MLIR: lib/Dialect/Tosa/Utils/ConversionUtils.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
15
16 using namespace mlir;
18
22 utils::IteratorType::parallel);
23 }
24
28 for (auto value : values)
29 if (value)
30 condensedValues.push_back(value);
31 return condensedValues;
32 }
33
36 Value minValue = rewriter.createarith::MinimumFOp(loc, arg, max);
37 return rewriter.createarith::MaximumFOp(loc, minValue, min);
38 }
39
41 OpBuilder &rewriter, bool isUnsigned) {
42 if (isUnsigned) {
43 auto minOrArg = rewriter.createarith::MaxUIOp(loc, min, arg);
44 return rewriter.createarith::MinUIOp(loc, max, minOrArg);
45 }
46 auto minOrArg = rewriter.createarith::MaxSIOp(loc, min, arg);
47 return rewriter.createarith::MinSIOp(loc, max, minOrArg);
48 }
49
51 uint64_t bitwidth = ty.getIntOrFloatBitWidth();
52 if (ty.getSignedness() == IntegerType::Unsigned) {
53 uint64_t uvalue = value;
54 APInt intMin = APInt::getMinValue(bitwidth);
55 APInt intMax = APInt::getMaxValue(bitwidth);
56 return uvalue >= intMin.getZExtValue() && uvalue <= intMax.getZExtValue();
57 }
58
59 APInt intMin = APInt::getSignedMinValue(bitwidth);
60 APInt intMax = APInt::getSignedMaxValue(bitwidth);
61 return value >= intMin.getSExtValue() && value <= intMax.getSExtValue();
62 }
63
64 namespace {
65
66
67
68
69
70
71
72
73 LogicalResult
77
78 int64_t higherRank = higherRankShape.size();
79 int64_t lowerRank = lowerRankShape.size();
80 reshapeOutputShape.assign(higherRank, 1);
81
82 int64_t higherRankDim;
83 int64_t lowerRankDim;
84 const int64_t rankDiff = higherRank - lowerRank;
85
86 for (int64_t i = lowerRank - 1; i >= 0; i--) {
87 higherRankDim = higherRankShape[i + rankDiff];
88 lowerRankDim = lowerRankShape[i];
89
90 if (lowerRankDim != 1 && higherRankDim != 1 &&
91 lowerRankDim != higherRankDim)
92 return failure();
93
94 reshapeOutputShape[i + rankDiff] = lowerRankDim == 1 ? 1 : lowerRankDim;
95 }
96 return success();
97 }
98 }
99
104 }
105
108 auto input1Ty = llvm::dyn_cast(input1.getType());
109 auto input2Ty = llvm::dyn_cast(input2.getType());
110
111 if (!input1Ty || !input2Ty) {
112 return failure();
113 }
114
115 int64_t input1Rank = input1Ty.getRank();
116 int64_t input2Rank = input2Ty.getRank();
117
118 if (input1Rank == input2Rank)
119 return success();
120
121 Value higherTensorValue, lowerTensorValue;
122 if (input1Rank > input2Rank) {
123 higherTensorValue = input1;
124 lowerTensorValue = input2;
125 } else {
126 higherTensorValue = input2;
127 lowerTensorValue = input1;
128 }
129
131 llvm::cast(higherTensorValue.getType()).getShape();
133 llvm::cast(lowerTensorValue.getType()).getShape();
134
136
137 if (computeReshapeOutput(higherRankShape, lowerRankShape, reshapeOutputShape)
138 .failed())
139 return failure();
140
141 auto reshapeInputType =
142 llvm::cast(lowerTensorValue.getType());
144 ArrayRef<int64_t>(reshapeOutputShape), reshapeInputType.getElementType());
145 auto reshapeOutputShapeValue = getTosaConstShape(builder, reshapeOutputShape);
146
147 auto reshapeLower = builder.createtosa::ReshapeOp(
148 reshapeOutputType, lowerTensorValue, reshapeOutputShapeValue);
149
150 if (input1Rank > input2Rank) {
151 input1 = higherTensorValue;
152 input2 = reshapeLower.getResult();
153 } else {
154 input1 = reshapeLower.getResult();
155 input2 = higherTensorValue;
156 }
157
158 return success();
159 }
160
167 }
168
173 }
174
176 return to_vector(llvm::map_range(shape, [](int64_t dim) {
177 return ShapedType::isDynamic(dim) ? -1 : dim;
178 }));
179 }
180
183 if (!op) {
184 return false;
185 }
186 if (auto constOp = mlir::dyn_casttosa::ConstShapeOp(op)) {
187 Attribute constOpAttr = constOp->getAttr("values");
188 DenseElementsAttr elementsAttr = cast(constOpAttr);
189 for (int i = 0; i < elementsAttr.size(); i++) {
190 int64_t val = elementsAttr.getValues<int64_t>()[i];
191 result_shape.push_back(val);
192 }
193 return true;
194 }
195
196 return false;
197 }
198
199
203 int64_t v = attr.getSplatValue().getSExtValue();
205 }
206
207 if (auto int_array_attr = llvm::dyn_cast(attr)) {
209 for (APInt val : int_array_attr.getValues()) {
210 vec.push_back(val.getSExtValue());
211 }
212 return vec;
213 }
214 return {};
215 }
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound)
Attributes are known-constant values of operations.
DenseIntElementsAttr getIndexTensorAttr(ArrayRef< int64_t > values)
MLIRContext * getContext() const
An attribute that represents a reference to a dense vector or tensor object.
std::enable_if_t<!std::is_base_of< Attribute, T >::value||std::is_same< Attribute, T >::value, T > getSplatValue() const
Return the splat value for this attribute.
auto getValues() const
Return the held element values as a range of the given type.
int64_t size() const
Returns the number of elements held by this attribute.
bool isSplat() const
Returns true if this attribute corresponds to a splat, i.e.
ImplicitLocOpBuilder maintains a 'current location', allowing use of the create<> method without spec...
OpTy create(Args &&...args)
Create an operation of specific op type at the current insertion point and location.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
This class helps build Operations.
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Operation is the basic unit of execution within MLIR.
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Value clampFloatHelper(Location loc, Value arg, Value min, Value max, OpBuilder &rewriter)
SmallVector< utils::IteratorType > getNParallelLoopsAttrs(unsigned nParallelLoops)
SmallVector< Value > condenseValues(const SmallVector< Value > &values)
LogicalResult EqualizeRanks(PatternRewriter &rewriter, Location loc, Value &input1, Value &input2)
Common code to create the reshape op where necessary to make the rank of two values equal.
SmallVector< int64_t > convertFromIntAttr(const DenseElementsAttr &attr, const int rank)
bool validIntegerRange(IntegerType ty, int64_t value)
Value getTosaConstShape(ImplicitLocOpBuilder &builder, llvm::ArrayRef< int64_t > shape)
SmallVector< int64_t > convertFromMlirShape(ArrayRef< int64_t > shape)
Value clampIntHelper(Location loc, Value arg, Value min, Value max, OpBuilder &rewriter, bool isUnsigned)
bool getConstShapeValues(Operation *op, llvm::SmallVector< int64_t > &result_shape)
Include the generated interface declarations.
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...