0 and rcParams['path.simplify'] and len(self._vertices) >= 128 and (self._codes is None or np.all(self._codes <= Path.LINETO)) ) @property def vertices(self): """ The list of vertices in the `Path` as an Nx2 numpy array. """ return self._vertices @vertices.setter def vertices(self, vertices): if self._readonly: raise AttributeError("Can't set vertices on a readonly Path") self._vertices = vertices self._update_values() @property def codes(self): """ The list of codes in the `Path` as a 1-D numpy array. Each code is one of `STOP`, `MOVETO`, `LINETO`, `CURVE3`, `CURVE4` or `CLOSEPOLY`. For codes that correspond to more than one vertex (`CURVE3` and `CURVE4`), that code will be repeated so that the length of `self.vertices` and `self.codes` is always the same. """ return self._codes @codes.setter def codes(self, codes): if self._readonly: raise AttributeError("Can't set codes on a readonly Path") self._codes = codes self._update_values() @property def simplify_threshold(self): """ The fraction of a pixel difference below which vertices will be simplified out. """ return self._simplify_threshold @simplify_threshold.setter def simplify_threshold(self, threshold): self._simplify_threshold = threshold @cbook.deprecated( "3.1", alternative="not np.isfinite(self.vertices).all()") @property def has_nonfinite(self): """ `True` if the vertices array has nonfinite values. """ return not np.isfinite(self._vertices).all() @property def should_simplify(self): """ `True` if the vertices array should be simplified. """ return self._should_simplify @should_simplify.setter def should_simplify(self, should_simplify): self._should_simplify = should_simplify @property def readonly(self): """ `True` if the `Path` is read-only. """ return self._readonly def __copy__(self): """ Returns a shallow copy of the `Path`, which will share the vertices and codes with the source `Path`. """ import copy return copy.copy(self) copy = __copy__ def __deepcopy__(self, memo=None): """ Returns a deepcopy of the `Path`. The `Path` will not be readonly, even if the source `Path` is. """ try: codes = self.codes.copy() except AttributeError: codes = None return self.__class__( self.vertices.copy(), codes, _interpolation_steps=self._interpolation_steps) deepcopy = __deepcopy__">

matplotlib.path โ€” Matplotlib 3.1.2 documentation (original) (raw)

r""" A module for dealing with the polylines used throughout Matplotlib.

The primary class for polyline handling in Matplotlib is Path. Almost all vector drawing makes use of Path\s somewhere in the drawing pipeline.

Whilst a Path instance itself cannot be drawn, some .Artist subclasses, such as .PathPatch and .PathCollection, can be used for convenient Path visualisation. """

from functools import lru_cache from weakref import WeakValueDictionary

import numpy as np

from . import _path, cbook, rcParams from .cbook import _to_unmasked_float_array, simple_linear_interpolation

[docs]class Path(object): """ :class:Path represents a series of possibly disconnected, possibly closed, line and curve segments.

The underlying storage is made up of two parallel numpy arrays:
  - *vertices*: an Nx2 float array of vertices
  - *codes*: an N-length uint8 array of vertex types

These two arrays always have the same length in the first
dimension.  For example, to represent a cubic curve, you must
provide three vertices as well as three codes ``CURVE3``.

The code types are:

   - ``STOP``   :  1 vertex (ignored)
       A marker for the end of the entire path (currently not
       required and ignored)

   - ``MOVETO`` :  1 vertex
        Pick up the pen and move to the given vertex.

   - ``LINETO`` :  1 vertex
        Draw a line from the current position to the given vertex.

   - ``CURVE3`` :  1 control point, 1 endpoint
      Draw a quadratic Bezier curve from the current position,
      with the given control point, to the given end point.

   - ``CURVE4`` :  2 control points, 1 endpoint
      Draw a cubic Bezier curve from the current position, with
      the given control points, to the given end point.

   - ``CLOSEPOLY`` : 1 vertex (ignored)
      Draw a line segment to the start point of the current
      polyline.

Users of Path objects should not access the vertices and codes
arrays directly.  Instead, they should use :meth:`iter_segments`
or :meth:`cleaned` to get the vertex/code pairs.  This is important,
since many :class:`Path` objects, as an optimization, do not store a
*codes* at all, but have a default one provided for them by
:meth:`iter_segments`.

Some behavior of Path objects can be controlled by rcParams. See
the rcParams whose keys contain 'path.'.

.. note::

    The vertices and codes arrays should be treated as
    immutable -- there are a number of optimizations and assumptions
    made up front in the constructor that will not change when the
    data changes.

"""

code_type = np.uint8

# Path codes
STOP = code_type(0)         # 1 vertex
MOVETO = code_type(1)       # 1 vertex
LINETO = code_type(2)       # 1 vertex
CURVE3 = code_type(3)       # 2 vertices
CURVE4 = code_type(4)       # 3 vertices
CLOSEPOLY = code_type(79)   # 1 vertex

#: A dictionary mapping Path codes to the number of vertices that the
#: code expects.
NUM_VERTICES_FOR_CODE = {STOP: 1,
                         MOVETO: 1,
                         LINETO: 1,
                         CURVE3: 2,
                         CURVE4: 3,
                         CLOSEPOLY: 1}

def __init__(self, vertices, codes=None, _interpolation_steps=1,
             closed=False, readonly=False):
    """
    Create a new path with the given vertices and codes.

    Parameters
    ----------
    vertices : array_like
        The ``(n, 2)`` float array, masked array or sequence of pairs
        representing the vertices of the path.

        If *vertices* contains masked values, they will be converted
        to NaNs which are then handled correctly by the Agg
        PathIterator and other consumers of path data, such as
        :meth:`iter_segments`.
    codes : {None, array_like}, optional
        n-length array integers representing the codes of the path.
        If not None, codes must be the same length as vertices.
        If None, *vertices* will be treated as a series of line segments.
    _interpolation_steps : int, optional
        Used as a hint to certain projections, such as Polar, that this
        path should be linearly interpolated immediately before drawing.
        This attribute is primarily an implementation detail and is not
        intended for public use.
    closed : bool, optional
        If *codes* is None and closed is True, vertices will be treated as
        line segments of a closed polygon.
    readonly : bool, optional
        Makes the path behave in an immutable way and sets the vertices
        and codes as read-only arrays.
    """
    vertices = _to_unmasked_float_array(vertices)
    if vertices.ndim != 2 or vertices.shape[1] != 2:
        raise ValueError(
            "'vertices' must be a 2D list or array with shape Nx2")

    if codes is not None:
        codes = np.asarray(codes, self.code_type)
        if codes.ndim != 1 or len(codes) != len(vertices):
            raise ValueError("'codes' must be a 1D list or array with the "
                             "same length of 'vertices'")
        if len(codes) and codes[0] != self.MOVETO:
            raise ValueError("The first element of 'code' must be equal "
                             "to 'MOVETO' ({})".format(self.MOVETO))
    elif closed and len(vertices):
        codes = np.empty(len(vertices), dtype=self.code_type)
        codes[0] = self.MOVETO
        codes[1:-1] = self.LINETO
        codes[-1] = self.CLOSEPOLY

    self._vertices = vertices
    self._codes = codes
    self._interpolation_steps = _interpolation_steps
    self._update_values()

    if readonly:
        self._vertices.flags.writeable = False
        if self._codes is not None:
            self._codes.flags.writeable = False
        self._readonly = True
    else:
        self._readonly = False

@classmethod
def _fast_from_codes_and_verts(cls, verts, codes, internals_from=None):
    """
    Creates a Path instance without the expense of calling the constructor.

    Parameters
    ----------
    verts : numpy array
    codes : numpy array
    internals_from : Path or None
        If not None, another `Path` from which the attributes
        ``should_simplify``, ``simplify_threshold``, and
        ``interpolation_steps`` will be copied.  Note that ``readonly`` is
        never copied, and always set to ``False`` by this constructor.
    """
    pth = cls.__new__(cls)
    pth._vertices = _to_unmasked_float_array(verts)
    pth._codes = codes
    pth._readonly = False
    if internals_from is not None:
        pth._should_simplify = internals_from._should_simplify
        pth._simplify_threshold = internals_from._simplify_threshold
        pth._interpolation_steps = internals_from._interpolation_steps
    else:
        pth._should_simplify = True
        pth._simplify_threshold = rcParams['path.simplify_threshold']
        pth._interpolation_steps = 1
    return pth

def _update_values(self):
    self._simplify_threshold = rcParams['path.simplify_threshold']
    self._should_simplify = (
        self._simplify_threshold > 0 and
        rcParams['path.simplify'] and
        len(self._vertices) >= 128 and
        (self._codes is None or np.all(self._codes <= Path.LINETO))
    )

@property
def vertices(self):
    """
    The list of vertices in the `Path` as an Nx2 numpy array.
    """
    return self._vertices

@vertices.setter
def vertices(self, vertices):
    if self._readonly:
        raise AttributeError("Can't set vertices on a readonly Path")
    self._vertices = vertices
    self._update_values()

@property
def codes(self):
    """
    The list of codes in the `Path` as a 1-D numpy array.  Each
    code is one of `STOP`, `MOVETO`, `LINETO`, `CURVE3`, `CURVE4`
    or `CLOSEPOLY`.  For codes that correspond to more than one
    vertex (`CURVE3` and `CURVE4`), that code will be repeated so
    that the length of `self.vertices` and `self.codes` is always
    the same.
    """
    return self._codes

@codes.setter
def codes(self, codes):
    if self._readonly:
        raise AttributeError("Can't set codes on a readonly Path")
    self._codes = codes
    self._update_values()

@property
def simplify_threshold(self):
    """
    The fraction of a pixel difference below which vertices will
    be simplified out.
    """
    return self._simplify_threshold

@simplify_threshold.setter
def simplify_threshold(self, threshold):
    self._simplify_threshold = threshold

@cbook.deprecated(
    "3.1", alternative="not np.isfinite(self.vertices).all()")
@property
def has_nonfinite(self):
    """
    `True` if the vertices array has nonfinite values.
    """
    return not np.isfinite(self._vertices).all()

@property
def should_simplify(self):
    """
    `True` if the vertices array should be simplified.
    """
    return self._should_simplify

@should_simplify.setter
def should_simplify(self, should_simplify):
    self._should_simplify = should_simplify

@property
def readonly(self):
    """
    `True` if the `Path` is read-only.
    """
    return self._readonly

def __copy__(self):
    """
    Returns a shallow copy of the `Path`, which will share the
    vertices and codes with the source `Path`.
    """
    import copy
    return copy.copy(self)

copy = __copy__

def __deepcopy__(self, memo=None):
    """
    Returns a deepcopy of the `Path`.  The `Path` will not be
    readonly, even if the source `Path` is.
    """
    try:
        codes = self.codes.copy()
    except AttributeError:
        codes = None
    return self.__class__(
        self.vertices.copy(), codes,
        _interpolation_steps=self._interpolation_steps)

deepcopy = __deepcopy__

[docs] @classmethod def make_compound_path_from_polys(cls, XY): """ Make a compound path object to draw a number of polygons with equal numbers of sides XY is a (numpolys x numsides x 2) numpy array of vertices. Return object is a :class:Path

    .. plot:: gallery/misc/histogram_path.py

    """

    # for each poly: 1 for the MOVETO, (numsides-1) for the LINETO, 1 for
    # the CLOSEPOLY; the vert for the closepoly is ignored but we still
    # need it to keep the codes aligned with the vertices
    numpolys, numsides, two = XY.shape
    if two != 2:
        raise ValueError("The third dimension of 'XY' must be 2")
    stride = numsides + 1
    nverts = numpolys * stride
    verts = np.zeros((nverts, 2))
    codes = np.full(nverts, cls.LINETO, dtype=cls.code_type)
    codes[0::stride] = cls.MOVETO
    codes[numsides::stride] = cls.CLOSEPOLY
    for i in range(numsides):
        verts[i::stride] = XY[:, i]

    return cls(verts, codes)

[docs] @classmethod def make_compound_path(cls, *args): """Make a compound path from a list of Path objects.""" # Handle an empty list in args (i.e. no args). if not args: return Path(np.empty([0, 2], dtype=np.float32))

    lengths = [len(x) for x in args]
    total_length = sum(lengths)

    vertices = np.vstack([x.vertices for x in args])
    vertices.reshape((total_length, 2))

    codes = np.empty(total_length, dtype=cls.code_type)
    i = 0
    for path in args:
        if path.codes is None:
            codes[i] = cls.MOVETO
            codes[i + 1:i + len(path.vertices)] = cls.LINETO
        else:
            codes[i:i + len(path.codes)] = path.codes
        i += len(path.vertices)

    return cls(vertices, codes)


def __repr__(self):
    return "Path(%r, %r)" % (self.vertices, self.codes)

def __len__(self):
    return len(self.vertices)

[docs] def iter_segments(self, transform=None, remove_nans=True, clip=None, snap=False, stroke_width=1.0, simplify=None, curves=True, sketch=None): """ Iterates over all of the curve segments in the path. Each iteration returns a 2-tuple (vertices, code), where vertices is a sequence of 1-3 coordinate pairs, and code is a Path code.

    Additionally, this method can provide a number of standard cleanups and
    conversions to the path.

    Parameters
    ----------
    transform : None or :class:`~matplotlib.transforms.Transform`
        If not None, the given affine transformation will be applied to the
        path.
    remove_nans : bool, optional
        Whether to remove all NaNs from the path and skip over them using
        MOVETO commands.
    clip : None or (float, float, float, float), optional
        If not None, must be a four-tuple (x1, y1, x2, y2)
        defining a rectangle in which to clip the path.
    snap : None or bool, optional
        If True, snap all nodes to pixels; if False, don't snap them.
        If None, perform snapping if the path contains only segments
        parallel to the x or y axes, and no more than 1024 of them.
    stroke_width : float, optional
        The width of the stroke being drawn (used for path snapping).
    simplify : None or bool, optional
        Whether to simplify the path by removing vertices
        that do not affect its appearance.  If None, use the
        :attr:`should_simplify` attribute.  See also :rc:`path.simplify`
        and :rc:`path.simplify_threshold`.
    curves : bool, optional
        If True, curve segments will be returned as curve segments.
        If False, all curves will be converted to line segments.
    sketch : None or sequence, optional
        If not None, must be a 3-tuple of the form
        (scale, length, randomness), representing the sketch parameters.
    """
    if not len(self):
        return

    cleaned = self.cleaned(transform=transform,
                           remove_nans=remove_nans, clip=clip,
                           snap=snap, stroke_width=stroke_width,
                           simplify=simplify, curves=curves,
                           sketch=sketch)

    # Cache these object lookups for performance in the loop.
    NUM_VERTICES_FOR_CODE = self.NUM_VERTICES_FOR_CODE
    STOP = self.STOP

    vertices = iter(cleaned.vertices)
    codes = iter(cleaned.codes)
    for curr_vertices, code in zip(vertices, codes):
        if code == STOP:
            break
        extra_vertices = NUM_VERTICES_FOR_CODE[code] - 1
        if extra_vertices:
            for i in range(extra_vertices):
                next(codes)
                curr_vertices = np.append(curr_vertices, next(vertices))
        yield curr_vertices, code

[docs] def cleaned(self, transform=None, remove_nans=False, clip=None, quantize=False, simplify=False, curves=False, stroke_width=1.0, snap=False, sketch=None): """ Return a new Path with vertices and codes cleaned according to the parameters.

    See Also
    --------
    Path.iter_segments : for details of the keyword arguments.
    """
    vertices, codes = _path.cleanup_path(
        self, transform, remove_nans, clip, snap, stroke_width, simplify,
        curves, sketch)
    pth = Path._fast_from_codes_and_verts(vertices, codes, self)
    if not simplify:
        pth._should_simplify = False
    return pth

[docs] def transformed(self, transform): """ Return a transformed copy of the path.

    See Also
    --------
    matplotlib.transforms.TransformedPath
        A specialized path class that will cache the transformed result and
        automatically update when the transform changes.
    """
    return Path(transform.transform(self.vertices), self.codes,
                self._interpolation_steps)

[docs] def contains_point(self, point, transform=None, radius=0.0): """ Returns whether the (closed) path contains the given point.

    If *transform* is not ``None``, the path will be transformed before
    performing the test.

    *radius* allows the path to be made slightly larger or smaller.
    """
    if transform is not None:
        transform = transform.frozen()
    # `point_in_path` does not handle nonlinear transforms, so we
    # transform the path ourselves.  If `transform` is affine, letting
    # `point_in_path` handle the transform avoids allocating an extra
    # buffer.
    if transform and not transform.is_affine:
        self = transform.transform_path(self)
        transform = None
    return _path.point_in_path(point[0], point[1], radius, self, transform)

[docs] def contains_points(self, points, transform=None, radius=0.0): """ Returns a bool array which is True if the (closed) path contains the corresponding point.

    If *transform* is not ``None``, the path will be transformed before
    performing the test.

    *radius* allows the path to be made slightly larger or smaller.
    """
    if transform is not None:
        transform = transform.frozen()
    result = _path.points_in_path(points, radius, self, transform)
    return result.astype('bool')

[docs] def contains_path(self, path, transform=None): """ Returns whether this (closed) path completely contains the given path.

    If *transform* is not ``None``, the path will be transformed before
    performing the test.
    """
    if transform is not None:
        transform = transform.frozen()
    return _path.path_in_path(self, None, path, transform)

[docs] def get_extents(self, transform=None): """ Returns the extents (xmin, ymin, xmax, ymax) of the path.

    Unlike computing the extents on the *vertices* alone, this
    algorithm will take into account the curves and deal with
    control points appropriately.
    """
    from .transforms import Bbox
    path = self
    if transform is not None:
        transform = transform.frozen()
        if not transform.is_affine:
            path = self.transformed(transform)
            transform = None
    return Bbox(_path.get_path_extents(path, transform))

[docs] def intersects_path(self, other, filled=True): """ Returns True if this path intersects another given path.

    *filled*, when True, treats the paths as if they were filled.
    That is, if one path completely encloses the other,
    :meth:`intersects_path` will return True.
    """
    return _path.path_intersects_path(self, other, filled)

[docs] def intersects_bbox(self, bbox, filled=True): """ Returns True if this path intersects a given :class:~matplotlib.transforms.Bbox.

    *filled*, when True, treats the path as if it was filled.
    That is, if the path completely encloses the bounding box,
    :meth:`intersects_bbox` will return True.

    The bounding box is always considered filled.
    """
    return _path.path_intersects_rectangle(self,
        bbox.x0, bbox.y0, bbox.x1, bbox.y1, filled)

[docs] def interpolated(self, steps): """ Returns a new path resampled to length N x steps. Does not currently handle interpolating curves. """ if steps == 1: return self

    vertices = simple_linear_interpolation(self.vertices, steps)
    codes = self.codes
    if codes is not None:
        new_codes = np.full((len(codes) - 1) * steps + 1, Path.LINETO,
                            dtype=self.code_type)
        new_codes[0::steps] = codes
    else:
        new_codes = None
    return Path(vertices, new_codes)

[docs] def to_polygons(self, transform=None, width=0, height=0, closed_only=True): """ Convert this path to a list of polygons or polylines. Each polygon/polyline is an Nx2 array of vertices. In other words, each polygon has no MOVETO instructions or curves. This is useful for displaying in backends that do not support compound paths or Bezier curves.

    If *width* and *height* are both non-zero then the lines will
    be simplified so that vertices outside of (0, 0), (width,
    height) will be clipped.

    If *closed_only* is `True` (default), only closed polygons,
    with the last point being the same as the first point, will be
    returned.  Any unclosed polylines in the path will be
    explicitly closed.  If *closed_only* is `False`, any unclosed
    polygons in the path will be returned as unclosed polygons,
    and the closed polygons will be returned explicitly closed by
    setting the last point to the same as the first point.
    """
    if len(self.vertices) == 0:
        return []

    if transform is not None:
        transform = transform.frozen()

    if self.codes is None and (width == 0 or height == 0):
        vertices = self.vertices
        if closed_only:
            if len(vertices) < 3:
                return []
            elif np.any(vertices[0] != vertices[-1]):
                vertices = [*vertices, vertices[0]]

        if transform is None:
            return [vertices]
        else:
            return [transform.transform(vertices)]

    # Deal with the case where there are curves and/or multiple
    # subpaths (using extension code)
    return _path.convert_path_to_polygons(
        self, transform, width, height, closed_only)


_unit_rectangle = None

[docs] @classmethod def unit_rectangle(cls): """ Return a Path instance of the unit rectangle from (0, 0) to (1, 1). """ if cls._unit_rectangle is None: cls._unit_rectangle =
cls([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]], [cls.MOVETO, cls.LINETO, cls.LINETO, cls.LINETO, cls.CLOSEPOLY], readonly=True) return cls._unit_rectangle

_unit_regular_polygons = WeakValueDictionary()

[docs] @classmethod def unit_regular_polygon(cls, numVertices): """ Return a :class:Path instance for a unit regular polygon with the given numVertices and radius of 1.0, centered at (0, 0). """ if numVertices <= 16: path = cls._unit_regular_polygons.get(numVertices) else: path = None if path is None: theta = ((2 * np.pi / numVertices) * np.arange(numVertices + 1) # This initial rotation is to make sure the polygon always # "points-up". + np.pi / 2) verts = np.column_stack((np.cos(theta), np.sin(theta))) codes = np.empty(numVertices + 1) codes[0] = cls.MOVETO codes[1:-1] = cls.LINETO codes[-1] = cls.CLOSEPOLY path = cls(verts, codes, readonly=True) if numVertices <= 16: cls._unit_regular_polygons[numVertices] = path return path

_unit_regular_stars = WeakValueDictionary()

[docs] @classmethod def unit_regular_star(cls, numVertices, innerCircle=0.5): """ Return a :class:Path for a unit regular star with the given numVertices and radius of 1.0, centered at (0, 0). """ if numVertices <= 16: path = cls._unit_regular_stars.get((numVertices, innerCircle)) else: path = None if path is None: ns2 = numVertices * 2 theta = (2np.pi/ns2 * np.arange(ns2 + 1)) # This initial rotation is to make sure the polygon always # "points-up" theta += np.pi / 2.0 r = np.ones(ns2 + 1) r[1::2] = innerCircle verts = np.vstack((rnp.cos(theta), r*np.sin(theta))).transpose() codes = np.empty((ns2 + 1,)) codes[0] = cls.MOVETO codes[1:-1] = cls.LINETO codes[-1] = cls.CLOSEPOLY path = cls(verts, codes, readonly=True) if numVertices <= 16: cls._unit_regular_stars[(numVertices, innerCircle)] = path return path

[docs] @classmethod def unit_regular_asterisk(cls, numVertices): """ Return a :class:Path for a unit regular asterisk with the given numVertices and radius of 1.0, centered at (0, 0). """ return cls.unit_regular_star(numVertices, 0.0)

_unit_circle = None

[docs] @classmethod def unit_circle(cls): """ Return the readonly :class:Path of the unit circle.

    For most cases, :func:`Path.circle` will be what you want.
    """
    if cls._unit_circle is None:
        cls._unit_circle = cls.circle(center=(0, 0), radius=1,
                                      readonly=True)
    return cls._unit_circle

[docs] @classmethod def circle(cls, center=(0., 0.), radius=1., readonly=False): """ Return a Path representing a circle of a given radius and center.

    Parameters
    ----------
    center : pair of floats
        The center of the circle. Default ``(0, 0)``.
    radius : float
        The radius of the circle. Default is 1.
    readonly : bool
        Whether the created path should have the "readonly" argument
        set when creating the Path instance.

    Notes
    -----
    The circle is approximated using 8 cubic Bezier curves, as described in

      Lancaster, Don.  `Approximating a Circle or an Ellipse Using Four
      Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_.
    """
    MAGIC = 0.2652031
    SQRTHALF = np.sqrt(0.5)
    MAGIC45 = SQRTHALF * MAGIC

    vertices = np.array([[0.0, -1.0],

                         [MAGIC, -1.0],
                         [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
                         [SQRTHALF, -SQRTHALF],

                         [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
                         [1.0, -MAGIC],
                         [1.0, 0.0],

                         [1.0, MAGIC],
                         [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
                         [SQRTHALF, SQRTHALF],

                         [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
                         [MAGIC, 1.0],
                         [0.0, 1.0],

                         [-MAGIC, 1.0],
                         [-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45],
                         [-SQRTHALF, SQRTHALF],

                         [-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45],
                         [-1.0, MAGIC],
                         [-1.0, 0.0],

                         [-1.0, -MAGIC],
                         [-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45],
                         [-SQRTHALF, -SQRTHALF],

                         [-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45],
                         [-MAGIC, -1.0],
                         [0.0, -1.0],

                         [0.0, -1.0]],
                        dtype=float)

    codes = [cls.CURVE4] * 26
    codes[0] = cls.MOVETO
    codes[-1] = cls.CLOSEPOLY
    return Path(vertices * radius + center, codes, readonly=readonly)


_unit_circle_righthalf = None

[docs] @classmethod def unit_circle_righthalf(cls): """ Return a Path of the right half of a unit circle.

    See `Path.circle` for the reference on the approximation used.
    """
    if cls._unit_circle_righthalf is None:
        MAGIC = 0.2652031
        SQRTHALF = np.sqrt(0.5)
        MAGIC45 = SQRTHALF * MAGIC

        vertices = np.array(
            [[0.0, -1.0],

             [MAGIC, -1.0],
             [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
             [SQRTHALF, -SQRTHALF],

             [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
             [1.0, -MAGIC],
             [1.0, 0.0],

             [1.0, MAGIC],
             [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
             [SQRTHALF, SQRTHALF],

             [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
             [MAGIC, 1.0],
             [0.0, 1.0],

             [0.0, -1.0]],

            float)

        codes = np.full(14, cls.CURVE4, dtype=cls.code_type)
        codes[0] = cls.MOVETO
        codes[-1] = cls.CLOSEPOLY

        cls._unit_circle_righthalf = cls(vertices, codes, readonly=True)
    return cls._unit_circle_righthalf

[docs] @classmethod def arc(cls, theta1, theta2, n=None, is_wedge=False): """ Return the unit circle arc from angles theta1 to theta2 (in degrees).

    *theta2* is unwrapped to produce the shortest arc within 360 degrees.
    That is, if *theta2* > *theta1* + 360, the arc will be from *theta1* to
    *theta2* - 360 and not a full circle plus some extra overlap.

    If *n* is provided, it is the number of spline segments to make.
    If *n* is not provided, the number of spline segments is
    determined based on the delta between *theta1* and *theta2*.

       Masionobe, L.  2003.  `Drawing an elliptical arc using
       polylines, quadratic or cubic Bezier curves
       <http://www.spaceroots.org/documents/ellipse/index.html>`_.
    """
    halfpi = np.pi * 0.5

    eta1 = theta1
    eta2 = theta2 - 360 * np.floor((theta2 - theta1) / 360)
    # Ensure 2pi range is not flattened to 0 due to floating-point errors,
    # but don't try to expand existing 0 range.
    if theta2 != theta1 and eta2 <= eta1:
        eta2 += 360
    eta1, eta2 = np.deg2rad([eta1, eta2])

    # number of curve segments to make
    if n is None:
        n = int(2 ** np.ceil((eta2 - eta1) / halfpi))
    if n < 1:
        raise ValueError("n must be >= 1 or None")

    deta = (eta2 - eta1) / n
    t = np.tan(0.5 * deta)
    alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0

    steps = np.linspace(eta1, eta2, n + 1, True)
    cos_eta = np.cos(steps)
    sin_eta = np.sin(steps)

    xA = cos_eta[:-1]
    yA = sin_eta[:-1]
    xA_dot = -yA
    yA_dot = xA

    xB = cos_eta[1:]
    yB = sin_eta[1:]
    xB_dot = -yB
    yB_dot = xB

    if is_wedge:
        length = n * 3 + 4
        vertices = np.zeros((length, 2), float)
        codes = np.full(length, cls.CURVE4, dtype=cls.code_type)
        vertices[1] = [xA[0], yA[0]]
        codes[0:2] = [cls.MOVETO, cls.LINETO]
        codes[-2:] = [cls.LINETO, cls.CLOSEPOLY]
        vertex_offset = 2
        end = length - 2
    else:
        length = n * 3 + 1
        vertices = np.empty((length, 2), float)
        codes = np.full(length, cls.CURVE4, dtype=cls.code_type)
        vertices[0] = [xA[0], yA[0]]
        codes[0] = cls.MOVETO
        vertex_offset = 1
        end = length

    vertices[vertex_offset๐Ÿ”š3, 0] = xA + alpha * xA_dot
    vertices[vertex_offset๐Ÿ”š3, 1] = yA + alpha * yA_dot
    vertices[vertex_offset+1๐Ÿ”š3, 0] = xB - alpha * xB_dot
    vertices[vertex_offset+1๐Ÿ”š3, 1] = yB - alpha * yB_dot
    vertices[vertex_offset+2๐Ÿ”š3, 0] = xB
    vertices[vertex_offset+2๐Ÿ”š3, 1] = yB

    return cls(vertices, codes, readonly=True)

[docs] @classmethod def wedge(cls, theta1, theta2, n=None): """ Return the unit circle wedge from angles theta1 to theta2 (in degrees).

    *theta2* is unwrapped to produce the shortest wedge within 360 degrees.
    That is, if *theta2* > *theta1* + 360, the wedge will be from *theta1*
    to *theta2* - 360 and not a full circle plus some extra overlap.

    If *n* is provided, it is the number of spline segments to make.
    If *n* is not provided, the number of spline segments is
    determined based on the delta between *theta1* and *theta2*.

    See `Path.arc` for the reference on the approximation used.
    """
    return cls.arc(theta1, theta2, n, True)

[docs] @staticmethod @lru_cache(8) def hatch(hatchpattern, density=6): """ Given a hatch specifier, hatchpattern, generates a Path that can be used in a repeated hatching pattern. density is the number of lines per unit square. """ from matplotlib.hatch import get_path return (get_path(hatchpattern, density) if hatchpattern is not None else None)

[docs] def clip_to_bbox(self, bbox, inside=True): """ Clip the path to the given bounding box.

    The path must be made up of one or more closed polygons.  This
    algorithm will not behave correctly for unclosed paths.

    If *inside* is `True`, clip to the inside of the box, otherwise
    to the outside of the box.
    """
    # Use make_compound_path_from_polys
    verts = _path.clip_path_to_rect(self, bbox, inside)
    paths = [Path(poly) for poly in verts]
    return self.make_compound_path(*paths)

[docs]def get_path_collection_extents( master_transform, paths, transforms, offsets, offset_transform): r""" Given a sequence of Path\s, ~.Transform\s objects, and offsets, as found in a ~.PathCollection, returns the bounding box that encapsulates all of them.

Parameters
----------
master_transform : `~.Transform`
    Global transformation applied to all paths.
paths : list of `Path`
transform : list of `~.Affine2D`
offsets : (N, 2) array-like
offset_transform : `~.Affine2D`
    Transform applied to the offsets before offsetting the path.

Notes
-----
The way that *paths*, *transforms* and *offsets* are combined
follows the same method as for collections:  Each is iterated over
independently, so if you have 3 paths, 2 transforms and 1 offset,
their combinations are as follows:

    (A, A, A), (B, B, A), (C, A, A)
"""
from .transforms import Bbox
if len(paths) == 0:
    raise ValueError("No paths provided")
return Bbox.from_extents(*_path.get_path_collection_extents(
    master_transform, paths, np.atleast_3d(transforms),
    offsets, offset_transform))

[docs]@cbook.deprecated("3.1", alternative="get_paths_collection_extents") def get_paths_extents(paths, transforms=[]): """ Given a sequence of :class:Path objects and optional :class:~matplotlib.transforms.Transform objects, returns the bounding box that encapsulates all of them.

*paths* is a sequence of :class:`Path` instances.

*transforms* is an optional sequence of
:class:`~matplotlib.transforms.Affine2D` instances to apply to
each path.
"""
from .transforms import Bbox, Affine2D
if len(paths) == 0:
    raise ValueError("No paths provided")
return Bbox.from_extents(*_path.get_path_collection_extents(
    Affine2D(), paths, transforms, [], Affine2D()))