[Numpy-discussion] numpy vs numeric benchmarks (original) (raw)
RayS rays at blue-cove.com
Fri Jun 2 10:27:27 EDT 2006
- Previous message (by thread): [Numpy-discussion] numpy vs numeric benchmarks
- Next message (by thread): [Numpy-discussion] rand argument question
- Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]
favorable numpy creates arrays much faster, fft seems a tad faster a useful metric, I think, for O-scope and ADC apps
I get 0.0039054614015815738 0.0019759541205486885
0.023268623246481726 0.0023570392204637913 from the below on a PIII 600...
from time import * n=4096 r = range(n)
#numpy import numpy arr = numpy.array
array creation
t0 = clock() for i in r: a = arr(r)
(clock()-t0)/float(n) #fft of n fftn = numpy.fft t0 = clock() for i in r: f = fftn(a)
(clock()-t0)/float(n)
#Numeric import Numeric arr = Numeric.array
array creation
t0 = clock() for i in r: a = arr(r)
(clock()-t0)/float(n) #fft of n from FFT import * t0 = clock() for i in r: f = fft(a)
(clock()-t0)/float(n)
- Previous message (by thread): [Numpy-discussion] numpy vs numeric benchmarks
- Next message (by thread): [Numpy-discussion] rand argument question
- Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]