LLVM: lib/CodeGen/TargetLoweringBase.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
58#include
59#include
60#include
61#include
62#include
63#include
64#include
65
66using namespace llvm;
67
69 "jump-is-expensive", cl::init(false),
70 cl::desc("Do not create extra branches to split comparison logic."),
72
75 cl::desc("Set minimum number of entries to use a jump table."));
76
79 cl::desc("Set maximum size of jump tables."));
80
81
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
86
87
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
92
95 cl::desc("Set minimum of largest number of comparisons "
96 "to use bit test for switch."));
97
98
99
100
101
103 cl::desc("Don't mutate strict-float node to a legalize node"),
105
107 if (VT == MVT::i16)
108 return RTLIB::SHL_I16;
109 if (VT == MVT::i32)
110 return RTLIB::SHL_I32;
111 if (VT == MVT::i64)
112 return RTLIB::SHL_I64;
113 if (VT == MVT::i128)
114 return RTLIB::SHL_I128;
115
116 return RTLIB::UNKNOWN_LIBCALL;
117}
118
120 if (VT == MVT::i16)
121 return RTLIB::SRL_I16;
122 if (VT == MVT::i32)
123 return RTLIB::SRL_I32;
124 if (VT == MVT::i64)
125 return RTLIB::SRL_I64;
126 if (VT == MVT::i128)
127 return RTLIB::SRL_I128;
128
129 return RTLIB::UNKNOWN_LIBCALL;
130}
131
133 if (VT == MVT::i16)
134 return RTLIB::SRA_I16;
135 if (VT == MVT::i32)
136 return RTLIB::SRA_I32;
137 if (VT == MVT::i64)
138 return RTLIB::SRA_I64;
139 if (VT == MVT::i128)
140 return RTLIB::SRA_I128;
141
142 return RTLIB::UNKNOWN_LIBCALL;
143}
144
146 if (VT == MVT::i16)
147 return RTLIB::MUL_I16;
148 if (VT == MVT::i32)
149 return RTLIB::MUL_I32;
150 if (VT == MVT::i64)
151 return RTLIB::MUL_I64;
152 if (VT == MVT::i128)
153 return RTLIB::MUL_I128;
154 return RTLIB::UNKNOWN_LIBCALL;
155}
156
158 if (VT == MVT::i32)
159 return RTLIB::MULO_I32;
160 if (VT == MVT::i64)
161 return RTLIB::MULO_I64;
162 if (VT == MVT::i128)
163 return RTLIB::MULO_I128;
164 return RTLIB::UNKNOWN_LIBCALL;
165}
166
168 if (VT == MVT::i16)
169 return RTLIB::SDIV_I16;
170 if (VT == MVT::i32)
171 return RTLIB::SDIV_I32;
172 if (VT == MVT::i64)
173 return RTLIB::SDIV_I64;
174 if (VT == MVT::i128)
175 return RTLIB::SDIV_I128;
176 return RTLIB::UNKNOWN_LIBCALL;
177}
178
180 if (VT == MVT::i16)
181 return RTLIB::UDIV_I16;
182 if (VT == MVT::i32)
183 return RTLIB::UDIV_I32;
184 if (VT == MVT::i64)
185 return RTLIB::UDIV_I64;
186 if (VT == MVT::i128)
187 return RTLIB::UDIV_I128;
188 return RTLIB::UNKNOWN_LIBCALL;
189}
190
192 if (VT == MVT::i16)
193 return RTLIB::SREM_I16;
194 if (VT == MVT::i32)
195 return RTLIB::SREM_I32;
196 if (VT == MVT::i64)
197 return RTLIB::SREM_I64;
198 if (VT == MVT::i128)
199 return RTLIB::SREM_I128;
200 return RTLIB::UNKNOWN_LIBCALL;
201}
202
204 if (VT == MVT::i16)
205 return RTLIB::UREM_I16;
206 if (VT == MVT::i32)
207 return RTLIB::UREM_I32;
208 if (VT == MVT::i64)
209 return RTLIB::UREM_I64;
210 if (VT == MVT::i128)
211 return RTLIB::UREM_I128;
212 return RTLIB::UNKNOWN_LIBCALL;
213}
214
216 if (VT == MVT::i32)
217 return RTLIB::CTPOP_I32;
218 if (VT == MVT::i64)
219 return RTLIB::CTPOP_I64;
220 if (VT == MVT::i128)
221 return RTLIB::CTPOP_I128;
222 return RTLIB::UNKNOWN_LIBCALL;
223}
224
225
226
228 RTLIB::Libcall Call_F32,
229 RTLIB::Libcall Call_F64,
230 RTLIB::Libcall Call_F80,
231 RTLIB::Libcall Call_F128,
232 RTLIB::Libcall Call_PPCF128) {
233 return
234 VT == MVT::f32 ? Call_F32 :
235 VT == MVT::f64 ? Call_F64 :
236 VT == MVT::f80 ? Call_F80 :
237 VT == MVT::f128 ? Call_F128 :
238 VT == MVT::ppcf128 ? Call_PPCF128 :
239 RTLIB::UNKNOWN_LIBCALL;
240}
241
242
243
245 if (OpVT == MVT::f16) {
246 if (RetVT == MVT::f32)
247 return FPEXT_F16_F32;
248 if (RetVT == MVT::f64)
249 return FPEXT_F16_F64;
250 if (RetVT == MVT::f80)
251 return FPEXT_F16_F80;
252 if (RetVT == MVT::f128)
253 return FPEXT_F16_F128;
254 } else if (OpVT == MVT::f32) {
255 if (RetVT == MVT::f64)
256 return FPEXT_F32_F64;
257 if (RetVT == MVT::f128)
258 return FPEXT_F32_F128;
259 if (RetVT == MVT::ppcf128)
260 return FPEXT_F32_PPCF128;
261 } else if (OpVT == MVT::f64) {
262 if (RetVT == MVT::f128)
263 return FPEXT_F64_F128;
264 else if (RetVT == MVT::ppcf128)
265 return FPEXT_F64_PPCF128;
266 } else if (OpVT == MVT::f80) {
267 if (RetVT == MVT::f128)
268 return FPEXT_F80_F128;
269 } else if (OpVT == MVT::bf16) {
270 if (RetVT == MVT::f32)
271 return FPEXT_BF16_F32;
272 }
273
274 return UNKNOWN_LIBCALL;
275}
276
277
278
280 if (RetVT == MVT::f16) {
281 if (OpVT == MVT::f32)
282 return FPROUND_F32_F16;
283 if (OpVT == MVT::f64)
284 return FPROUND_F64_F16;
285 if (OpVT == MVT::f80)
286 return FPROUND_F80_F16;
287 if (OpVT == MVT::f128)
288 return FPROUND_F128_F16;
289 if (OpVT == MVT::ppcf128)
290 return FPROUND_PPCF128_F16;
291 } else if (RetVT == MVT::bf16) {
292 if (OpVT == MVT::f32)
293 return FPROUND_F32_BF16;
294 if (OpVT == MVT::f64)
295 return FPROUND_F64_BF16;
296 if (OpVT == MVT::f80)
297 return FPROUND_F80_BF16;
298 if (OpVT == MVT::f128)
299 return FPROUND_F128_BF16;
300 } else if (RetVT == MVT::f32) {
301 if (OpVT == MVT::f64)
302 return FPROUND_F64_F32;
303 if (OpVT == MVT::f80)
304 return FPROUND_F80_F32;
305 if (OpVT == MVT::f128)
306 return FPROUND_F128_F32;
307 if (OpVT == MVT::ppcf128)
308 return FPROUND_PPCF128_F32;
309 } else if (RetVT == MVT::f64) {
310 if (OpVT == MVT::f80)
311 return FPROUND_F80_F64;
312 if (OpVT == MVT::f128)
313 return FPROUND_F128_F64;
314 if (OpVT == MVT::ppcf128)
315 return FPROUND_PPCF128_F64;
316 } else if (RetVT == MVT::f80) {
317 if (OpVT == MVT::f128)
318 return FPROUND_F128_F80;
319 }
320
321 return UNKNOWN_LIBCALL;
322}
323
324
325
327 if (OpVT == MVT::f16) {
328 if (RetVT == MVT::i32)
329 return FPTOSINT_F16_I32;
330 if (RetVT == MVT::i64)
331 return FPTOSINT_F16_I64;
332 if (RetVT == MVT::i128)
333 return FPTOSINT_F16_I128;
334 } else if (OpVT == MVT::f32) {
335 if (RetVT == MVT::i32)
336 return FPTOSINT_F32_I32;
337 if (RetVT == MVT::i64)
338 return FPTOSINT_F32_I64;
339 if (RetVT == MVT::i128)
340 return FPTOSINT_F32_I128;
341 } else if (OpVT == MVT::f64) {
342 if (RetVT == MVT::i32)
343 return FPTOSINT_F64_I32;
344 if (RetVT == MVT::i64)
345 return FPTOSINT_F64_I64;
346 if (RetVT == MVT::i128)
347 return FPTOSINT_F64_I128;
348 } else if (OpVT == MVT::f80) {
349 if (RetVT == MVT::i32)
350 return FPTOSINT_F80_I32;
351 if (RetVT == MVT::i64)
352 return FPTOSINT_F80_I64;
353 if (RetVT == MVT::i128)
354 return FPTOSINT_F80_I128;
355 } else if (OpVT == MVT::f128) {
356 if (RetVT == MVT::i32)
357 return FPTOSINT_F128_I32;
358 if (RetVT == MVT::i64)
359 return FPTOSINT_F128_I64;
360 if (RetVT == MVT::i128)
361 return FPTOSINT_F128_I128;
362 } else if (OpVT == MVT::ppcf128) {
363 if (RetVT == MVT::i32)
364 return FPTOSINT_PPCF128_I32;
365 if (RetVT == MVT::i64)
366 return FPTOSINT_PPCF128_I64;
367 if (RetVT == MVT::i128)
368 return FPTOSINT_PPCF128_I128;
369 }
370 return UNKNOWN_LIBCALL;
371}
372
373
374
376 if (OpVT == MVT::f16) {
377 if (RetVT == MVT::i32)
378 return FPTOUINT_F16_I32;
379 if (RetVT == MVT::i64)
380 return FPTOUINT_F16_I64;
381 if (RetVT == MVT::i128)
382 return FPTOUINT_F16_I128;
383 } else if (OpVT == MVT::f32) {
384 if (RetVT == MVT::i32)
385 return FPTOUINT_F32_I32;
386 if (RetVT == MVT::i64)
387 return FPTOUINT_F32_I64;
388 if (RetVT == MVT::i128)
389 return FPTOUINT_F32_I128;
390 } else if (OpVT == MVT::f64) {
391 if (RetVT == MVT::i32)
392 return FPTOUINT_F64_I32;
393 if (RetVT == MVT::i64)
394 return FPTOUINT_F64_I64;
395 if (RetVT == MVT::i128)
396 return FPTOUINT_F64_I128;
397 } else if (OpVT == MVT::f80) {
398 if (RetVT == MVT::i32)
399 return FPTOUINT_F80_I32;
400 if (RetVT == MVT::i64)
401 return FPTOUINT_F80_I64;
402 if (RetVT == MVT::i128)
403 return FPTOUINT_F80_I128;
404 } else if (OpVT == MVT::f128) {
405 if (RetVT == MVT::i32)
406 return FPTOUINT_F128_I32;
407 if (RetVT == MVT::i64)
408 return FPTOUINT_F128_I64;
409 if (RetVT == MVT::i128)
410 return FPTOUINT_F128_I128;
411 } else if (OpVT == MVT::ppcf128) {
412 if (RetVT == MVT::i32)
413 return FPTOUINT_PPCF128_I32;
414 if (RetVT == MVT::i64)
415 return FPTOUINT_PPCF128_I64;
416 if (RetVT == MVT::i128)
417 return FPTOUINT_PPCF128_I128;
418 }
419 return UNKNOWN_LIBCALL;
420}
421
422
423
425 if (OpVT == MVT::i32) {
426 if (RetVT == MVT::f16)
427 return SINTTOFP_I32_F16;
428 if (RetVT == MVT::f32)
429 return SINTTOFP_I32_F32;
430 if (RetVT == MVT::f64)
431 return SINTTOFP_I32_F64;
432 if (RetVT == MVT::f80)
433 return SINTTOFP_I32_F80;
434 if (RetVT == MVT::f128)
435 return SINTTOFP_I32_F128;
436 if (RetVT == MVT::ppcf128)
437 return SINTTOFP_I32_PPCF128;
438 } else if (OpVT == MVT::i64) {
439 if (RetVT == MVT::bf16)
440 return SINTTOFP_I64_BF16;
441 if (RetVT == MVT::f16)
442 return SINTTOFP_I64_F16;
443 if (RetVT == MVT::f32)
444 return SINTTOFP_I64_F32;
445 if (RetVT == MVT::f64)
446 return SINTTOFP_I64_F64;
447 if (RetVT == MVT::f80)
448 return SINTTOFP_I64_F80;
449 if (RetVT == MVT::f128)
450 return SINTTOFP_I64_F128;
451 if (RetVT == MVT::ppcf128)
452 return SINTTOFP_I64_PPCF128;
453 } else if (OpVT == MVT::i128) {
454 if (RetVT == MVT::f16)
455 return SINTTOFP_I128_F16;
456 if (RetVT == MVT::f32)
457 return SINTTOFP_I128_F32;
458 if (RetVT == MVT::f64)
459 return SINTTOFP_I128_F64;
460 if (RetVT == MVT::f80)
461 return SINTTOFP_I128_F80;
462 if (RetVT == MVT::f128)
463 return SINTTOFP_I128_F128;
464 if (RetVT == MVT::ppcf128)
465 return SINTTOFP_I128_PPCF128;
466 }
467 return UNKNOWN_LIBCALL;
468}
469
470
471
473 if (OpVT == MVT::i32) {
474 if (RetVT == MVT::f16)
475 return UINTTOFP_I32_F16;
476 if (RetVT == MVT::f32)
477 return UINTTOFP_I32_F32;
478 if (RetVT == MVT::f64)
479 return UINTTOFP_I32_F64;
480 if (RetVT == MVT::f80)
481 return UINTTOFP_I32_F80;
482 if (RetVT == MVT::f128)
483 return UINTTOFP_I32_F128;
484 if (RetVT == MVT::ppcf128)
485 return UINTTOFP_I32_PPCF128;
486 } else if (OpVT == MVT::i64) {
487 if (RetVT == MVT::bf16)
488 return UINTTOFP_I64_BF16;
489 if (RetVT == MVT::f16)
490 return UINTTOFP_I64_F16;
491 if (RetVT == MVT::f32)
492 return UINTTOFP_I64_F32;
493 if (RetVT == MVT::f64)
494 return UINTTOFP_I64_F64;
495 if (RetVT == MVT::f80)
496 return UINTTOFP_I64_F80;
497 if (RetVT == MVT::f128)
498 return UINTTOFP_I64_F128;
499 if (RetVT == MVT::ppcf128)
500 return UINTTOFP_I64_PPCF128;
501 } else if (OpVT == MVT::i128) {
502 if (RetVT == MVT::f16)
503 return UINTTOFP_I128_F16;
504 if (RetVT == MVT::f32)
505 return UINTTOFP_I128_F32;
506 if (RetVT == MVT::f64)
507 return UINTTOFP_I128_F64;
508 if (RetVT == MVT::f80)
509 return UINTTOFP_I128_F80;
510 if (RetVT == MVT::f128)
511 return UINTTOFP_I128_F128;
512 if (RetVT == MVT::ppcf128)
513 return UINTTOFP_I128_PPCF128;
514 }
515 return UNKNOWN_LIBCALL;
516}
517
519 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
520 POWI_PPCF128);
521}
522
524 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
525}
526
528 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
529 LDEXP_PPCF128);
530}
531
533 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
534 FREXP_PPCF128);
535}
536
538 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
539}
540
542 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
543}
544
546
549 return RTLIB::UNKNOWN_LIBCALL;
551 case MVT::v4f32:
552 return RTLIB::SINCOS_V4F32;
553 case MVT::v2f64:
554 return RTLIB::SINCOS_V2F64;
555 case MVT::nxv4f32:
556 return RTLIB::SINCOS_NXV4F32;
557 case MVT::nxv2f64:
558 return RTLIB::SINCOS_NXV2F64;
559 default:
560 return RTLIB::UNKNOWN_LIBCALL;
561 }
562 }
563
564 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
565 SINCOS_PPCF128);
566}
567
569
572 return RTLIB::UNKNOWN_LIBCALL;
574 case MVT::v4f32:
575 return RTLIB::SINCOSPI_V4F32;
576 case MVT::v2f64:
577 return RTLIB::SINCOSPI_V2F64;
578 case MVT::nxv4f32:
579 return RTLIB::SINCOSPI_NXV4F32;
580 case MVT::nxv2f64:
581 return RTLIB::SINCOSPI_NXV2F64;
582 default:
583 return RTLIB::UNKNOWN_LIBCALL;
584 }
585 }
586
587 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
588 SINCOSPI_F128, SINCOSPI_PPCF128);
589}
590
592 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
593 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
594}
595
597
600 return RTLIB::UNKNOWN_LIBCALL;
602 case MVT::v4f32:
603 return RTLIB::REM_V4F32;
604 case MVT::v2f64:
605 return RTLIB::REM_V2F64;
606 case MVT::nxv4f32:
607 return RTLIB::REM_NXV4F32;
608 case MVT::nxv2f64:
609 return RTLIB::REM_NXV2F64;
610 default:
611 return RTLIB::UNKNOWN_LIBCALL;
612 }
613 }
614
615 return getFPLibCall(VT, REM_F32, REM_F64, REM_F80, REM_F128, REM_PPCF128);
616}
617
619
622 return RTLIB::UNKNOWN_LIBCALL;
624 case MVT::v4f32:
625 return RTLIB::MODF_V4F32;
626 case MVT::v2f64:
627 return RTLIB::MODF_V2F64;
628 case MVT::nxv4f32:
629 return RTLIB::MODF_NXV4F32;
630 case MVT::nxv2f64:
631 return RTLIB::MODF_NXV2F64;
632 default:
633 return RTLIB::UNKNOWN_LIBCALL;
634 }
635 }
636
637 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
638 MODF_PPCF128);
639}
640
642 if (VT == MVT::f32)
643 return RTLIB::LROUND_F32;
644 if (VT == MVT::f64)
645 return RTLIB::LROUND_F64;
646 if (VT == MVT::f80)
647 return RTLIB::LROUND_F80;
648 if (VT == MVT::f128)
649 return RTLIB::LROUND_F128;
650 if (VT == MVT::ppcf128)
651 return RTLIB::LROUND_PPCF128;
652
653 return RTLIB::UNKNOWN_LIBCALL;
654}
655
657 if (VT == MVT::f32)
658 return RTLIB::LLROUND_F32;
659 if (VT == MVT::f64)
660 return RTLIB::LLROUND_F64;
661 if (VT == MVT::f80)
662 return RTLIB::LLROUND_F80;
663 if (VT == MVT::f128)
664 return RTLIB::LLROUND_F128;
665 if (VT == MVT::ppcf128)
666 return RTLIB::LLROUND_PPCF128;
667
668 return RTLIB::UNKNOWN_LIBCALL;
669}
670
672 if (VT == MVT::f32)
673 return RTLIB::LRINT_F32;
674 if (VT == MVT::f64)
675 return RTLIB::LRINT_F64;
676 if (VT == MVT::f80)
677 return RTLIB::LRINT_F80;
678 if (VT == MVT::f128)
679 return RTLIB::LRINT_F128;
680 if (VT == MVT::ppcf128)
681 return RTLIB::LRINT_PPCF128;
682 return RTLIB::UNKNOWN_LIBCALL;
683}
684
686 if (VT == MVT::f32)
687 return RTLIB::LLRINT_F32;
688 if (VT == MVT::f64)
689 return RTLIB::LLRINT_F64;
690 if (VT == MVT::f80)
691 return RTLIB::LLRINT_F80;
692 if (VT == MVT::f128)
693 return RTLIB::LLRINT_F128;
694 if (VT == MVT::ppcf128)
695 return RTLIB::LLRINT_PPCF128;
696 return RTLIB::UNKNOWN_LIBCALL;
697}
698
702 unsigned ModeN, ModelN;
703 switch (MemSize) {
704 case 1:
705 ModeN = 0;
706 break;
707 case 2:
708 ModeN = 1;
709 break;
710 case 4:
711 ModeN = 2;
712 break;
713 case 8:
714 ModeN = 3;
715 break;
716 case 16:
717 ModeN = 4;
718 break;
719 default:
720 return RTLIB::UNKNOWN_LIBCALL;
721 }
722
723 switch (Order) {
725 ModelN = 0;
726 break;
728 ModelN = 1;
729 break;
731 ModelN = 2;
732 break;
735 ModelN = 3;
736 break;
737 default:
738 return UNKNOWN_LIBCALL;
739 }
740
741 return LC[ModeN][ModelN];
742}
743
745 MVT VT) {
747 return UNKNOWN_LIBCALL;
749
750#define LCALLS(A, B) \
751 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
752#define LCALL5(A) \
753 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
754 switch (Opc) {
755 case ISD::ATOMIC_CMP_SWAP: {
756 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
758 }
759 case ISD::ATOMIC_SWAP: {
760 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
762 }
763 case ISD::ATOMIC_LOAD_ADD: {
764 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
766 }
767 case ISD::ATOMIC_LOAD_OR: {
768 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
770 }
771 case ISD::ATOMIC_LOAD_CLR: {
772 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
774 }
775 case ISD::ATOMIC_LOAD_XOR: {
776 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
778 }
779 default:
780 return UNKNOWN_LIBCALL;
781 }
782#undef LCALLS
783#undef LCALL5
784}
785
787#define OP_TO_LIBCALL(Name, Enum) \
788 case Name: \
789 switch (VT.SimpleTy) { \
790 default: \
791 return UNKNOWN_LIBCALL; \
792 case MVT::i8: \
793 return Enum##_1; \
794 case MVT::i16: \
795 return Enum##_2; \
796 case MVT::i32: \
797 return Enum##_4; \
798 case MVT::i64: \
799 return Enum##_8; \
800 case MVT::i128: \
801 return Enum##_16; \
802 }
803
804 switch (Opc) {
805 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
806 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
807 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
808 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
809 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
810 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
811 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
812 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
813 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
814 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
815 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
816 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
817 }
818
819#undef OP_TO_LIBCALL
820
821 return UNKNOWN_LIBCALL;
822}
823
825 switch (ElementSize) {
826 case 1:
827 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
828 case 2:
829 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
830 case 4:
831 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
832 case 8:
833 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
834 case 16:
835 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
836 default:
837 return UNKNOWN_LIBCALL;
838 }
839}
840
842 switch (ElementSize) {
843 case 1:
844 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
845 case 2:
846 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
847 case 4:
848 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
849 case 8:
850 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
851 case 16:
852 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
853 default:
854 return UNKNOWN_LIBCALL;
855 }
856}
857
859 switch (ElementSize) {
860 case 1:
861 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
862 case 2:
863 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
864 case 4:
865 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
866 case 8:
867 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
868 case 16:
869 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
870 default:
871 return UNKNOWN_LIBCALL;
872 }
873}
874
876 RTLIB::LibcallImpl Impl) const {
877 switch (Impl) {
878 case RTLIB::impl___aeabi_dcmpeq__une:
879 case RTLIB::impl___aeabi_fcmpeq__une:
880
882 case RTLIB::impl___aeabi_dcmpeq__oeq:
883 case RTLIB::impl___aeabi_fcmpeq__oeq:
884
886 case RTLIB::impl___aeabi_dcmplt:
887 case RTLIB::impl___aeabi_dcmple:
888 case RTLIB::impl___aeabi_dcmpge:
889 case RTLIB::impl___aeabi_dcmpgt:
890 case RTLIB::impl___aeabi_dcmpun:
891 case RTLIB::impl___aeabi_fcmplt:
892 case RTLIB::impl___aeabi_fcmple:
893 case RTLIB::impl___aeabi_fcmpge:
894 case RTLIB::impl___aeabi_fcmpgt:
895
896
898 default:
899 break;
900 }
901
902
903
904
905
906
907
909 switch (LC) {
910 case RTLIB::OEQ_F32:
911 case RTLIB::OEQ_F64:
912 case RTLIB::OEQ_F128:
913 case RTLIB::OEQ_PPCF128:
915 case RTLIB::UNE_F32:
916 case RTLIB::UNE_F64:
917 case RTLIB::UNE_F128:
918 case RTLIB::UNE_PPCF128:
920 case RTLIB::OGE_F32:
921 case RTLIB::OGE_F64:
922 case RTLIB::OGE_F128:
923 case RTLIB::OGE_PPCF128:
925 case RTLIB::OLT_F32:
926 case RTLIB::OLT_F64:
927 case RTLIB::OLT_F128:
928 case RTLIB::OLT_PPCF128:
930 case RTLIB::OLE_F32:
931 case RTLIB::OLE_F64:
932 case RTLIB::OLE_F128:
933 case RTLIB::OLE_PPCF128:
935 case RTLIB::OGT_F32:
936 case RTLIB::OGT_F64:
937 case RTLIB::OGT_F128:
938 case RTLIB::OGT_PPCF128:
940 case RTLIB::UO_F32:
941 case RTLIB::UO_F64:
942 case RTLIB::UO_F128:
943 case RTLIB::UO_PPCF128:
945 default:
947 }
948}
949
950
953 : TM(tm),
954 RuntimeLibcallInfo(TM.getTargetTriple(), TM.Options.ExceptionModel,
956 TM.Options.MCOptions.getABIName(), TM.Options.VecLib),
957 Libcalls(RuntimeLibcallInfo, STI) {
959
960
966 HasExtractBitsInsn = false;
970 StackPointerRegisterToSaveRestore = 0;
977 MaxBytesForAlignment = 0;
978 MaxAtomicSizeInBitsSupported = 0;
979
980
981
982 MaxDivRemBitWidthSupported = 128;
983
985
986 MinCmpXchgSizeInBits = 0;
987 SupportsUnalignedAtomics = false;
988
990}
991
992
993
995
997
998 memset(OpActions, 0, sizeof(OpActions));
999 memset(LoadExtActions, 0, sizeof(LoadExtActions));
1000 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
1001 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
1002 memset(CondCodeActions, 0, sizeof(CondCodeActions));
1004 llvm::fill(TargetDAGCombineArray, 0);
1005
1006
1011
1012
1013
1016 for (MVT VT : {MVT::i2, MVT::i4})
1017 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
1018 }
1020 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
1024 }
1025 }
1028 for (MVT VT : {MVT::i2, MVT::i4}) {
1033 }
1034 }
1035
1041 }
1042 }
1043
1044
1046
1053 }
1054
1055
1057
1058
1060 ISD::FMINNUM, ISD::FMAXNUM,
1061 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
1062 ISD::FMINIMUM, ISD::FMAXIMUM,
1063 ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM,
1077 ISD::FLOG, ISD::FLOG2,
1078 ISD::FLOG10, ISD::FEXP,
1079 ISD::FEXP2, ISD::FEXP10,
1080 ISD::FFLOOR, ISD::FNEARBYINT,
1081 ISD::FCEIL, ISD::FRINT,
1082 ISD::FTRUNC, ISD::FROUNDEVEN,
1083 ISD::FTAN, ISD::FACOS,
1084 ISD::FASIN, ISD::FATAN,
1085 ISD::FCOSH, ISD::FSINH,
1086 ISD::FTANH, ISD::FATAN2,
1089
1090
1094
1095
1099
1100
1103
1104
1106
1107
1111
1112
1114
1115
1119
1120
1123
1125
1126
1127 setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP,
1128 ISD::FSINCOS, ISD::FSINCOSPI, ISD::FMODF},
1130
1131
1132 if (VT.isVector())
1137 ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
1139
1140
1141#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1142 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
1143#include "llvm/IR/ConstrainedOps.def"
1144
1145
1147
1148
1150 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
1151 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
1152 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
1153 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
1154 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
1155 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
1157
1158
1160
1161
1163
1164
1165#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
1166 setOperationAction(ISD::SDOPC, VT, Expand);
1167#include "llvm/IR/VPIntrinsics.def"
1168
1169
1171
1174
1175
1179
1181 }
1182
1183
1185
1186
1188
1189
1191
1192
1193
1194
1196 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
1198
1199
1201 {MVT::f16, MVT::f32, MVT::f64, MVT::f128}, Expand);
1202
1203
1204 setOperationAction({ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
1205 {MVT::f32, MVT::f64, MVT::f128}, LibCall);
1206
1207 setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH,
1208 ISD::FSINH, ISD::FTANH, ISD::FATAN2},
1210
1212
1213
1214
1216
1218
1221
1222 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1225 }
1227
1228
1229
1231}
1232
1237
1240 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1242 return LHSTy;
1244
1245
1247 ShiftVT = MVT::i32;
1249 "ShiftVT is still too small!");
1250 return ShiftVT;
1251}
1252
1255 switch (Op) {
1256 default:
1257 return false;
1262 return true;
1263 }
1264}
1265
1267 unsigned DestAS) const {
1268 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1269}
1270
1274
1276 if (EC.isScalable())
1277 CR = CR.umul_sat(*VScaleRange);
1278
1279 if (ZeroIsPoison)
1281
1283 EltWidth = std::min(EltWidth, CR.getActiveBits());
1284 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
1285
1286 return EltWidth;
1287}
1288
1290
1292 JumpIsExpensive = isExpensive;
1293}
1294
1297
1300 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1301 MVT NVT = TransformToType[SVT.SimpleTy];
1303
1308 "Promote may not follow Expand or Promote");
1309
1311 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1315 }
1316
1317
1321
1324 assert(NVT != VT && "Unable to round integer VT");
1326
1328 return NextStep;
1329
1331 }
1332
1335 }
1336
1337
1340
1341
1344
1345
1346
1347
1349
1350
1355 }
1356
1357
1359
1360
1361
1367 }
1368
1369
1370
1371
1372
1373 EVT OldEltVT = EltVT;
1374 while (true) {
1375
1376
1379
1380
1381
1382
1383
1385 break;
1386
1387
1389
1390 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1393 }
1394
1395
1396
1397 EltVT = OldEltVT;
1398 }
1399
1400
1401
1402 while (true) {
1403
1405
1406
1407
1408
1410 break;
1412 if (LargerVector == MVT())
1413 break;
1414
1415
1416 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1418 }
1419
1420
1424 }
1425
1428
1429
1433}
1434
1436 unsigned &NumIntermediates,
1437 MVT &RegisterVT,
1439
1442
1443 unsigned NumVectorRegs = 1;
1444
1445
1446
1449 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1450
1451
1452
1454
1455 NumVectorRegs = EC.getKnownMinValue();
1457 }
1458
1459
1460
1461
1462 while (EC.getKnownMinValue() > 1 &&
1464 EC = EC.divideCoefficientBy(2);
1465 NumVectorRegs <<= 1;
1466 }
1467
1468 NumIntermediates = NumVectorRegs;
1469
1472 NewVT = EltTy;
1473 IntermediateVT = NewVT;
1474
1476
1477
1479
1481 RegisterVT = DestVT;
1482 if (EVT(DestVT).bitsLT(NewVT))
1484
1485
1486
1487 return NumVectorRegs;
1488}
1489
1490
1491
1494 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1496 return true;
1497 return false;
1498}
1499
1500
1501
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1522 [](MachineOperand &Operand) { return Operand.isFI(); }))
1523 return MBB;
1524
1526
1527
1529
1530 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1532 if (!MO.isFI()) {
1533
1534
1535
1536
1537 unsigned TiedTo = i;
1539 TiedTo = MI->findTiedOperandIdx(i);
1540 MIB.add(MO);
1541 if (TiedTo < i)
1543 continue;
1544 }
1545
1546
1547
1549
1550
1552
1553
1554
1555
1556 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1557 MIB.addImm(StackMaps::IndirectMemRefOp);
1559 MIB.add(MO);
1561 } else {
1562
1563
1564 MIB.addImm(StackMaps::DirectMemRefOp);
1565 MIB.add(MO);
1567 }
1568
1569 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1570
1571
1573
1574
1575
1576 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1582 }
1583 }
1585 MI->eraseFromParent();
1586 return MBB;
1587}
1588
1589
1590
1591
1592
1593
1594
1595std::pair<const TargetRegisterClass *, uint8_t>
1597 MVT VT) const {
1599 if (!RC)
1600 return std::make_pair(RC, 0);
1601
1602
1603 BitVector SuperRegRC(TRI->getNumRegClasses());
1606
1607
1609 for (unsigned i : SuperRegRC.set_bits()) {
1611
1612 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1613 continue;
1615 continue;
1616 BestRC = SuperRC;
1617 }
1618 return std::make_pair(BestRC, 1);
1619}
1620
1621
1622
1625
1627 NumRegistersForVT[i] = 1;
1629 }
1630
1631 NumRegistersForVT[MVT::isVoid] = 0;
1632
1633
1634 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1635 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1636 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1637
1638
1639
1640 for (unsigned ExpandedReg = LargestIntReg + 1;
1641 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1642 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1647 }
1648
1649
1650
1651 unsigned LegalIntReg = LargestIntReg;
1652 for (unsigned IntReg = LargestIntReg - 1;
1653 IntReg >= (unsigned)MVT::i1; --IntReg) {
1656 LegalIntReg = IntReg;
1657 } else {
1658 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1661 }
1662 }
1663
1664
1667 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1668 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1669 TransformToType[MVT::ppcf128] = MVT::f64;
1670 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1671 } else {
1672 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1673 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1674 TransformToType[MVT::ppcf128] = MVT::i128;
1675 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1676 }
1677 }
1678
1679
1680
1682 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1683 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1684 TransformToType[MVT::f128] = MVT::i128;
1685 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1686 }
1687
1688
1689
1691 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1692 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1693 TransformToType[MVT::f80] = MVT::i32;
1694 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1695 }
1696
1697
1698
1700 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1701 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1702 TransformToType[MVT::f64] = MVT::i64;
1703 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1704 }
1705
1706
1707
1709 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1710 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1711 TransformToType[MVT::f32] = MVT::i32;
1712 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1713 }
1714
1715
1716
1717
1719
1722
1723 if (!UseFPRegsForHalfType) {
1724 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1725 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1726 } else {
1727 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1728 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1729 }
1730 TransformToType[MVT::f16] = MVT::f32;
1731 if (SoftPromoteHalfType) {
1733 } else {
1735 }
1736 }
1737
1738
1739
1740
1742 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1743 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1744 TransformToType[MVT::bf16] = MVT::f32;
1746 }
1747
1748
1749 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1750 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1753 continue;
1754
1757 bool IsLegalWiderType = false;
1760 switch (PreferredAction) {
1763 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1764 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1765
1766
1767 for (unsigned nVT = i + 1;
1770
1771
1774 TransformToType[i] = SVT;
1775 RegisterTypeForVT[i] = SVT;
1776 NumRegistersForVT[i] = 1;
1778 IsLegalWiderType = true;
1779 break;
1780 }
1781 }
1782 if (IsLegalWiderType)
1783 break;
1784 [[fallthrough]];
1785 }
1786
1789
1790 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1795 EC.getKnownMinValue() &&
1797 TransformToType[i] = SVT;
1798 RegisterTypeForVT[i] = SVT;
1799 NumRegistersForVT[i] = 1;
1801 IsLegalWiderType = true;
1802 break;
1803 }
1804 }
1805 if (IsLegalWiderType)
1806 break;
1807 } else {
1808
1811 TransformToType[i] = NVT;
1813 RegisterTypeForVT[i] = NVT;
1814 NumRegistersForVT[i] = 1;
1815 break;
1816 }
1817 }
1818 [[fallthrough]];
1819
1822 MVT IntermediateVT;
1823 MVT RegisterVT;
1824 unsigned NumIntermediates;
1826 NumIntermediates, RegisterVT, this);
1827 NumRegistersForVT[i] = NumRegisters;
1828 assert(NumRegistersForVT[i] == NumRegisters &&
1829 "NumRegistersForVT size cannot represent NumRegisters!");
1830 RegisterTypeForVT[i] = RegisterVT;
1831
1833 if (NVT == VT) {
1834
1835 TransformToType[i] = MVT::Other;
1840 else if (EC.getKnownMinValue() > 1)
1842 else
1843 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1846 } else {
1847 TransformToType[i] = NVT;
1849 }
1850 break;
1851 }
1852 default:
1854 }
1855 }
1856
1857
1858
1859
1860
1861
1866 RepRegClassForVT[i] = RRC;
1867 RepRegClassCostForVT[i] = Cost;
1868 }
1869}
1870
1872 EVT VT) const {
1873 assert(!VT.isVector() && "No default SetCC type for vectors!");
1875}
1876
1878 return MVT::i32;
1879}
1880
1881
1882
1883
1884
1885
1886
1887
1888
1890 EVT VT, EVT &IntermediateVT,
1891 unsigned &NumIntermediates,
1892 MVT &RegisterVT) const {
1894
1895
1896
1897
1898
1899
1905 IntermediateVT = RegisterEVT;
1907 NumIntermediates = 1;
1908 return 1;
1909 }
1910 }
1911
1912
1914
1915 unsigned NumVectorRegs = 1;
1916
1917
1918
1921 EVT PartVT = VT;
1922 do {
1923
1925 PartVT = LK.second;
1926 } while (LK.first != TypeLegal);
1927
1930 "Don't know how to legalize this scalable vector type");
1931 }
1932
1933 NumIntermediates =
1936 IntermediateVT = PartVT;
1938 return NumIntermediates;
1939 }
1940
1941
1942
1946 }
1947
1948
1949
1953 NumVectorRegs <<= 1;
1954 }
1955
1956 NumIntermediates = NumVectorRegs;
1957
1960 NewVT = EltTy;
1961 IntermediateVT = NewVT;
1962
1964 RegisterVT = DestVT;
1965
1966 if (EVT(DestVT).bitsLT(NewVT)) {
1968
1971 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1972 }
1973
1974
1975
1976 return NumVectorRegs;
1977}
1978
1984
1985
1986
1987
1988
1989 const bool OptForSize =
1993
1994
1995
1996 return (OptForSize || Range <= MaxJumpTableSize) &&
1997 (NumCases * 100 >= Range * MinDensity);
1998}
1999
2001 EVT ConditionVT) const {
2003}
2004
2005
2006
2007
2008
2010 AttributeList attr,
2015 unsigned NumValues = Types.size();
2016 if (NumValues == 0) return;
2017
2018 for (Type *Ty : Types) {
2021
2022 if (attr.hasRetAttr(Attribute::SExt))
2024 else if (attr.hasRetAttr(Attribute::ZExt))
2026
2029
2030 unsigned NumParts =
2032 MVT PartVT =
2034
2035
2037 if (attr.hasRetAttr(Attribute::InReg))
2038 Flags.setInReg();
2039
2040
2041 if (attr.hasRetAttr(Attribute::SExt))
2042 Flags.setSExt();
2043 else if (attr.hasRetAttr(Attribute::ZExt))
2044 Flags.setZExt();
2045
2046 for (unsigned i = 0; i < NumParts; ++i)
2048 }
2049}
2050
2053 return DL.getABITypeAlign(Ty);
2054}
2055
2059
2060
2061
2062
2063
2065 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
2066
2067 if (Fast != nullptr)
2069 return true;
2070 }
2071
2072
2074}
2075
2082
2085 unsigned AddrSpace, Align Alignment,
2087 unsigned *Fast) const {
2089 Flags, Fast);
2090}
2091
2095 unsigned *Fast) const {
2098}
2099
2103 unsigned *Fast) const {
2107}
2108
2109
2110
2111
2112
2114 enum InstructionOpcodes {
2115#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
2116#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
2117#include "llvm/IR/Instruction.def"
2118 };
2119 switch (static_cast<InstructionOpcodes>(Opcode)) {
2120 case Ret: return 0;
2121 case Br: return 0;
2122 case Switch: return 0;
2123 case IndirectBr: return 0;
2124 case Invoke: return 0;
2125 case CallBr: return 0;
2126 case Resume: return 0;
2127 case Unreachable: return 0;
2128 case CleanupRet: return 0;
2129 case CatchRet: return 0;
2130 case CatchPad: return 0;
2131 case CatchSwitch: return 0;
2132 case CleanupPad: return 0;
2133 case FNeg: return ISD::FNEG;
2152 case Alloca: return 0;
2153 case Load: return ISD::LOAD;
2154 case Store: return ISD::STORE;
2155 case GetElementPtr: return 0;
2156 case Fence: return 0;
2157 case AtomicCmpXchg: return 0;
2158 case AtomicRMW: return 0;
2167 case FPExt: return ISD::FP_EXTEND;
2168 case PtrToAddr: return ISD::BITCAST;
2169 case PtrToInt: return ISD::BITCAST;
2170 case IntToPtr: return ISD::BITCAST;
2171 case BitCast: return ISD::BITCAST;
2172 case AddrSpaceCast: return ISD::ADDRSPACECAST;
2175 case PHI: return 0;
2176 case Call: return 0;
2178 case UserOp1: return 0;
2179 case UserOp2: return 0;
2180 case VAArg: return 0;
2186 case LandingPad: return 0;
2188 }
2189
2191}
2192
2194 switch (ID) {
2195 case Intrinsic::exp:
2196 return ISD::FEXP;
2197 case Intrinsic::exp2:
2198 return ISD::FEXP2;
2199 case Intrinsic:🪵
2200 return ISD::FLOG;
2201 default:
2203 }
2204}
2205
2208 bool UseTLS) const {
2209
2210
2212 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
2213 auto UnsafeStackPtr =
2215
2217 PointerType *StackPtrTy = DL.getAllocaPtrType(M->getContext());
2218
2219 if (!UnsafeStackPtr) {
2223
2224
2225
2228 UnsafeStackPtrVar, nullptr, TLSModel);
2229 } else {
2230
2231
2232
2233 if (UnsafeStackPtr->getValueType() != StackPtrTy)
2235 if (UseTLS != UnsafeStackPtr->isThreadLocal())
2237 (UseTLS ? "" : "not ") + "be thread-local");
2238 }
2239 return UnsafeStackPtr;
2240}
2241
2244
2245
2246 if (!TM.getTargetTriple().isAndroid())
2248
2251
2252 const char *SafestackPointerAddressName =
2254 if (!SafestackPointerAddressName) {
2255 M->getContext().emitError(
2256 "no libcall available for safestack pointer address");
2258 }
2259
2260
2261
2263 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2265}
2266
2267
2268
2269
2270
2271
2272
2276
2277
2278
2279
2281 return false;
2282
2283
2284 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2285 return false;
2286
2287
2289 return false;
2290
2291
2292 switch (AM.Scale) {
2293 case 0:
2294 break;
2295 case 1:
2297 return false;
2298
2299 break;
2300 case 2:
2302 return false;
2303
2304 break;
2305 default:
2306 return false;
2307 }
2308
2309 return true;
2310}
2311
2312
2313
2314
2315
2316
2317
2319 RTLIB::LibcallImpl GuardLocalImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2320 if (GuardLocalImpl != RTLIB::impl___guard_local)
2321 return nullptr;
2322
2326 PointerType::get(M.getContext(), DL.getDefaultGlobalsAddressSpace());
2330 return G;
2331}
2332
2333
2334
2336 RTLIB::LibcallImpl StackGuardImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2337 if (StackGuardImpl == RTLIB::Unsupported)
2338 return;
2339
2341 M.getOrInsertGlobal(
2343 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2344 false, GlobalVariable::ExternalLinkage,
2345 nullptr, StackGuardVarName);
2346
2347
2348 if (M.getDirectAccessExternalData() &&
2349 !TM.getTargetTriple().isOSCygMing() &&
2350 !(TM.getTargetTriple().isPPC64() &&
2351 TM.getTargetTriple().isOSFreeBSD()) &&
2352 (!TM.getTargetTriple().isOSDarwin() ||
2353 TM.getRelocationModel() == Reloc::Static))
2354 GV->setDSOLocal(true);
2355
2356 return GV;
2357 });
2358}
2359
2360
2361
2363 RTLIB::LibcallImpl GuardVarImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2364 if (GuardVarImpl == RTLIB::Unsupported)
2365 return nullptr;
2367}
2368
2370
2371 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2373 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2374 return M.getFunction(getLibcallImplName(SecurityCheckCookieLibcall));
2375 return nullptr;
2376}
2377
2381
2385
2389
2393
2397
2401
2403 return MinimumBitTestCmps;
2404}
2405
2407 MinimumBitTestCmps = Val;
2408}
2409
2411 if (TM.Options.LoopAlignment)
2412 return Align(TM.Options.LoopAlignment);
2413 return PrefLoopAlignment;
2414}
2415
2418 return MaxBytesForAlignment;
2419}
2420
2421
2422
2423
2424
2425
2426
2429 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2430}
2431
2432
2433
2434
2435
2437 std::string Name = VT.isVector() ? "vec-" : "";
2438
2439 Name += IsSqrt ? "sqrt" : "div";
2440
2441
2443 Name += "d";
2445 Name += "h";
2446 } else {
2448 "Unexpected FP type for reciprocal estimate");
2449 Name += "f";
2450 }
2451
2452 return Name;
2453}
2454
2455
2456
2457
2460 const char RefStepToken = ':';
2461 Position = In.find(RefStepToken);
2463 return false;
2464
2465 StringRef RefStepString = In.substr(Position + 1);
2466
2467
2468 if (RefStepString.size() == 1) {
2469 char RefStepChar = RefStepString[0];
2470 if (isDigit(RefStepChar)) {
2471 Value = RefStepChar - '0';
2472 return true;
2473 }
2474 }
2476}
2477
2478
2479
2480
2482 if (Override.empty())
2484
2486 Override.split(OverrideVector, ',');
2487 unsigned NumArgs = OverrideVector.size();
2488
2489
2490 if (NumArgs == 1) {
2491
2492
2493 size_t RefPos;
2496
2497 Override = Override.substr(0, RefPos);
2498 }
2499
2500
2501 if (Override == "all")
2503
2504
2505 if (Override == "none")
2507
2508
2509 if (Override == "default")
2511 }
2512
2513
2515 std::string VTNameNoSize = VTName;
2516 VTNameNoSize.pop_back();
2517 static const char DisabledPrefix = '!';
2518
2519 for (StringRef RecipType : OverrideVector) {
2520 size_t RefPos;
2523 RecipType = RecipType.substr(0, RefPos);
2524
2525
2526 bool IsDisabled = RecipType[0] == DisabledPrefix;
2527 if (IsDisabled)
2528 RecipType = RecipType.substr(1);
2529
2530 if (RecipType == VTName || RecipType == VTNameNoSize)
2533 }
2534
2536}
2537
2538
2539
2540
2542 if (Override.empty())
2544
2546 Override.split(OverrideVector, ',');
2547 unsigned NumArgs = OverrideVector.size();
2548
2549
2550 if (NumArgs == 1) {
2551
2552
2553 size_t RefPos;
2557
2558
2559 Override = Override.substr(0, RefPos);
2560 assert(Override != "none" &&
2561 "Disabled reciprocals, but specifed refinement steps?");
2562
2563
2564 if (Override == "all" || Override == "default")
2565 return RefSteps;
2566 }
2567
2568
2570 std::string VTNameNoSize = VTName;
2571 VTNameNoSize.pop_back();
2572
2573 for (StringRef RecipType : OverrideVector) {
2574 size_t RefPos;
2577 continue;
2578
2579 RecipType = RecipType.substr(0, RefPos);
2580 if (RecipType == VTName || RecipType == VTNameNoSize)
2581 return RefSteps;
2582 }
2583
2585}
2586
2591
2596
2601
2606
2610
2611
2614 return false;
2615
2616
2617
2619 return true;
2620
2622
2623
2624
2627 return false;
2628
2629 unsigned Fast = 0;
2631 MMO, &Fast) &&
2633}
2634
2638
2645
2646 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2648
2649 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2651
2654 nullptr, LibInfo))
2656
2658 return Flags;
2659}
2660
2665
2666 if (SI.isVolatile())
2668
2669 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2671
2672
2674 return Flags;
2675}
2676
2681
2683 if (RMW->isVolatile())
2686 if (CmpX->isVolatile())
2688 } else
2690
2691
2693 return Flags;
2694}
2695
2700
2701 switch (IntrinID) {
2702 default:
2703 llvm_unreachable("unexpected intrinsic. Existing code may be appropriate "
2704 "for it, but support must be explicitly enabled");
2705 case Intrinsic::vp_load:
2706 case Intrinsic::vp_gather:
2707 case Intrinsic::experimental_vp_strided_load:
2709 break;
2710 case Intrinsic::vp_store:
2711 case Intrinsic::vp_scatter:
2712 case Intrinsic::experimental_vp_strided_store:
2714 break;
2715 }
2716
2717 if (VPIntrin.hasMetadata(LLVMContext::MD_nontemporal))
2719
2721 return Flags;
2722}
2723
2728 return Builder.CreateFence(Ord);
2729 else
2730 return nullptr;
2731}
2732
2737 return Builder.CreateFence(Ord);
2738 else
2739 return nullptr;
2740}
2741
2742
2743
2744
2745
2748 auto &MF = *MI.getMF();
2749 auto &MRI = MF.getRegInfo();
2750
2751
2752
2753
2754
2755
2756 auto maxUses = [](unsigned RematCost) {
2757
2758 if (RematCost == 1)
2759 return std::numeric_limits::max();
2760 if (RematCost == 2)
2761 return 2U;
2762
2763
2764 if (RematCost > 2)
2765 return 1U;
2767 };
2768
2769 switch (MI.getOpcode()) {
2770 default:
2771 return false;
2772
2773
2774 case TargetOpcode::G_CONSTANT:
2775 case TargetOpcode::G_FCONSTANT:
2776 case TargetOpcode::G_FRAME_INDEX:
2777 case TargetOpcode::G_INTTOPTR:
2778 return true;
2779 case TargetOpcode::G_GLOBAL_VALUE: {
2780 unsigned RematCost = TTI->getGISelRematGlobalCost();
2781 Register Reg = MI.getOperand(0).getReg();
2782 unsigned MaxUses = maxUses(RematCost);
2783 if (MaxUses == UINT_MAX)
2784 return true;
2785 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2786 }
2787 }
2788}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
Module.h This file contains the declarations for the Module class.
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file defines the SmallVector class.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
Definition TargetLoweringBase.cpp:2458
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
Definition TargetLoweringBase.cpp:1435
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
Definition TargetLoweringBase.cpp:2436
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
Definition TargetLoweringBase.cpp:2541
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
Definition TargetLoweringBase.cpp:2481
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
Definition TargetLoweringBase.cpp:2427
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
iterator_range< const_set_bits_iterator > set_bits() const
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
@ ExternalLinkage
Externally visible function.
Common base class shared among various IRBuilders.
BasicBlock * GetInsertBlock() const
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
static constexpr size_t npos
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
Definition TargetLoweringBase.cpp:2051
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
Definition TargetLoweringBase.cpp:2113
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
Definition TargetLoweringBase.cpp:2635
void initActions()
Initialize all of the actions to default values.
Definition TargetLoweringBase.cpp:996
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
Definition TargetLoweringBase.cpp:2406
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
Definition TargetLoweringBase.cpp:1503
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
Definition TargetLoweringBase.cpp:2243
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
Definition TargetLoweringBase.cpp:2587
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
Definition TargetLoweringBase.cpp:1253
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
Definition TargetLoweringBase.cpp:2746
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
Definition TargetLoweringBase.cpp:2416
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
Definition TargetLoweringBase.cpp:2394
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
Definition TargetLoweringBase.cpp:2378
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
Definition TargetLoweringBase.cpp:1979
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
Definition TargetLoweringBase.cpp:2362
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
Definition TargetLoweringBase.cpp:2402
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
Definition TargetLoweringBase.cpp:2607
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
Definition TargetLoweringBase.cpp:2390
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
Definition TargetLoweringBase.cpp:1877
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
Definition TargetLoweringBase.cpp:1271
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
Definition TargetLoweringBase.cpp:1492
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Definition TargetLoweringBase.cpp:2207
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Definition TargetLoweringBase.cpp:2369
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
Definition TargetLoweringBase.cpp:2678
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
Definition TargetLoweringBase.cpp:1238
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
Definition TargetLoweringBase.cpp:2410
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
Definition TargetLoweringBase.cpp:1623
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
Definition TargetLoweringBase.cpp:2696
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
Definition TargetLoweringBase.cpp:2602
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
Definition TargetLoweringBase.cpp:1871
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
Definition TargetLoweringBase.cpp:2639
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
Definition TargetLoweringBase.cpp:2318
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
Definition TargetLoweringBase.cpp:2000
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool EnableExtLdPromotion
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
Definition TargetLoweringBase.cpp:2592
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
Definition TargetLoweringBase.cpp:2398
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
Definition TargetLoweringBase.cpp:1233
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
Definition TargetLoweringBase.cpp:1266
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
Definition TargetLoweringBase.cpp:875
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
Definition TargetLoweringBase.cpp:951
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
Definition TargetLoweringBase.cpp:2382
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ UndefinedBooleanContent
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
Definition TargetLoweringBase.cpp:2083
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
Definition TargetLoweringBase.cpp:2662
virtual ~TargetLoweringBase()
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
Definition TargetLoweringBase.cpp:2386
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
Definition TargetLoweringBase.cpp:1596
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
Definition TargetLoweringBase.cpp:1296
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
Definition TargetLoweringBase.cpp:2193
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
Definition TargetLoweringBase.cpp:2597
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
Definition TargetLoweringBase.cpp:2056
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Definition TargetLoweringBase.cpp:2733
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
Definition TargetLoweringBase.cpp:2724
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
Definition TargetLoweringBase.cpp:2335
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
Definition TargetLoweringBase.cpp:1289
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
Definition TargetLoweringBase.cpp:2273
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
Definition TargetLoweringBase.cpp:1889
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
constexpr LeafTy coefficientNextPowerOf2() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ LOOP_DEPENDENCE_RAW_MASK
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:518
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:424
LLVM_ABI Libcall getUREM(EVT VT)
Definition TargetLoweringBase.cpp:203
LLVM_ABI Libcall getSHL(EVT VT)
Definition TargetLoweringBase.cpp:106
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:786
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:527
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:472
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:532
LLVM_ABI Libcall getREM(EVT VT)
Definition TargetLoweringBase.cpp:596
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:568
LLVM_ABI Libcall getSDIV(EVT VT)
Definition TargetLoweringBase.cpp:167
LLVM_ABI Libcall getSRL(EVT VT)
Definition TargetLoweringBase.cpp:119
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
Definition TargetLoweringBase.cpp:824
LLVM_ABI Libcall getSRA(EVT VT)
Definition TargetLoweringBase.cpp:132
LLVM_ABI Libcall getUDIV(EVT VT)
Definition TargetLoweringBase.cpp:179
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:375
LLVM_ABI Libcall getLLROUND(EVT VT)
Definition TargetLoweringBase.cpp:656
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:541
LLVM_ABI Libcall getLROUND(EVT VT)
Definition TargetLoweringBase.cpp:641
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:618
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:326
LLVM_ABI Libcall getLRINT(EVT RetVT)
Definition TargetLoweringBase.cpp:671
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
Definition TargetLoweringBase.cpp:744
LLVM_ABI Libcall getLLRINT(EVT RetVT)
Definition TargetLoweringBase.cpp:685
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:244
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:279
LLVM_ABI Libcall getSREM(EVT VT)
Definition TargetLoweringBase.cpp:191
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:537
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
Definition TargetLoweringBase.cpp:858
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:591
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:523
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
Definition TargetLoweringBase.cpp:699
LLVM_ABI Libcall getMUL(EVT VT)
Definition TargetLoweringBase.cpp:145
LLVM_ABI Libcall getCTPOP(EVT VT)
Definition TargetLoweringBase.cpp:215
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Definition TargetLoweringBase.cpp:545
LLVM_ABI Libcall getMULO(EVT VT)
Definition TargetLoweringBase.cpp:157
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
Definition TargetLoweringBase.cpp:841
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
Definition TargetLoweringBase.cpp:2009
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...