[Python-Dev] Python Benchmarks (original) (raw)

M.-A. Lemburg mal at egenix.com
Thu Jun 8 12:53:24 CEST 2006


Nick Coghlan wrote:

M.-A. Lemburg wrote:

Still, here's the timeit.py measurement of the PythonFunctionCall test (note that I've scaled down the test in terms of number of rounds for timeit.py):

Python 2.5 as of last night:

10 loops, best of 3: 21.9 msec per loop 10 loops, best of 3: 21.8 msec per loop 10 loops, best of 3: 21.8 msec per loop 10 loops, best of 3: 21.9 msec per loop 10 loops, best of 3: 21.9 msec per loop

Python 2.4:

100 loops, best of 3: 18 msec per loop 100 loops, best of 3: 18.4 msec per loop 100 loops, best of 3: 18.4 msec per loop 100 loops, best of 3: 18.2 msec per loop

The pybench 2.0 result: PythonFunctionCalls: 130ms 108ms +21.3% 132ms 109ms +20.9% Looks about right, I'd say. If the pybench result is still 2.5 first, then the two results are contradictory - your timeit results are showing Python 2.5 as being faster (assuming the headings are on the right blocks of tests).

I put the headings for the timeit.py output on the wrong blocks. Thanks for pointing this out.

Anyway, try for yourself. Just add these lines to pybench/Call.py at the end and then run Call.py using Python 2.4 vs. 2.5:

Test to make Fredrik happy...

if name == 'main': import timeit timeit.TestClass = PythonFunctionCalls timeit.main(['-s', 'test = TestClass(); test.rounds = 1000', 'test.test()'])

-- Marc-Andre Lemburg eGenix.com

Professional Python Services directly from the Source (#1, Jun 08 2006)

Python/Zope Consulting and Support ... http://www.egenix.com/ mxODBC.Zope.Database.Adapter ... http://zope.egenix.com/ mxODBC, mxDateTime, mxTextTools ... http://python.egenix.com/


2006-07-03: EuroPython 2006, CERN, Switzerland 24 days left

::: Try mxODBC.Zope.DA for Windows,Linux,Solaris,FreeBSD for free ! ::::



More information about the Python-Dev mailing list