MLIR: lib/Dialect/Linalg/Transforms/ConvertToDestinationStyle.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Support/Debug.h"
28
29 using namespace mlir;
31
32
33
37 OperandRange::iterator &elementIt,
39 if (dim == static_cast<int>(shape.size()) - 1) {
40 for (int i = 0; i < shape.back(); ++i) {
41 indices.back() = constants[i];
42 destination = rewriter.createtensor::InsertOp(loc, *elementIt,
43 destination, indices);
44 ++elementIt;
45 }
46 return destination;
47 }
48 for (int i = 0; i < shape[dim]; ++i) {
49 indices[dim] = constants[i];
50 destination = createInserts(rewriter, loc, dim + 1, destination, shape,
51 constants, elementIt, indices);
52 }
53 return destination;
54 }
55
56
57
61 auto tensorType = dyn_cast(tensorSource.getType());
62 assert(tensorType && "expected ranked tensor");
63 assert(isa(memrefDest.getType()) && "expected ranked memref");
64
65 switch (options.memcpyOp) {
68
69
70 auto materializeOp = b.createbufferization::MaterializeInDestinationOp(
71 loc, tensorSource, memrefDest);
72 materializeOp.setWritable(true);
73 } break;
75
76
77
78 Value toBuffer = b.createbufferization::ToBufferOp(
80 tensorSource, true);
81 b.creatememref::CopyOp(loc, toBuffer, memrefDest);
82 } break;
84
85
86
87 Value toBuffer = b.createbufferization::ToBufferOp(
89 tensorSource, true);
90 b.createlinalg::CopyOp(loc, toBuffer, memrefDest);
91 } break;
92 };
93 }
94
99 RankedTensorType resultType = padOp.getResultType();
100
101
102
103 Value yieldedValue =
104 casttensor::YieldOp(padOp.getBody()->getTerminator()).getValue();
106
107 bool outsideBbArg =
108 isa(yieldedValue) &&
109 cast(yieldedValue).getOwner()->getParentOp() !=
110 padOp.getOperation();
111
112 bool outsideOpResult =
113 isa(yieldedValue) &&
115 bool invariantYieldedValue = outsideBbArg || outsideOpResult;
117
120 Value fillValue =
121 arithDialect
124 ->getResult(0);
125 auto fillOp = rewriter.createlinalg::FillOp(loc, ValueRange(fillValue),
127 return fillOp;
128 }
129
130 if (invariantYieldedValue) {
131
132 auto fillOp = rewriter.createlinalg::FillOp(loc, ValueRange(yieldedValue),
134 return fillOp;
135 }
136
137
139 utils::IteratorType::parallel);
142 auto genericOp = rewriter.createlinalg::GenericOp(
143 loc, resultType, ValueRange(),
144 ValueRange{dest},
145 indexingMaps, iteratorTypes);
146 Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
147 resultType.getElementType(), loc);
150 for (int64_t i = 0; i < resultType.getRank(); ++i)
151 bbArgReplacements.push_back(rewriter.createlinalg::IndexOp(loc, i));
152 rewriter.mergeBlocks(padOp.getBody(), body, bbArgReplacements);
153
154
155 auto yieldOp = casttensor::YieldOp(body->getTerminator());
156 rewriter.replaceOpWithNewOplinalg::YieldOp(yieldOp, yieldOp.getValue());
157 return genericOp;
158 }
159
162 auto tensorType = cast(value.getType());
163 if (tensorType.hasStaticShape())
164 return {};
165
166
168 if (isa(value) &&
171 for (int64_t i = 0; i < tensorType.getRank(); ++i) {
172 if (tensorType.isDynamicDim(i))
173 dynSizes.push_back(cast(
174 reifiedShape[cast(value).getResultNumber()][i]));
175 }
176 return dynSizes;
177 }
178
179
181 for (int64_t i = 0; i < tensorType.getRank(); ++i) {
182 if (tensorType.isDynamicDim(i))
183 dynSizes.push_back(
185 b.createarith::ConstantIndexOp(value.getLoc(), i)));
186 }
187 return dynSizes;
188 }
189
195 auto tensorType = cast(value.getType());
196
197
198 auto memrefType =
200 tensorType, memorySpace));
202
206 alloc = rewriter.creatememref::AllocOp(loc, memrefType, dynamicSizes);
207 if (options.emitDealloc) {
208
210 rewriter.creatememref::DeallocOp(loc, alloc);
211 }
212 } else if (options.allocOp ==
214 alloc = rewriter.creatememref::AllocaOp(loc, memrefType, dynamicSizes);
215
216 }
217
218 return alloc;
219 }
220
224
225 assert(.bufferizeDestinationOnly && "invalid options");
226
228 rewriter.setInsertionPoint(insertionPoint ? insertionPoint : padOp);
229 Location loc = padOp.getLoc();
230
231
235
236 if (!padOp.hasZeroLowPad() || !padOp.hasZeroHighPad()) {
237
241 }
242
243
248 Value subview = rewriter.creatememref::SubViewOp(
249 loc, alloc, padOp.getMixedLowPad(), sizes, strides);
251
252
253
254 Value toTensorOp = rewriter.createbufferization::ToTensorOp(
255 loc, alloc, true, true);
256 rewriter.replaceOp(padOp, toTensorOp);
257 return alloc;
258 }
259
262 vector::MaskOp maskOp, Attribute memorySpace, Operation *insertionPoint) {
263 assert(llvm::range_size(maskOp.getMaskBlock()->without_terminator()) == 1 &&
264 "expected single masked op");
266
267
270
271 Operation *yieldOp = maskOp.getMaskRegion().front().getTerminator();
272 assert(isavector::YieldOp(yieldOp) && "expected yield op terminator");
273
274
275
277 rewriter, options, maskOp.getMaskableOp(), memorySpace,
278 insertionPoint ? insertionPoint : maskOp);
279
280 if (options.bufferizeDestinationOnly)
281 return alloc;
282
283
285 if (failed(castbufferization::BufferizableOpInterface(yieldOp).bufferize(
286 rewriter, bufferizationOptions, bufferizationState)))
287 return nullptr;
288
289
290
291
293 maskOp.walk([&](bufferization::ToTensorOp toTensorOp) {
294 if (toTensorOp->getUses().empty())
295 toTensorOps.push_back(toTensorOp.getOperation());
296 });
297 for (Operation *op : toTensorOps)
299
300
302 for (Value result : maskOp.getResults())
303 if (isa(result.getType()))
304 for (OpOperand &use : result.getUses())
305 resultUses.push_back(&use);
307 if (failed(
308 castbufferization::BufferizableOpInterface(maskOp.getOperation())
309 .bufferize(rewriter, bufferizationOptions, bufferizationState)))
310 return nullptr;
311
312
313
314 for (OpOperand *resultUse : resultUses) {
315 auto toTensorOp =
316 resultUse->get().getDefiningOpbufferization::ToTensorOp();
317 assert(toTensorOp && "expected to_tensor op");
319 toTensorOp.setRestrict(true);
320 toTensorOp.setWritable(true);
321 });
322 }
323
324 return alloc;
325 }
326
329 bufferization::AllocTensorOp allocTensorOp, Attribute memorySpace,
331 Location loc = allocTensorOp.getLoc();
333 rewriter.setInsertionPoint(insertionPoint ? insertionPoint : allocTensorOp);
335
336
338 rewriter, loc, allocTensorOp.getResult(), options, memorySpace);
339
340
341
342 Value toTensorOp = rewriter.createbufferization::ToTensorOp(
343 loc, alloc, true, true);
344 rewriter.replaceOp(allocTensorOp, toTensorOp);
345 return alloc;
346 }
347
348
350 RewriterBase &rewriter, tensor::FromElementsOp fromElementsOp) {
351 Location loc = fromElementsOp.getLoc();
352 RankedTensorType tensorType =
353 cast(fromElementsOp.getType());
354 auto shape = tensorType.getShape();
355
356
357 auto emptyOp = rewriter.create(loc, tensorType, ValueRange());
358
359
360 if (shape.empty()) {
362 fromElementsOp, fromElementsOp.getElements().front(),
364 return res;
365 }
366
367
368 auto maxDim = *llvm::max_element(shape);
370 constants.reserve(maxDim);
371 for (int i = 0; i < maxDim; ++i)
373
374
375 auto elementIt = fromElementsOp.getElements().begin();
377 Value result = createInserts(rewriter, loc, 0, emptyOp.getResult(),
378 shape, constants, elementIt, indices);
379
380
381 rewriter.replaceOp(fromElementsOp, result);
383 }
384
385
386 FailureOr<Operation *>
388 tensor::GenerateOp generateOp) {
389
390 if (!generateOp.getBody().hasOneBlock())
391 return failure();
392
393 Location loc = generateOp.getLoc();
394 RankedTensorType tensorType = cast(generateOp.getType());
395
396
397 auto emptyOp =
398 rewriter.create(loc, tensorType, generateOp.getDynamicExtents());
399
400
402 utils::IteratorType::parallel);
405 auto genericOp = rewriter.createlinalg::GenericOp(
406 loc, tensorType, ValueRange(),
407 ValueRange{emptyOp.getResult()},
408 indexingMaps, iteratorTypes);
409 Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
410 tensorType.getElementType(), loc);
413 for (int64_t i = 0; i < tensorType.getRank(); ++i)
414 bbArgReplacements.push_back(rewriter.createlinalg::IndexOp(loc, i));
415 rewriter.mergeBlocks(&generateOp.getBody().front(), body, bbArgReplacements);
416
417
418 auto yieldOp = casttensor::YieldOp(body->getTerminator());
419 rewriter.replaceOpWithNewOplinalg::YieldOp(yieldOp, yieldOp.getValue());
420
421
422 rewriter.replaceOp(generateOp, genericOp->getResult(0));
423 return genericOp.getOperation();
424 }
425
426
427 FailureOr<Operation *>
429 tensor::PadOp padOp) {
430
431 if (!padOp.getBodyRegion().hasOneBlock())
432 return failure();
433
434
435 Location loc = padOp.getLoc();
436 RankedTensorType resultType = padOp.getResultType();
440 padOp, "failed to reify tensor.pad op result shape");
442 for (int64_t i = 0; i < resultType.getRank(); ++i)
443 if (resultType.isDynamicDim(i))
444 dynamicSizes.push_back(cast(reifiedShape[0][i]));
445
446
447
448 if (padOp.getNofoldAttr() &&
449 llvm::all_of(padOp.getMixedLowPad(), isZeroInteger) &&
450 llvm::all_of(padOp.getMixedHighPad(), isZeroInteger)) {
451 using bufferization::AllocTensorOp;
452 Value allocated =
453 rewriter.create(loc, resultType, dynamicSizes);
455 padOp, padOp.getSource(), allocated);
456 return copyOp.getOperation();
457 }
458
459 Value empty = rewriter.create(loc, resultType, dynamicSizes);
460
463
464
469 auto insertSliceOp = rewriter.replaceOpWithNewOptensor::InsertSliceOp(
470 padOp, padOp.getSource(), fillOp->getResult(0),
471 padOp.getMixedLowPad(), sliceSizes, sliceStrides);
472 return insertSliceOp.getOperation();
473 }
474
478 using namespace bufferization;
479
480
481 if (auto padOp = dyn_casttensor::PadOp(op))
483 if (auto maskOp = dyn_castvector::MaskOp(op))
485 if (auto allocTensorOp = dyn_castbufferization::AllocTensorOp(op))
487
488
489 auto bufferizableOp = dyn_cast(op);
490 if (!bufferizableOp)
491 return nullptr;
492
493
494 BufferizationOptions bufferizationOptions;
495 AnalysisState analysisState(bufferizationOptions);
496 BufferizationState bufferizationState;
497
498 #ifndef NDEBUG
499 if (.bufferizeDestinationOnly) {
500
501
503 if (op == nestedOp)
504 return;
505 if (llvm::any_of(nestedOp->getOperands(),
506 [](Value v) { return isa(v.getType()); }))
507 llvm_unreachable("ops with nested tensor ops are not supported yet");
508 if (llvm::any_of(nestedOp->getResults(),
509 [](Value v) { return isa(v.getType()); }))
510 llvm_unreachable("ops with nested tensor ops are not supported yet");
511 });
512 }
513 #endif
514
515
518 if (!isa(result.getType()))
519 continue;
520
521 if (!isa(result.getType()))
522 return nullptr;
523
524 if (bufferizableOp.bufferizesToAllocation(result))
525 return nullptr;
526 tensorResults.push_back(result);
527 }
528
529
530
532 auto addOutOfPlaceOperand = [&](OpOperand *operand) {
533 if (!llvm::is_contained(outOfPlaceOperands, operand))
534 outOfPlaceOperands.push_back(operand);
535 };
536 for (OpResult result : tensorResults) {
538 analysisState.getAliasingOpOperands(result);
539 for (const AliasingOpOperand &operand : aliasingOperands) {
540 addOutOfPlaceOperand(operand.opOperand);
541 for (OpOperand &resultUse : result.getUses())
542 resultUses.push_back(&resultUse);
543 }
544 }
546 if (!analysisState.bufferizesToMemoryWrite(operand))
547 continue;
548 if (!isa(operand.get().getType()))
549 continue;
550 addOutOfPlaceOperand(&operand);
551 }
552
553 if (outOfPlaceOperands.size() != 1)
554 return nullptr;
555
556
558 rewriter.setInsertionPoint(insertionPoint ? insertionPoint : op);
560 for (OpOperand *operand : outOfPlaceOperands) {
562 rewriter, op->getLoc(), operand->get(), options, memorySpace);
563 allocs.push_back(alloc);
564 if (!analysisState.findDefinitions(operand).empty()) {
565
566
568 }
570 auto toTensorOp = rewriter.create(op->getLoc(), alloc);
571 operand->set(toTensorOp);
572 if (options.bufferizeDestinationOnly) {
574 toTensorOp.setRestrict(true);
575 toTensorOp.setWritable(true);
576 });
577 }
578 });
579 }
580
581 if (options.bufferizeDestinationOnly)
582 return allocs.front();
583
584
586 if (failed(bufferizableOp.bufferize(rewriter, bufferizationOptions,
587 bufferizationState)))
588 return nullptr;
589
590
591
592 for (OpOperand *resultUse : resultUses) {
593 auto toTensorOp = resultUse->get().getDefiningOp();
594 assert(toTensorOp && "expected to_tensor op");
596 toTensorOp.setRestrict(true);
597 toTensorOp.setWritable(true);
598 });
599 }
600 return allocs.front();
601 }
602
603 namespace {
604
605 template
606 LogicalResult rewriteOpInDestinationPassingStyle(OpTy op,
609 }
610
611 }
612
615 patterns.add(rewriteOpInDestinationPassingStyletensor::FromElementsOp);
616 patterns.add(rewriteOpInDestinationPassingStyletensor::GenerateOp);
617 patterns.add(rewriteOpInDestinationPassingStyletensor::PadOp);
618 }
static Operation * movePaddingToFillOrGenericOp(RewriterBase &rewriter, Location loc, PadOp padOp, Value dest)
static Value createAllocationForTensor(RewriterBase &rewriter, Location loc, Value value, const linalg::BufferizeToAllocationOptions &options, Attribute memorySpace={})
static void createMemcpy(OpBuilder &b, Location loc, Value tensorSource, Value memrefDest, const linalg::BufferizeToAllocationOptions &options)
Create a memcpy from the given source tensor to the given destination memref.
static SmallVector< Value > reifyOrComputeDynamicSizes(OpBuilder &b, Value value)
static Value createInserts(RewriterBase &rewriter, Location loc, int dim, Value destination, ArrayRef< int64_t > shape, ArrayRef< Value > constants, OperandRange::iterator &elementIt, SmallVectorImpl< Value > &indices)
static llvm::ManagedStatic< PassManagerOptions > options
Base class for generic analysis states.
Attributes are known-constant values of operations.
Block represents an ordered list of Operations.
Operation * getTerminator()
Get the terminator operation of this block.
IntegerAttr getIndexAttr(int64_t value)
AffineMap getMultiDimIdentityMap(unsigned rank)
MLIRContext * getContext() const
Dialects are groups of MLIR operations, types and attributes, as well as behavior associated with the...
virtual Operation * materializeConstant(OpBuilder &builder, Attribute value, Type type, Location loc)
Registered hook to materialize a single constant operation from a given attribute value with the desi...
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Dialect * getLoadedDialect(StringRef name)
Get a registered IR dialect with the given namespace.
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Block * createBlock(Region *parent, Region::iterator insertPt={}, TypeRange argTypes=std::nullopt, ArrayRef< Location > locs=std::nullopt)
Add new block with 'argTypes' arguments and set the insertion point to the end of it.
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Block * getInsertionBlock() const
Return the block the current insertion point belongs to.
This class represents an operand of an operation.
This is a value defined by a result of an operation.
Operation is the basic unit of execution within MLIR.
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
Location getLoc()
The source location the operation was defined or derived from.
Operation * getParentOp()
Returns the closest surrounding operation that contains this operation or nullptr if this is a top-le...
MutableArrayRef< OpOperand > getOpOperands()
operand_range getOperands()
Returns an iterator on the underlying Value's.
result_range getResults()
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
void mergeBlocks(Block *source, Block *dest, ValueRange argValues=std::nullopt)
Inline the operations of block 'source' into the end of block 'dest'.
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
void modifyOpInPlace(Operation *root, CallableT &&callable)
This method is a utility wrapper around an in-place modification of an operation.
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
This class provides an abstraction over the different types of ranges over Values.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Location getLoc() const
Return the location of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Specialization of arith.constant op that returns an integer of index type.
BufferizationState provides information about the state of the IR during the bufferization process.
BaseMemRefType getMemRefTypeWithStaticIdentityLayout(TensorType tensorType, Attribute memorySpace=nullptr)
Return a MemRef type with a static identity layout (i.e., no layout map).
AliasList< AliasingOpOperand > AliasingOpOperandList
A list of possible aliasing OpOperands.
BaseMemRefType getMemRefTypeWithFullyDynamicLayout(TensorType tensorType, Attribute memorySpace=nullptr)
Return a MemRef type with fully dynamic layout.
Value bufferizeToAllocation(RewriterBase &rewriter, const BufferizeToAllocationOptions &options, tensor::PadOp padOp, Attribute memorySpace={}, Operation *insertionPoint=nullptr)
Materialize a buffer allocation for the given tensor.pad op and lower the op to linalg....
FailureOr< Operation * > rewriteInDestinationPassingStyle(RewriterBase &rewriter, tensor::FromElementsOp fromElementsOp)
Rewrite tensor.from_elements to linalg.generic.
void populateConvertToDestinationStylePatterns(RewritePatternSet &patterns)
Populate patterns that convert non-destination-style ops to destination style ops.
SmallVector< OpFoldResult > getMixedSizes(OpBuilder &builder, Location loc, Value value)
Return the dimensions of the given tensor value.
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
LogicalResult reifyResultShapes(OpBuilder &b, Operation *op, ReifiedRankedShapedTypeDims &reifiedReturnShapes)
Reify the shape of the result of an operation (typically in terms of the shape of its operands).
const FrozenRewritePatternSet & patterns
bool isZeroInteger(OpFoldResult v)
Return true if v is an IntegerAttr with value 0.
detail::constant_op_matcher m_Constant()
Matches a constant foldable operation.
Options for BufferizableOpInterface-based bufferization.
@ MaterializeInDestination