSizeInBits, unsigned MinSubElts,
2498 unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt) {
2499 for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) {
2501 if (EltRotateAmt < 0)
2502 continue;
2503 RotateAmt = EltRotateAmt * EltSizeInBits;
2504 return true;
2505 }
2506
2507 return false;
2508}
2509
2510
2511
2512
2513
2515 const Twine &Name) {
2517
2518
2519
2520
2521
2522 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2523
2525 Val->getType() && "Inserted value must match indexed type!");
2528
2531}
2532
2533InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2535 Indices(IVI.Indices) {
2539}
2540
2541
2542
2543
2544
2547
2548
2549
2550 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2551
2552 Indices.append(Idxs.begin(), Idxs.end());
2554}
2555
2556ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2559 Indices(EVI.Indices) {
2561}
2562
2563
2564
2565
2566
2567
2568
2571 for (unsigned Index : Idxs) {
2572
2573
2574
2575
2576
2577
2579 if (Index >= AT->getNumElements())
2580 return nullptr;
2581 Agg = AT->getElementType();
2583 if (Index >= ST->getNumElements())
2584 return nullptr;
2585 Agg = ST->getElementType(Index);
2586 } else {
2587
2588 return nullptr;
2589 }
2590 }
2591 return Agg;
2592}
2593
2594
2595
2596
2597
2605
2610
2611void UnaryOperator::AssertOK() {
2613 (void)LHS;
2614#ifndef NDEBUG
2616 case FNeg:
2618 "Unary operation should return same type as operand!");
2620 "Tried to create a floating-point operation on a "
2621 "non-floating-point type!");
2622 break;
2624 }
2625#endif
2626}
2627
2628
2629
2630
2631
2634 : Instruction(Ty, iType, AllocMarker, InsertBefore) {
2638 AssertOK();
2639}
2640
2641void BinaryOperator::AssertOK() {
2643 (void)LHS; (void)RHS;
2644 assert(LHS->getType() == RHS->getType() &&
2645 "Binary operator operand types must match!");
2646#ifndef NDEBUG
2649 case Mul:
2651 "Arithmetic operation should return same type as operands!");
2653 "Tried to create an integer operation on a non-integer type!");
2654 break;
2655 case FAdd: case FSub:
2658 "Arithmetic operation should return same type as operands!");
2660 "Tried to create a floating-point operation on a "
2661 "non-floating-point type!");
2662 break;
2663 case UDiv:
2664 case SDiv:
2666 "Arithmetic operation should return same type as operands!");
2668 "Incorrect operand type (not integer) for S/UDIV");
2669 break;
2670 case FDiv:
2672 "Arithmetic operation should return same type as operands!");
2674 "Incorrect operand type (not floating point) for FDIV");
2675 break;
2676 case URem:
2677 case SRem:
2679 "Arithmetic operation should return same type as operands!");
2681 "Incorrect operand type (not integer) for S/UREM");
2682 break;
2683 case FRem:
2685 "Arithmetic operation should return same type as operands!");
2687 "Incorrect operand type (not floating point) for FREM");
2688 break;
2689 case Shl:
2690 case LShr:
2691 case AShr:
2693 "Shift operation should return same type as operands!");
2695 "Tried to create a shift operation on a non-integral type!");
2696 break;
2698 case Xor:
2700 "Logical operation should return same type as operands!");
2702 "Tried to create a logical operation on a non-integral type!");
2703 break;
2705 }
2706#endif
2707}
2708
2710 const Twine &Name,
2713 "Cannot create binary operator with two operands of differing type!");
2715}
2716
2719 Value *Zero = ConstantInt::get(Op->getType(), 0);
2720 return new BinaryOperator(Instruction::Sub, Zero, Op, Op->getType(), Name,
2721 InsertBefore);
2722}
2723
2726 Value *Zero = ConstantInt::get(Op->getType(), 0);
2727 return BinaryOperator::CreateNSWSub(Zero, Op, Name, InsertBefore);
2728}
2729
2734 Op->getType(), Name, InsertBefore);
2735}
2736
2737
2738
2739
2742 return true;
2744 return false;
2745}
2746
2747
2748
2749
2750
2754 if (!MD)
2755 return 0.0;
2758}
2759
2760
2761
2762
2763
2764
2767 default: return false;
2768 case Instruction::ZExt:
2769 case Instruction::SExt:
2770 case Instruction::Trunc:
2771 return true;
2772 case Instruction::BitCast:
2775 }
2776}
2777
2778
2779
2780
2781
2782
2783
2784
2785
2787 Type *SrcTy,
2788 Type *DestTy,
2790 assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2791 switch (Opcode) {
2793 case Instruction::Trunc:
2794 case Instruction::ZExt:
2795 case Instruction::SExt:
2796 case Instruction::FPTrunc:
2797 case Instruction::FPExt:
2798 case Instruction::UIToFP:
2799 case Instruction::SIToFP:
2800 case Instruction::FPToUI:
2801 case Instruction::FPToSI:
2802 case Instruction::AddrSpaceCast:
2803
2804 return false;
2805 case Instruction::BitCast:
2806 return true;
2807 case Instruction::PtrToAddr:
2808 case Instruction::PtrToInt:
2809 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2811 case Instruction::IntToPtr:
2812 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2813 SrcTy->getScalarSizeInBits();
2814 }
2815}
2816
2820
2821
2822
2823
2824
2825
2826
2827
2828
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864 const unsigned numCastOps =
2865 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2866
2867 static const uint8_t CastResults[numCastOps][numCastOps] = {
2868
2869
2870
2871
2872
2873 { 1, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2874 { 8, 1, 9,99,99, 2,17,99,99,99,99, 2, 3, 0},
2875 { 8, 0, 1,99,99, 0, 2,99,99,99,99, 0, 3, 0},
2876 { 0, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2877 { 0, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2878 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0},
2879 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0},
2880 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0},
2881 { 99,99,99, 2, 2,99,99, 8, 2,99,99,99, 4, 0},
2882 { 1, 0, 0,99,99, 0, 0,99,99,99,99, 7, 3, 0},
2883 { 0, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2884 { 99,99,99,99,99,99,99,99,99,11,11,99,15, 0},
2885 { 5, 5, 5, 0, 0, 5, 5, 0, 0,16,16, 5, 1,14},
2886 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12},
2887 };
2888
2889
2890
2891
2892
2893
2894 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2895 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2896 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2897
2898
2901 if (!AreBothBitcasts)
2902 return 0;
2903
2904 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2905 [secondOp-Instruction::CastOpsBegin];
2906 switch (ElimCase) {
2907 case 0:
2908
2909 return 0;
2910 case 1:
2911
2912 return firstOp;
2913 case 2:
2914
2915 return secondOp;
2916 case 3:
2917
2918
2919
2920 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2921 return firstOp;
2922 return 0;
2923 case 4:
2924
2925
2926 if (DstTy == MidTy)
2927 return firstOp;
2928 return 0;
2929 case 5:
2930
2931
2932 if (SrcTy->isIntegerTy())
2933 return secondOp;
2934 return 0;
2935 case 7: {
2936
2938 return 0;
2939
2940
2941 if (SrcTy != DstTy)
2942 return 0;
2943
2944
2945
2947 if ( || MidSize < DL->getPointerTypeSizeInBits(SrcTy))
2948 return 0;
2949
2950 return Instruction::BitCast;
2951 }
2952 case 8: {
2953
2954
2955
2956 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2958 if (SrcTy == DstTy)
2959 return Instruction::BitCast;
2960 if (SrcSize < DstSize)
2961 return firstOp;
2962 if (SrcSize > DstSize)
2963 return secondOp;
2964 return 0;
2965 }
2966 case 9:
2967
2968 return Instruction::ZExt;
2969 case 11: {
2970
2971 if ()
2972 return 0;
2973 unsigned MidSize = secondOp == Instruction::PtrToAddr
2974 ? DL->getAddressSizeInBits(MidTy)
2975 : DL->getPointerTypeSizeInBits(MidTy);
2976 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2978
2979
2980 if (MidSize < SrcSize && MidSize < DstSize)
2981 return 0;
2982 if (DstSize < SrcSize)
2983 return Instruction::Trunc;
2984 if (DstSize > SrcSize)
2985 return Instruction::ZExt;
2986 return Instruction::BitCast;
2987 }
2988 case 12:
2989
2990
2992 return Instruction::AddrSpaceCast;
2993 return Instruction::BitCast;
2994 case 13:
2995
2996
2997
2999 SrcTy->isPtrOrPtrVectorTy() &&
3004 "Illegal addrspacecast, bitcast sequence!");
3005
3006 return firstOp;
3007 case 14:
3008
3009 return Instruction::AddrSpaceCast;
3010 case 15:
3011
3012
3013
3015 SrcTy->isIntOrIntVectorTy() &&
3019 "Illegal inttoptr, bitcast sequence!");
3020
3021 return firstOp;
3022 case 16:
3023
3024
3025
3027 SrcTy->isPtrOrPtrVectorTy() &&
3031 "Illegal bitcast, ptrtoint sequence!");
3032
3033 return secondOp;
3034 case 17:
3035
3036 return Instruction::UIToFP;
3037 case 99:
3038
3039
3041 default:
3043 }
3044}
3045
3049
3050 switch (op) {
3051 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
3052 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
3053 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
3054 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
3055 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
3056 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
3057 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
3058 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
3059 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
3060 case PtrToAddr: return new PtrToAddrInst (S, Ty, Name, InsertBefore);
3061 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
3062 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
3063 case BitCast:
3064 return new BitCastInst(S, Ty, Name, InsertBefore);
3065 case AddrSpaceCast:
3067 default:
3069 }
3070}
3071
3075 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3076 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3077}
3078
3082 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3083 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3084}
3085
3089 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3090 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3091}
3092
3093
3097 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3098 "Invalid cast");
3100 assert((!Ty->isVectorTy() ||
3103 "Invalid cast");
3104
3105 if (Ty->isIntOrIntVectorTy())
3106 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3107
3109}
3110
3114 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3115
3117 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3118
3119 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3120}
3121
3123 const Twine &Name,
3126 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3128 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3129
3130 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3131}
3132
3134 const Twine &Name,
3136 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3137 "Invalid integer cast");
3138 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3139 unsigned DstBits = Ty->getScalarSizeInBits();
3141 (SrcBits == DstBits ? Instruction::BitCast :
3142 (SrcBits > DstBits ? Instruction::Trunc :
3143 (isSigned ? Instruction::SExt : Instruction::ZExt)));
3144 return Create(opcode, C, Ty, Name, InsertBefore);
3145}
3146
3149 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3150 "Invalid cast");
3151 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3152 unsigned DstBits = Ty->getScalarSizeInBits();
3153 assert((C->getType() == Ty || SrcBits != DstBits) && "Invalid cast");
3155 (SrcBits == DstBits ? Instruction::BitCast :
3156 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3157 return Create(opcode, C, Ty, Name, InsertBefore);
3158}
3159
3161 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3162 return false;
3163
3164 if (SrcTy == DestTy)
3165 return true;
3166
3169 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3170
3171 SrcTy = SrcVecTy->getElementType();
3172 DestTy = DestVecTy->getElementType();
3173 }
3174 }
3175 }
3176
3179 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3180 }
3181 }
3182
3183 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();
3185
3186
3187
3189 return false;
3190
3191 if (SrcBits != DestBits)
3192 return false;
3193
3194 return true;
3195}
3196
3199
3202 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3203 .isNonIntegralPointerType(PtrTy));
3206 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3207 .isNonIntegralPointerType(PtrTy));
3208
3210}
3211
3212
3213
3214
3215
3216
3217
3220 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3221 Type *SrcTy = Src->getType();
3222
3224 "Only first class types are castable!");
3225
3226 if (SrcTy == DestTy)
3227 return BitCast;
3228
3229
3232 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3233
3234
3235 SrcTy = SrcVecTy->getElementType();
3236 DestTy = DestVecTy->getElementType();
3237 }
3238
3239
3240
3241
3242 unsigned SrcBits =
3243 SrcTy->getPrimitiveSizeInBits().getFixedValue();
3244 unsigned DestBits =
3246
3247
3248 if (DestTy->isIntegerTy()) {
3249 if (SrcTy->isIntegerTy()) {
3250 if (DestBits < SrcBits)
3251 return Trunc;
3252 else if (DestBits > SrcBits) {
3253 if (SrcIsSigned)
3254 return SExt;
3255 else
3256 return ZExt;
3257 } else {
3258 return BitCast;
3259 }
3260 } else if (SrcTy->isFloatingPointTy()) {
3261 if (DestIsSigned)
3262 return FPToSI;
3263 else
3264 return FPToUI;
3265 } else if (SrcTy->isVectorTy()) {
3266 assert(DestBits == SrcBits &&
3267 "Casting vector to integer of different width");
3268 return BitCast;
3269 } else {
3270 assert(SrcTy->isPointerTy() &&
3271 "Casting from a value that is not first-class type");
3272 return PtrToInt;
3273 }
3274 } else if (DestTy->isFloatingPointTy()) {
3275 if (SrcTy->isIntegerTy()) {
3276 if (SrcIsSigned)
3277 return SIToFP;
3278 else
3279 return UIToFP;
3280 } else if (SrcTy->isFloatingPointTy()) {
3281 if (DestBits < SrcBits) {
3282 return FPTrunc;
3283 } else if (DestBits > SrcBits) {
3284 return FPExt;
3285 } else {
3286 return BitCast;
3287 }
3288 } else if (SrcTy->isVectorTy()) {
3289 assert(DestBits == SrcBits &&
3290 "Casting vector to floating point of different width");
3291 return BitCast;
3292 }
3293 llvm_unreachable("Casting pointer or non-first class to float");
3295 assert(DestBits == SrcBits &&
3296 "Illegal cast to vector (wrong type or size)");
3297 return BitCast;
3299 if (SrcTy->isPointerTy()) {
3301 return AddrSpaceCast;
3302 return BitCast;
3303 } else if (SrcTy->isIntegerTy()) {
3304 return IntToPtr;
3305 }
3306 llvm_unreachable("Casting pointer to other than pointer or int");
3307 }
3308 llvm_unreachable("Casting to type that is not first-class");
3309}
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319bool
3321 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3323 return false;
3324
3325
3326
3329 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3331
3332
3333
3334
3339
3340
3341 switch (op) {
3342 default: return false;
3343 case Instruction::Trunc:
3344 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3345 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3346 case Instruction::ZExt:
3347 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3348 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3349 case Instruction::SExt:
3350 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3351 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3352 case Instruction::FPTrunc:
3353 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3354 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3355 case Instruction::FPExt:
3356 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3357 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3358 case Instruction::UIToFP:
3359 case Instruction::SIToFP:
3360 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3361 SrcEC == DstEC;
3362 case Instruction::FPToUI:
3363 case Instruction::FPToSI:
3365 SrcEC == DstEC;
3366 case Instruction::PtrToAddr:
3367 case Instruction::PtrToInt:
3368 if (SrcEC != DstEC)
3369 return false;
3371 case Instruction::IntToPtr:
3372 if (SrcEC != DstEC)
3373 return false;
3375 case Instruction::BitCast: {
3378
3379
3380
3381 if (!SrcPtrTy != !DstPtrTy)
3382 return false;
3383
3384
3385
3386 if (!SrcPtrTy)
3388
3389
3391 return false;
3392
3393
3394 if (SrcIsVec && DstIsVec)
3395 return SrcEC == DstEC;
3396 if (SrcIsVec)
3398 if (DstIsVec)
3400
3401 return true;
3402 }
3403 case Instruction::AddrSpaceCast: {
3405 if (!SrcPtrTy)
3406 return false;
3407
3409 if (!DstPtrTy)
3410 return false;
3411
3413 return false;
3414
3415 return SrcEC == DstEC;
3416 }
3417 }
3418}
3419
3422 : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3424}
3425
3428 : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3430}
3431
3434 : CastInst(Ty, SExt, S, Name, InsertBefore) {
3436}
3437
3440 : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3442}
3443
3446 : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3448}
3449
3452 : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3454}
3455
3458 : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3460}
3461
3464 : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3466}
3467
3470 : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3472}
3473
3476 : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3478}
3479
3482 : CastInst(Ty, PtrToAddr, S, Name, InsertBefore) {
3484}
3485
3488 : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3490}
3491
3494 : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3496}
3497
3500 : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3502}
3503
3504
3505
3506
3507
3511 : Instruction(ty, op, AllocMarker, InsertBefore) {
3516 if (FlagsSource)
3518}
3519
3522 if (Op == Instruction::ICmp) {
3523 if (InsertBefore.isValid())
3525 S1, S2, Name);
3526 else
3528 S1, S2, Name);
3529 }
3530
3531 if (InsertBefore.isValid())
3533 S1, S2, Name);
3534 else
3536 S1, S2, Name);
3537}
3538
3542 const Twine &Name,
3546 return Inst;
3547}
3548
3555
3558 return IC->isCommutative();
3560}
3561
3569
3570
3571
3575 if (auto *Const = LHS ? LHS : RHS) {
3578 }
3579 return false;
3580}
3581
3582
3583
3584
3588 return true;
3591 return false;
3592 [[fallthrough]];
3595 default:
3596 return false;
3597 }
3598}
3599
3601 switch (pred) {
3613
3630 }
3631}
3632
3634 switch (Pred) {
3635 default: return "unknown";
3662 }
3663}
3664
3669
3671 switch (pred) {
3675 return pred;
3680 }
3681}
3682
3684 switch (pred) {
3688 return pred;
3693 }
3694}
3695
3697 switch (pred) {
3700 return pred;
3709
3714 return pred;
3723 }
3724}
3725
3727 switch (pred) {
3736 return true;
3737 default:
3738 return false;
3739 }
3740}
3741
3743 switch (pred) {
3752 return true;
3753 default:
3754 return false;
3755 }
3756}
3757
3759 switch (pred) {
3776 default:
3777 return pred;
3778 }
3779}
3780
3782 switch (pred) {
3799 default:
3800 return pred;
3801 }
3802}
3803
3814
3816 switch (predicate) {
3817 default: return false;
3820 }
3821}
3822
3824 switch (predicate) {
3825 default: return false;
3828 }
3829}
3830
3834 switch (Pred) {
3836 return LHS.eq(RHS);
3838 return LHS.ne(RHS);
3840 return LHS.ugt(RHS);
3842 return LHS.uge(RHS);
3844 return LHS.ult(RHS);
3846 return LHS.ule(RHS);
3848 return LHS.sgt(RHS);
3850 return LHS.sge(RHS);
3852 return LHS.slt(RHS);
3854 return LHS.sle(RHS);
3855 default:
3857 };
3858}
3859
3863 switch (Pred) {
3864 default:
3867 return false;
3869 return true;
3898 }
3899}
3900
3904 switch (Pred) {
3925 default:
3927 }
3928}
3929
3932 return pred;
3937
3939}
3940
3942 switch (predicate) {
3943 default: return false;
3947 }
3948}
3949
3951 switch (predicate) {
3952 default: return false;
3956 }
3957}
3958
3960 switch(predicate) {
3961 default: return false;
3964 }
3965}
3966
3968 switch(predicate) {
3971 default: return false;
3972 }
3973}
3974
4004
4010
4014 return true;
4016 return false;
4017 return std::nullopt;
4018}
4019
4020
4021
4022
4023
4027 return A.HasSameSign == B.HasSameSign ? A : CmpPredicate(A.Pred);
4029 return {};
4030 if (A.HasSameSign &&
4032 return B.Pred;
4033 if (B.HasSameSign &&
4035 return A.Pred;
4036 return {};
4037}
4038
4042
4045 return ICI->getCmpPredicate();
4046 return Cmp->getPredicate();
4047}
4048
4052
4056
4057
4058
4059
4060
4063 ReservedSpace = NumReserved;
4066
4069}
4070
4071
4072
4073
4074
4078 AllocMarker, InsertBefore) {
4080}
4081
4084 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4085 setNumHungOffUseOperands(SI.getNumOperands());
4086 Use *OL = getOperandList();
4087 ConstantInt **VL = case_values();
4088 const Use *InOL = SI.getOperandList();
4089 ConstantInt *const *InVL = SI.case_values();
4090 for (unsigned i = 2, E = SI.getNumOperands(); i != E; ++i) {
4091 OL[i] = InOL[i];
4092 VL[i - 2] = InVL[i - 2];
4093 }
4094 SubclassOptionalData = SI.SubclassOptionalData;
4095}
4096
4097
4098
4102 if (OpNo + 1 > ReservedSpace)
4103 growOperands();
4104
4105 assert(OpNo < ReservedSpace && "Growing didn't work!");
4110}
4111
4112
4113
4115 unsigned idx = I->getCaseIndex();
4116
4118
4122
4123
4124 if (2 + idx + 1 != NumOps) {
4125 OL[2 + idx] = OL[NumOps - 1];
4126 VL[idx] = VL[NumOps - 2 - 1];
4127 }
4128
4129
4131 VL[NumOps - 2 - 1] = nullptr;
4133
4134 return CaseIt(this, idx);
4135}
4136
4137
4138
4139
4140void SwitchInst::growOperands() {
4142 unsigned NumOps = e*3;
4143
4144 ReservedSpace = NumOps;
4145 growHungoffUses(ReservedSpace, true);
4146}
4147
4150 if (!ProfileData)
4151 return;
4152
4154 llvm_unreachable("number of prof branch_weights metadata operands does "
4155 "not correspond to number of succesors");
4156 }
4157
4160 return;
4161 this->Weights = std::move(Weights);
4162}
4163
4166 if (Weights) {
4167 assert(SI.getNumSuccessors() == Weights->size() &&
4168 "num of prof branch_weights must accord with num of successors");
4169 Changed = true;
4170
4171
4172
4173 (*Weights)[I->getCaseIndex() + 1] = Weights->back();
4174 Weights->pop_back();
4175 }
4176 return SI.removeCase(I);
4177}
4178
4180 auto *DestBlock = I->getCaseSuccessor();
4181 if (Weights) {
4183 (*Weights)[0] = Weight.value();
4184 }
4185
4186 SI.setDefaultDest(DestBlock);
4187}
4188
4192 SI.addCase(OnVal, Dest);
4193
4194 if (!Weights && W && *W) {
4195 Changed = true;
4197 (*Weights)[SI.getNumSuccessors() - 1] = *W;
4198 } else if (Weights) {
4199 Changed = true;
4200 Weights->push_back(W.value_or(0));
4201 }
4202 if (Weights)
4203 assert(SI.getNumSuccessors() == Weights->size() &&
4204 "num of prof branch_weights must accord with num of successors");
4205}
4206
4209
4210 Changed = false;
4211 if (Weights)
4212 Weights->resize(0);
4213 return SI.eraseFromParent();
4214}
4215
4218 if (!Weights)
4219 return std::nullopt;
4220 return (*Weights)[idx];
4221}
4222
4225 if (!W)
4226 return;
4227
4228 if (!Weights && *W)
4230
4231 if (Weights) {
4232 auto &OldW = (*Weights)[idx];
4233 if (*W != OldW) {
4234 Changed = true;
4235 OldW = *W;
4236 }
4237 }
4238}
4239
4242 unsigned idx) {
4244 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4246 ->getValue()
4247 .getZExtValue();
4248
4249 return std::nullopt;
4250}
4251
4252
4253
4254
4255
4256void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4258 "Address of indirectbr must be a pointer");
4259 ReservedSpace = 1+NumDests;
4262
4264}
4265
4266
4267
4268
4269
4270void IndirectBrInst::growOperands() {
4272 unsigned NumOps = e*2;
4273
4274 ReservedSpace = NumOps;
4276}
4277
4278IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4281 Instruction::IndirectBr, AllocMarker, InsertBefore) {
4283}
4284
4285IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4287 AllocMarker) {
4290 Use *OL = getOperandList();
4293 OL[i] = InOL[i];
4295}
4296
4297
4298
4301 if (OpNo+1 > ReservedSpace)
4302 growOperands();
4303
4304 assert(OpNo < ReservedSpace && "Growing didn't work!");
4307}
4308
4309
4310
4313
4316
4317
4318 OL[idx+1] = OL[NumOps-1];
4319
4320
4323}
4324
4325
4326
4327
4328
4333
4334
4335
4336
4337
4338
4339
4340
4343 return new (AllocMarker) GetElementPtrInst(*this, AllocMarker);
4344}
4345
4349
4353
4357
4361
4363 return new ExtractValueInst(*this);
4364}
4365
4367 return new InsertValueInst(*this);
4368}
4369
4375 return Result;
4376}
4377
4382
4387
4393 Result->setWeak(isWeak());
4394 return Result;
4395}
4396
4402 return Result;
4403}
4404
4408
4412
4416
4420
4424
4428
4432
4436
4440
4444
4448
4452
4456
4460
4464
4470 return new (AllocMarker) CallInst(*this, AllocMarker);
4471 }
4473 return new (AllocMarker) CallInst(*this, AllocMarker);
4474}
4475
4479
4483
4487
4491
4495
4497
4499 return new LandingPadInst(*this);
4500}
4501
4504 return new (AllocMarker) ReturnInst(*this, AllocMarker);
4505}
4506
4509 return new (AllocMarker) BranchInst(*this, AllocMarker);
4510}
4511
4513
4515 return new IndirectBrInst(*this);
4516}
4517
4523 return new (AllocMarker) InvokeInst(*this, AllocMarker);
4524 }
4526 return new (AllocMarker) InvokeInst(*this, AllocMarker);
4527}
4528
4534 return new (AllocMarker) CallBrInst(*this, AllocMarker);
4535 }
4537 return new (AllocMarker) CallBrInst(*this, AllocMarker);
4538}
4539
4541 return new (AllocMarker) ResumeInst(*this);
4542}
4543
4546 return new (AllocMarker) CleanupReturnInst(*this, AllocMarker);
4547}
4548
4550 return new (AllocMarker) CatchReturnInst(*this);
4551}
4552
4554 return new CatchSwitchInst(*this);
4555}
4556
4559 return new (AllocMarker) FuncletPadInst(*this, AllocMarker);
4560}
4561
4566
4568 bool NoTrapAfterNoreturn) const {
4569 if (!TrapUnreachable)
4570 return false;
4571
4572
4574 Call && Call->doesNotReturn()) {
4575 if (NoTrapAfterNoreturn)
4576 return false;
4577
4578 if (Call->isNonContinuableTrap())
4579 return false;
4580 }
4581
4582 if (getFunction()->hasFnAttribute(Attribute::Naked))
4583 return false;
4584
4585 return true;
4586}
4587
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool isSigned(unsigned int Opcode)
Module.h This file contains the declarations for the Module class.
static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos)
Definition Instructions.cpp:1323
static bool isImpliedFalseByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Definition Instructions.cpp:4005
static Value * createPlaceholderForShuffleVector(Value *V)
Definition Instructions.cpp:1726
static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos)
Definition Instructions.cpp:1265
static cl::opt< bool > DisableI2pP2iOpt("disable-i2p-p2i-opt", cl::init(false), cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"))
static bool hasNonZeroFPOperands(const CmpInst *Cmp)
Definition Instructions.cpp:3572
static int matchShuffleAsBitRotate(ArrayRef< int > Mask, int NumSubElts)
Try to lower a vector shuffle as a bit rotation.
Definition Instructions.cpp:2475
static Type * getIndexedTypeInternal(Type *Ty, ArrayRef< IndexTy > IdxList)
Definition Instructions.cpp:1578
static bool isReplicationMaskWithParams(ArrayRef< int > Mask, int ReplicationFactor, int VF)
Definition Instructions.cpp:2242
static bool isIdentityMaskImpl(ArrayRef< int > Mask, int NumOpElts)
Definition Instructions.cpp:1941
static bool isSingleSourceMaskImpl(ArrayRef< int > Mask, int NumOpElts)
Definition Instructions.cpp:1917
static Value * getAISize(LLVMContext &Context, Value *Amt)
Definition Instructions.cpp:1253
static bool isImpliedTrueByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Definition Instructions.cpp:3975
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
This file implements the SmallBitVector class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Class for arbitrary precision integers.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
This class represents a conversion between pointers from one address space to another.
LLVM_ABI AddrSpaceCastInst * cloneImpl() const
Clone an identical AddrSpaceCastInst.
Definition Instructions.cpp:4461
LLVM_ABI AddrSpaceCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3498
LLVM_ABI std::optional< TypeSize > getAllocationSizeInBits(const DataLayout &DL) const
Get allocation size in bits.
Definition Instructions.cpp:82
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Definition Instructions.cpp:1305
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
LLVM_ABI AllocaInst * cloneImpl() const
Definition Instructions.cpp:4370
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
Definition Instructions.cpp:65
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
Definition Instructions.cpp:1296
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
LLVM_ABI AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, InsertPosition InsertBefore)
Definition Instructions.cpp:1279
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this cmpxchg instruction.
bool isVolatile() const
Return true if this is a cmpxchg from a volatile memory location.
void setFailureOrdering(AtomicOrdering Ordering)
Sets the failure ordering constraint of this cmpxchg instruction.
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
void setSuccessOrdering(AtomicOrdering Ordering)
Sets the success ordering constraint of this cmpxchg instruction.
LLVM_ABI AtomicCmpXchgInst * cloneImpl() const
Definition Instructions.cpp:4388
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isWeak() const
Return true if this cmpxchg may spuriously fail.
void setAlignment(Align Align)
AtomicOrdering getSuccessOrdering() const
Returns the success ordering constraint of this cmpxchg instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this cmpxchg instruction.
LLVM_ABI AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
Definition Instructions.cpp:1419
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
LLVM_ABI AtomicRMWInst * cloneImpl() const
Definition Instructions.cpp:4397
bool isVolatile() const
Return true if this is a RMW on a volatile memory location.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this rmw instruction.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this rmw instruction.
void setOperation(BinOp Operation)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
BinOp getOperation() const
LLVM_ABI AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
Definition Instructions.cpp:1456
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
void setAlignment(Align Align)
static LLVM_ABI StringRef getOperationName(BinOp Op)
Definition Instructions.cpp:1463
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM_ABI CaptureInfo getCaptureInfo() const
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI const ConstantRange & getRange() const
Returns the value of the range attribute.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
static LLVM_ABI Attribute getWithMemoryEffects(LLVMContext &Context, MemoryEffects ME)
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
Definition Instructions.cpp:2717
BinaryOps getOpcode() const
LLVM_ABI bool swapOperands()
Exchange the two operands to this instruction.
Definition Instructions.cpp:2740
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition Instructions.cpp:2730
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
Definition Instructions.cpp:2709
LLVM_ABI BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
Definition Instructions.cpp:2632
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition Instructions.cpp:2724
LLVM_ABI BinaryOperator * cloneImpl() const
Definition Instructions.cpp:4350
This class represents a no-op cast from one type to another.
LLVM_ABI BitCastInst * cloneImpl() const
Clone an identical BitCastInst.
Definition Instructions.cpp:4457
LLVM_ABI BitCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3492
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
Definition Instructions.cpp:1239
LLVM_ABI BranchInst * cloneImpl() const
Definition Instructions.cpp:4507
bool isConditional() const
Value * getCondition() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
LLVM_ABI FPClassTest getParamNoFPClass(unsigned i) const
Extract a test mask for disallowed floating-point value classes for the parameter.
Definition Instructions.cpp:371
bool isInlineAsm() const
Check if this call is an inline asm statement.
LLVM_ABI BundleOpInfo & getBundleOpInfoForOperand(unsigned OpIdx)
Return the BundleOpInfo for the operand at index OpIdx.
Definition Instructions.cpp:541
void setCallingConv(CallingConv::ID CC)
LLVM_ABI FPClassTest getRetNoFPClass() const
Extract a test mask for disallowed floating-point value classes for the return value.
Definition Instructions.cpp:363
bundle_op_iterator bundle_op_info_begin()
Return the start of the list of BundleOpInfo instances associated with this OperandBundleUser.
LLVM_ABI bool paramHasNonNullAttr(unsigned ArgNo, bool AllowUndefOrPoison) const
Return true if this argument has the nonnull attribute on either the CallBase instruction or the call...
Definition Instructions.cpp:444
LLVM_ABI MemoryEffects getMemoryEffects() const
Definition Instructions.cpp:637
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
LLVM_ABI bool doesNotAccessMemory() const
Determine if the call does not access memory.
Definition Instructions.cpp:661
LLVM_ABI void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
Definition Instructions.cpp:509
LLVM_ABI void setOnlyAccessesArgMemory()
Definition Instructions.cpp:689
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
OperandBundleUse operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const
Simple helper function to map a BundleOpInfo to an OperandBundleUse.
LLVM_ABI void setOnlyAccessesInaccessibleMemOrArgMem()
Definition Instructions.cpp:707
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI void setDoesNotAccessMemory()
Definition Instructions.cpp:664
AttributeSet getParamAttributes(unsigned ArgNo) const
Return the param attributes for this call.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
LLVM_ABI bool onlyAccessesInaccessibleMemory() const
Determine if the function may only access memory that is inaccessible from the IR.
Definition Instructions.cpp:695
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
CallingConv::ID getCallingConv() const
bundle_op_iterator bundle_op_info_end()
Return the end of the list of BundleOpInfo instances associated with this OperandBundleUser.
LLVM_ABI unsigned getNumSubclassExtraOperandsDynamic() const
Get the number of extra operands for instructions that don't have a fixed number of extra operands.
Definition Instructions.cpp:330
BundleOpInfo * bundle_op_iterator
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
Definition Instructions.cpp:418
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
Definition Instructions.cpp:344
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
Definition Instructions.cpp:335
LLVM_ABI bool onlyReadsMemory() const
Determine if the call does not access or only reads memory.
Definition Instructions.cpp:669
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
iterator_range< bundle_op_iterator > bundle_op_infos()
Return the range [bundle_op_info_begin, bundle_op_info_end).
LLVM_ABI void setOnlyReadsMemory()
Definition Instructions.cpp:672
static LLVM_ABI CallBase * addOperandBundle(CallBase *CB, uint32_t ID, OperandBundleDef OB, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle OB added.
Definition Instructions.cpp:588
LLVM_ABI bool onlyAccessesInaccessibleMemOrArgMem() const
Determine if the function may only access memory that is either inaccessible from the IR or pointed t...
Definition Instructions.cpp:704
LLVM_ABI CaptureInfo getCaptureInfo(unsigned OpNo) const
Return which pointer components this operand may capture.
Definition Instructions.cpp:712
LLVM_ABI bool hasArgumentWithAdditionalReturnCaptureComponents() const
Returns whether the call has an argument that has an attribute like captures(ret: address,...
Definition Instructions.cpp:735
CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
Value * getCalledOperand() const
LLVM_ABI void setOnlyWritesMemory()
Definition Instructions.cpp:680
LLVM_ABI op_iterator populateBundleOperandInfos(ArrayRef< OperandBundleDef > Bundles, const unsigned BeginIndex)
Populate the BundleOpInfo instances and the Use& vector from Bundles.
Definition Instructions.cpp:516
AttributeList Attrs
parameter attributes for callable
bool hasOperandBundlesOtherThan(ArrayRef< uint32_t > IDs) const
Return true if this operand bundle user contains operand bundles with tags other than those specified...
LLVM_ABI std::optional< ConstantRange > getRange() const
If this return value has a range attribute, return the value range of the argument.
Definition Instructions.cpp:379
LLVM_ABI bool isReturnNonNull() const
Return true if the return value is known to be not null.
Definition Instructions.cpp:394
Value * getArgOperand(unsigned i) const
uint64_t getRetDereferenceableBytes() const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
Definition Instructions.cpp:357
static unsigned CountBundleInputs(ArrayRef< OperandBundleDef > Bundles)
Return the total number of values used in Bundles.
LLVM_ABI Value * getArgOperandWithAttribute(Attribute::AttrKind Kind) const
If one of the arguments has the specified attribute, returns its operand value.
Definition Instructions.cpp:405
LLVM_ABI void setOnlyAccessesInaccessibleMemory()
Definition Instructions.cpp:698
static LLVM_ABI CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
Definition Instructions.cpp:302
LLVM_ABI bool onlyWritesMemory() const
Determine if the call does not access or only writes memory.
Definition Instructions.cpp:677
LLVM_ABI bool hasClobberingOperandBundles() const
Return true if this operand bundle user has operand bundles that may write to the heap.
Definition Instructions.cpp:628
void setCalledOperand(Value *V)
static LLVM_ABI CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
Definition Instructions.cpp:600
LLVM_ABI bool hasReadingOperandBundles() const
Return true if this operand bundle user has operand bundles that may read from the heap.
Definition Instructions.cpp:617
LLVM_ABI bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
Definition Instructions.cpp:686
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI void setMemoryEffects(MemoryEffects ME)
Definition Instructions.cpp:656
bool hasOperandBundles() const
Return true if this User has any operand bundles.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
Definition Instructions.cpp:351
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
Definition Instructions.cpp:328
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
SmallVector< BasicBlock *, 16 > getIndirectDests() const
void setDefaultDest(BasicBlock *B)
void setIndirectDest(unsigned i, BasicBlock *B)
BasicBlock * getDefaultDest() const
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
LLVM_ABI CallBrInst * cloneImpl() const
Definition Instructions.cpp:4529
This class represents a function call, abstracting a target machine's calling convention.
LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
Definition Instructions.cpp:829
TailCallKind getTailCallKind() const
LLVM_ABI CallInst * cloneImpl() const
Definition Instructions.cpp:4465
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Represents which components of the pointer may be captured in which location.
CaptureComponents getOtherComponents() const
Get components potentially captured through locations other than the return value.
static CaptureInfo none()
Create CaptureInfo that does not capture any components of the pointer.
static CaptureInfo all()
Create CaptureInfo that may capture all components of the pointer.
CaptureComponents getRetComponents() const
Get components potentially captured by the return value.
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
Definition Instructions.cpp:3219
static LLVM_ABI CastInst * CreatePointerBitCastOrAddrSpaceCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast or an AddrSpaceCast cast instruction.
Definition Instructions.cpp:3111
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
Definition Instructions.cpp:2829
static LLVM_ABI CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
Definition Instructions.cpp:3133
static LLVM_ABI CastInst * CreateFPCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create an FPExt, BitCast, or FPTrunc for fp -> fp casts.
Definition Instructions.cpp:3147
CastInst(Type *Ty, unsigned iType, Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics for subclasses.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
Definition Instructions.cpp:3197
static LLVM_ABI bool isBitCastable(Type *SrcTy, Type *DestTy)
Check whether a bitcast between these types is valid.
Definition Instructions.cpp:3160
static LLVM_ABI CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
Definition Instructions.cpp:3086
static LLVM_ABI CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
Definition Instructions.cpp:3094
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
Definition Instructions.cpp:3122
static LLVM_ABI bool isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DstTy, const DataLayout &DL)
A no-op cast is one that can be effected without changing any bits.
Definition Instructions.cpp:2786
static LLVM_ABI CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
Definition Instructions.cpp:3072
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Definition Instructions.cpp:3046
LLVM_ABI bool isIntegerCast() const
There are several places where we need to know if a cast instruction only deals with integer source a...
Definition Instructions.cpp:2765
static LLVM_ABI CastInst * CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a SExt or BitCast cast instruction.
Definition Instructions.cpp:3079
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Definition Instructions.cpp:3320
LLVM_ABI CatchReturnInst * cloneImpl() const
Definition Instructions.cpp:4549
void setUnwindDest(BasicBlock *UnwindDest)
LLVM_ABI void addHandler(BasicBlock *Dest)
Add an entry to the switch instruction... Note: This action invalidates handler_end().
Definition Instructions.cpp:1138
LLVM_ABI CatchSwitchInst * cloneImpl() const
Definition Instructions.cpp:4553
mapped_iterator< op_iterator, DerefFnTy > handler_iterator
Value * getParentPad() const
void setParentPad(Value *ParentPad)
BasicBlock * getUnwindDest() const
LLVM_ABI void removeHandler(handler_iterator HI)
Definition Instructions.cpp:1146
bool hasUnwindDest() const
LLVM_ABI CleanupReturnInst * cloneImpl() const
Definition Instructions.cpp:4544
This class is the base class for the comparison instructions.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
bool isEquality() const
Determine if this is an equals/not equals predicate.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
LLVM_ABI bool isEquivalence(bool Invert=false) const
Determine if one operand of this compare can always be replaced by the other operand,...
Definition Instructions.cpp:3585
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Definition Instructions.cpp:3562
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static LLVM_ABI CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
Definition Instructions.cpp:3520
static bool isFPPredicate(Predicate P)
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
static LLVM_ABI CmpInst * CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Instruction *FlagsSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate, the two operands and the instructio...
Definition Instructions.cpp:3539
bool isNonStrictPredicate() const
LLVM_ABI void swapOperands()
This is just a convenience that dispatches to the subclasses.
Definition Instructions.cpp:3549
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
static LLVM_ABI StringRef getPredicateName(Predicate P)
Definition Instructions.cpp:3633
Predicate getPredicate() const
Return the predicate for this instruction.
bool isStrictPredicate() const
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Definition Instructions.cpp:3950
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
Definition Instructions.cpp:3941
LLVM_ABI CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, Value *LHS, Value *RHS, const Twine &Name="", InsertPosition InsertBefore=nullptr, Instruction *FlagsSource=nullptr)
Definition Instructions.cpp:3508
LLVM_ABI bool isCommutative() const
This is just a convenience that dispatches to the subclasses.
Definition Instructions.cpp:3556
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
Definition Instructions.cpp:4024
CmpPredicate()
Default constructor.
static LLVM_ABI CmpPredicate get(const CmpInst *Cmp)
Do a ICmpInst::getCmpPredicate() or CmpInst::getPredicate(), as appropriate.
Definition Instructions.cpp:4043
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
Definition Instructions.cpp:4039
bool hasSameSign() const
Query samesign information, for optimizations.
static LLVM_ABI CmpPredicate getSwapped(CmpPredicate P)
Get the swapped predicate of a CmpPredicate.
Definition Instructions.cpp:4049
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
This is the shared class of boolean and integer constants.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount getFixed(ScalarTy MinVal)
This instruction compares its operands according to the predicate given to the constructor.
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Definition Instructions.cpp:3860
LLVM_ABI FCmpInst * cloneImpl() const
Clone an identical FCmpInst.
Definition Instructions.cpp:4354
FCmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
This class represents an extension of floating point types.
LLVM_ABI FPExtInst * cloneImpl() const
Clone an identical FPExtInst.
Definition Instructions.cpp:4425
LLVM_ABI FPExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3444
LLVM_ABI float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
Definition Instructions.cpp:2751
This class represents a cast from floating point to signed integer.
LLVM_ABI FPToSIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3468
LLVM_ABI FPToSIInst * cloneImpl() const
Clone an identical FPToSIInst.
Definition Instructions.cpp:4441
This class represents a cast from floating point to unsigned integer.
LLVM_ABI FPToUIInst * cloneImpl() const
Clone an identical FPToUIInst.
Definition Instructions.cpp:4437
LLVM_ABI FPToUIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3462
This class represents a truncation of floating point types.
LLVM_ABI FPTruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3438
LLVM_ABI FPTruncInst * cloneImpl() const
Clone an identical FPTruncInst.
Definition Instructions.cpp:4421
LLVM_ABI FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, InsertPosition InsertBefore=nullptr)
Definition Instructions.cpp:1518
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this fence instruction.
LLVM_ABI FenceInst * cloneImpl() const
Definition Instructions.cpp:4405
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
LLVM_ABI FreezeInst(Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition Instructions.cpp:4329
LLVM_ABI FreezeInst * cloneImpl() const
Clone an identical FreezeInst.
Definition Instructions.cpp:4588
void setParentPad(Value *ParentPad)
Value * getParentPad() const
Convenience accessors.
LLVM_ABI FuncletPadInst * cloneImpl() const
Definition Instructions.cpp:4557
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
LLVM_ABI bool isInBounds() const
Determine whether the GEP has the inbounds flag.
Definition Instructions.cpp:1644
LLVM_ABI bool hasNoUnsignedSignedWrap() const
Determine whether the GEP has the nusw flag.
Definition Instructions.cpp:1648
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
Definition Instructions.cpp:1549
LLVM_ABI bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
Definition Instructions.cpp:1605
LLVM_ABI bool hasNoUnsignedWrap() const
Determine whether the GEP has the nuw flag.
Definition Instructions.cpp:1652
LLVM_ABI bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
Definition Instructions.cpp:1619
LLVM_ABI void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
Definition Instructions.cpp:1631
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
Definition Instructions.cpp:1589
LLVM_ABI bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
Definition Instructions.cpp:1656
LLVM_ABI GetElementPtrInst * cloneImpl() const
Definition Instructions.cpp:4341
LLVM_ABI bool collectOffset(const DataLayout &DL, unsigned BitWidth, SmallMapVector< Value *, APInt, 4 > &VariableOffsets, APInt &ConstantOffset) const
Definition Instructions.cpp:1662
LLVM_ABI void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
Definition Instructions.cpp:1627
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
Definition Instructions.cpp:1640
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
ICmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Definition Instructions.cpp:3831
LLVM_ABI ICmpInst * cloneImpl() const
Clone an identical ICmpInst.
Definition Instructions.cpp:4358
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
bool isEquality() const
Return true if this predicate is either EQ or NE.
static LLVM_ABI Predicate getFlippedSignednessPredicate(Predicate Pred)
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
Definition Instructions.cpp:3930
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
Definition Instructions.cpp:4011
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
Indirect Branch Instruction.
LLVM_ABI void addDestination(BasicBlock *Dest)
Add a destination.
Definition Instructions.cpp:4299
LLVM_ABI void removeDestination(unsigned i)
This method removes the specified successor from the indirectbr instruction.
Definition Instructions.cpp:4311
LLVM_ABI IndirectBrInst * cloneImpl() const
Definition Instructions.cpp:4514
LLVM_ABI InsertElementInst * cloneImpl() const
Definition Instructions.cpp:4488
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
Definition Instructions.cpp:1709
BasicBlock * getBasicBlock()
This instruction inserts a struct field of array element value into an aggregate value.
LLVM_ABI InsertValueInst * cloneImpl() const
Definition Instructions.cpp:4366
BitfieldElement::Type getSubclassData() const
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
LLVM_ABI bool isVolatile() const LLVM_READONLY
Return true if this instruction has a volatile memory access.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Bitfield::Element< uint16_t, 0, 15 > OpaqueField
Instruction(const Instruction &)=delete
friend class BasicBlock
Various leaf nodes.
void setSubclassData(typename BitfieldElement::Type Value)
This class represents a cast from an integer to a pointer.
LLVM_ABI IntToPtrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3486
LLVM_ABI IntToPtrInst * cloneImpl() const
Clone an identical IntToPtrInst.
Definition Instructions.cpp:4453
BasicBlock * getUnwindDest() const
void setNormalDest(BasicBlock *B)
LLVM_ABI InvokeInst * cloneImpl() const
Definition Instructions.cpp:4518
LLVM_ABI LandingPadInst * getLandingPadInst() const
Get the landingpad instruction from the landing pad block (the unwind destination).
Definition Instructions.cpp:905
void setUnwindDest(BasicBlock *B)
LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
Definition Instructions.cpp:909
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
LLVMContextImpl *const pImpl
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
LLVM_ABI LandingPadInst * cloneImpl() const
Definition Instructions.cpp:4498
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
Definition Instructions.cpp:267
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
Definition Instructions.cpp:290
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
void setAlignment(Align Align)
bool isVolatile() const
Return true if this is a load from a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
LLVM_ABI LoadInst * cloneImpl() const
Definition Instructions.cpp:4378
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
void setVolatile(bool V)
Specify whether this is a volatile load or not.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, InsertPosition InsertBefore)
Definition Instructions.cpp:1333
Align getAlign() const
Return the alignment of the access that is being performed.
const MDOperand & getOperand(unsigned I) const
static MemoryEffectsBase readOnly()
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
bool doesNotAccessMemory() const
Whether this function accesses no memory.
static MemoryEffectsBase argMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
static MemoryEffectsBase inaccessibleMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
bool onlyAccessesInaccessibleMem() const
Whether this function only (at most) accesses inaccessible memory.
bool onlyAccessesArgPointees() const
Whether this function only (at most) accesses argument memory.
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
static MemoryEffectsBase writeOnly()
static MemoryEffectsBase inaccessibleOrArgMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
static MemoryEffectsBase none()
bool onlyAccessesInaccessibleOrArgMem() const
Whether this function only (at most) accesses argument and inaccessible memory.
iterator_range< const_block_iterator > blocks() const
void allocHungoffUses(unsigned N)
const_block_iterator block_begin() const
LLVM_ABI void removeIncomingValueIf(function_ref< bool(unsigned)> Predicate, bool DeletePHIIfEmpty=true)
Remove all incoming values for which the predicate returns true.
Definition Instructions.cpp:162
BasicBlock ** block_iterator
LLVM_ABI Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
Definition Instructions.cpp:138
LLVM_ABI bool hasConstantOrUndefValue() const
Whether the specified PHI node always merges together the same value, assuming undefs are equal to a ...
Definition Instructions.cpp:230
void copyIncomingBlocks(iterator_range< const_block_iterator > BBRange, uint32_t ToIdx=0)
Copies the basic blocks from BBRange to the incoming basic block list of this PHINode,...
const_block_iterator block_end() const
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
LLVM_ABI Value * hasConstantValue() const
If the specified PHI node always merges together the same value, return the value,...
Definition Instructions.cpp:210
LLVM_ABI PHINode * cloneImpl() const
Definition Instructions.cpp:4496
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a cast from a pointer to an address (non-capturing ptrtoint).
PtrToAddrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3480
PtrToAddrInst * cloneImpl() const
Clone an identical PtrToAddrInst.
Definition Instructions.cpp:4449
This class represents a cast from a pointer to an integer.
LLVM_ABI PtrToIntInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3474
LLVM_ABI PtrToIntInst * cloneImpl() const
Clone an identical PtrToIntInst.
Definition Instructions.cpp:4445
Resume the propagation of an exception.
LLVM_ABI ResumeInst * cloneImpl() const
Definition Instructions.cpp:4540
Return a value (possibly void), from a function.
LLVM_ABI ReturnInst * cloneImpl() const
Definition Instructions.cpp:4502
This class represents a sign extension of integer types.
LLVM_ABI SExtInst * cloneImpl() const
Clone an identical SExtInst.
Definition Instructions.cpp:4417
LLVM_ABI SExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3432
This class represents a cast from signed integer to floating point.
LLVM_ABI SIToFPInst * cloneImpl() const
Clone an identical SIToFPInst.
Definition Instructions.cpp:4433
LLVM_ABI SIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3456
Class to represent scalable SIMD vectors.
LLVM_ABI SelectInst * cloneImpl() const
Definition Instructions.cpp:4476
static LLVM_ABI const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
Definition Instructions.cpp:99
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
static LLVM_ABI bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
Definition Instructions.cpp:1981
ArrayRef< int > getShuffleMask() const
static LLVM_ABI bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
Definition Instructions.cpp:2046
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
LLVM_ABI ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition Instructions.cpp:1731
static LLVM_ABI bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
Definition Instructions.cpp:1813
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
Definition Instructions.cpp:1995
static LLVM_ABI bool isBitRotateMask(ArrayRef< int > Mask, unsigned EltSizeInBits, unsigned MinSubElts, unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt)
Checks if the shuffle is a bit rotation of the first operand across multiple subelements,...
Definition Instructions.cpp:2496
VectorType * getType() const
Overload to return most specific vector type.
LLVM_ABI bool isIdentityWithExtract() const
Return true if this shuffle extracts the first N elements of exactly one source vector.
Definition Instructions.cpp:2206
static LLVM_ABI bool isOneUseSingleSourceMask(ArrayRef< int > Mask, int VF)
Return true if this shuffle mask represents "clustered" mask of size VF, i.e.
Definition Instructions.cpp:2323
LLVM_ABI bool isIdentityWithPadding() const
Return true if this shuffle lengthens exactly one source vector with undefs in the high elements.
Definition Instructions.cpp:2182
static LLVM_ABI bool isSingleSourceMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector.
Definition Instructions.cpp:1935
LLVM_ABI bool isConcat() const
Return true if this shuffle concatenates its 2 source vectors.
Definition Instructions.cpp:2220
static LLVM_ABI bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index,...
Definition Instructions.cpp:2449
LLVM_ABI ShuffleVectorInst * cloneImpl() const
Definition Instructions.cpp:4492
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
Definition Instructions.cpp:1953
static LLVM_ABI bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
Definition Instructions.cpp:2080
LLVM_ABI void setShuffleMask(ArrayRef< int > Mask)
Definition Instructions.cpp:1892
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI bool isInterleave(unsigned Factor)
Return if this shuffle interleaves its two input vectors together.
Definition Instructions.cpp:2354
static LLVM_ABI bool isReverseMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask swaps the order of elements from exactly one source vector.
Definition Instructions.cpp:1961
static LLVM_ABI bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
Definition Instructions.cpp:2010
LLVM_ABI void commute()
Swap the operands and adjust the mask to preserve the semantics of the instruction.
Definition Instructions.cpp:1775
static LLVM_ABI bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
Definition Instructions.cpp:2109
static LLVM_ABI Constant * convertShuffleMaskForBitcode(ArrayRef< int > Mask, Type *ResultTy)
Definition Instructions.cpp:1897
static LLVM_ABI bool isReplicationMask(ArrayRef< int > Mask, int &ReplicationFactor, int &VF)
Return true if this shuffle mask replicates each of the VF elements in a vector ReplicationFactor tim...
Definition Instructions.cpp:2262
static LLVM_ABI bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
Definition Instructions.cpp:2365
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
Implements a dense probed hash-table based set with some number of buckets stored inline.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this store instruction.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI StoreInst * cloneImpl() const
Definition Instructions.cpp:4383
LLVM_ABI StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore)
Definition Instructions.cpp:1368
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
bool isVolatile() const
Return true if this is a store to a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Class to represent struct types.
LLVM_ABI void init()
Definition Instructions.cpp:4148
LLVM_ABI void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
Definition Instructions.cpp:4223
LLVM_ABI Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
Definition Instructions.cpp:4208
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
Definition Instructions.cpp:4189
LLVM_ABI CaseWeightOpt getSuccessorWeight(unsigned idx)
Definition Instructions.cpp:4217
LLVM_ABI void replaceDefaultDest(SwitchInst::CaseIt I)
Replace the default destination by given case.
Definition Instructions.cpp:4179
std::optional< uint32_t > CaseWeightOpt
LLVM_ABI SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
Definition Instructions.cpp:4165
void setValue(ConstantInt *V) const
Sets the new value for current case.
void setSuccessor(BasicBlock *S) const
Sets the new successor for current case.
void allocHungoffUses(unsigned N)
LLVM_ABI SwitchInst * cloneImpl() const
Definition Instructions.cpp:4512
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest)
Add an entry to the switch instruction.
Definition Instructions.cpp:4099
CaseIteratorImpl< CaseHandle > CaseIt
ConstantInt *const * case_values() const
unsigned getNumCases() const
Return the number of 'cases' in this switch instruction, excluding the default case.
LLVM_ABI CaseIt removeCase(CaseIt I)
This method removes the specified case and its successor from the switch instruction.
Definition Instructions.cpp:4114
This class represents a truncation of integer types.
LLVM_ABI TruncInst * cloneImpl() const
Clone an identical TruncInst.
Definition Instructions.cpp:4409
LLVM_ABI TruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3420
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize get(ScalarTy Quantity, bool Scalable)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isAggregateType() const
Return true if the type is an aggregate type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
This class represents a cast unsigned integer to floating point.
LLVM_ABI UIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3450
LLVM_ABI UIToFPInst * cloneImpl() const
Clone an identical UIToFPInst.
Definition Instructions.cpp:4429
UnaryInstruction(Type *Ty, unsigned iType, Value *V, InsertPosition InsertBefore=nullptr)
static LLVM_ABI UnaryOperator * Create(UnaryOps Op, Value *S, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a unary instruction, given the opcode and an operand.
Definition Instructions.cpp:2606
LLVM_ABI UnaryOperator(UnaryOps iType, Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
Definition Instructions.cpp:2598
LLVM_ABI UnaryOperator * cloneImpl() const
Definition Instructions.cpp:4346
UnaryOps getOpcode() const
LLVM_ABI UnreachableInst(LLVMContext &C, InsertPosition InsertBefore=nullptr)
Definition Instructions.cpp:1188
LLVM_ABI bool shouldLowerToTrap(bool TrapUnreachable, bool NoTrapAfterNoreturn) const
Definition Instructions.cpp:4567
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI UnreachableInst * cloneImpl() const
Definition Instructions.cpp:4562
A Use represents the edge between a Value definition and its users.
LLVM_ABI void set(Value *Val)
const Use * getOperandList() const
LLVM_ABI void allocHungoffUses(unsigned N, bool WithExtraValues=false)
Allocate the array of Uses, followed by a pointer (with bottom bit set) to the User.
void setNumHungOffUseOperands(unsigned NumOps)
Subclasses with hung off uses need to manage the operand count themselves.
LLVM_ABI void growHungoffUses(unsigned N, bool WithExtraValues=false)
Grow the number of hung off uses.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
VAArgInst(Value *List, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI VAArgInst * cloneImpl() const
Definition Instructions.cpp:4480
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI Value(Type *Ty, unsigned scid)
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
LLVM_ABI ZExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Definition Instructions.cpp:3426
LLVM_ABI ZExtInst * cloneImpl() const
Clone an identical ZExtInst.
Definition Instructions.cpp:4413
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getFixedValue() const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ilist_detail::compute_node_options< Instruction, Options... >::type::parent_ty * getParent() const
Instruction * getPrevNode()
typename base_list_type::iterator iterator
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_non_zero_not_denormal_fp > m_NonZeroNotDenormalFP()
Match a floating-point non-zero that is not a denormal.
initializer< Ty > init(const Ty &Val)
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< UseNode * > Use
Context & getContext() const
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
auto seq_inclusive(T Begin, T End)
Iterate over an integral type from Begin to End inclusive.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI MDNode * getBranchWeightMDNode(const Instruction &I)
Get the branch weights metadata node.
MemoryEffectsBase< IRMemLocation > MemoryEffects
Summary of how a function affects memory in the program.
std::enable_if_t< std::is_unsigned_v< T >, std::optional< T > > checkedMulUnsigned(T LHS, T RHS)
Multiply two unsigned integers LHS and RHS.
auto dyn_cast_or_null(const Y &Val)
auto reverse(ContainerTy &&C)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isPointerTy(const Type *T)
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
LLVM_ABI unsigned getNumBranchWeights(const MDNode &ProfileData)
AtomicOrdering
Atomic ordering for LLVM's memory model.
auto remove_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::remove_if which take ranges instead of having to pass begin/end explicitly.
OperandBundleDefT< Value * > OperandBundleDef
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool capturesAnything(CaptureComponents CC)
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI void scaleProfData(Instruction &I, uint64_t S, uint64_t T)
Scaling the profile data attached to 'I' using the ratio of S/T.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Summary of memprof metadata on allocations.
Used to keep track of an operand bundle.
uint32_t End
The index in the Use& vector where operands for this operand bundle ends.
uint32_t Begin
The index in the Use& vector where operands for this operand bundle starts.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
A MapVector that performs no allocations if smaller than a certain size.
Indicates this User has operands co-allocated.
Indicates this User has operands and a descriptor co-allocated .