MLIR: lib/Dialect/Affine/Utils/Utils.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
15
30 #include "llvm/Support/LogicalResult.h"
31 #include
32
33 #define DEBUG_TYPE "affine-utils"
34
35 using namespace mlir;
36 using namespace affine;
37 using namespace presburger;
38
39 namespace {
40
41
42
43 class AffineApplyExpander
45 public:
46
47
50 : builder(builder), dimValues(dimValues), symbolValues(symbolValues),
51 loc(loc) {}
52
53 template
55 arith::IntegerOverflowFlags overflowFlags =
56 arith::IntegerOverflowFlags::none) {
59 if (!lhs || !rhs)
60 return nullptr;
61 auto op = builder.create(loc, lhs, rhs, overflowFlags);
63 }
64
66 return buildBinaryExprarith::AddIOp(expr);
67 }
68
70 return buildBinaryExprarith::MulIOp(expr,
71 arith::IntegerOverflowFlags::nsw);
72 }
73
74
75
76
77
78
79
80
81
82
84 if (auto rhsConst = dyn_cast(expr.getRHS())) {
85 if (rhsConst.getValue() <= 0) {
86 emitError(loc, "modulo by non-positive value is not supported");
87 return nullptr;
88 }
89 }
90
93 assert(lhs && rhs && "unexpected affine expr lowering failure");
94
95 Value remainder = builder.createarith::RemSIOp(loc, lhs, rhs);
96 Value zeroCst = builder.createarith::ConstantIndexOp(loc, 0);
97 Value isRemainderNegative = builder.createarith::CmpIOp(
98 loc, arith::CmpIPredicate::slt, remainder, zeroCst);
99 Value correctedRemainder =
100 builder.createarith::AddIOp(loc, remainder, rhs);
101 Value result = builder.createarith::SelectOp(
102 loc, isRemainderNegative, correctedRemainder, remainder);
103 return result;
104 }
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
124 if (auto rhsConst = dyn_cast(expr.getRHS())) {
125 if (rhsConst.getValue() <= 0) {
126 emitError(loc, "division by non-positive value is not supported");
127 return nullptr;
128 }
129 }
132 assert(lhs && rhs && "unexpected affine expr lowering failure");
133
134 Value zeroCst = builder.createarith::ConstantIndexOp(loc, 0);
135 Value noneCst = builder.createarith::ConstantIndexOp(loc, -1);
136 Value negative = builder.createarith::CmpIOp(
137 loc, arith::CmpIPredicate::slt, lhs, zeroCst);
138 Value negatedDecremented = builder.createarith::SubIOp(loc, noneCst, lhs);
140 builder.createarith::SelectOp(loc, negative, negatedDecremented, lhs);
141 Value quotient = builder.createarith::DivSIOp(loc, dividend, rhs);
142 Value correctedQuotient =
143 builder.createarith::SubIOp(loc, noneCst, quotient);
144 Value result = builder.createarith::SelectOp(loc, negative,
145 correctedQuotient, quotient);
146 return result;
147 }
148
149
150
151
152
153
154
155
156
157
158
159
160
161
163 if (auto rhsConst = dyn_cast(expr.getRHS())) {
164 if (rhsConst.getValue() <= 0) {
165 emitError(loc, "division by non-positive value is not supported");
166 return nullptr;
167 }
168 }
171 assert(lhs && rhs && "unexpected affine expr lowering failure");
172
173 Value zeroCst = builder.createarith::ConstantIndexOp(loc, 0);
174 Value oneCst = builder.createarith::ConstantIndexOp(loc, 1);
175 Value nonPositive = builder.createarith::CmpIOp(
176 loc, arith::CmpIPredicate::sle, lhs, zeroCst);
177 Value negated = builder.createarith::SubIOp(loc, zeroCst, lhs);
178 Value decremented = builder.createarith::SubIOp(loc, lhs, oneCst);
180 builder.createarith::SelectOp(loc, nonPositive, negated, decremented);
181 Value quotient = builder.createarith::DivSIOp(loc, dividend, rhs);
182 Value negatedQuotient =
183 builder.createarith::SubIOp(loc, zeroCst, quotient);
184 Value incrementedQuotient =
185 builder.createarith::AddIOp(loc, quotient, oneCst);
186 Value result = builder.createarith::SelectOp(
187 loc, nonPositive, negatedQuotient, incrementedQuotient);
188 return result;
189 }
190
192 auto op = builder.createarith::ConstantIndexOp(loc, expr.getValue());
194 }
195
197 assert(expr.getPosition() < dimValues.size() &&
198 "affine dim position out of range");
200 }
201
203 assert(expr.getPosition() < symbolValues.size() &&
204 "symbol dim position out of range");
206 }
207
208 private:
212
214 };
215 }
216
217
218
223 return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr);
224 }
225
226
227
228 std::optional<SmallVector<Value, 8>>
231 auto numDims = affineMap.getNumDims();
232 auto expanded = llvm::to_vector<8>(
233 llvm::map_range(affineMap.getResults(),
234 [numDims, &builder, loc, operands](AffineExpr expr) {
235 return expandAffineExpr(builder, loc, expr,
236 operands.take_front(numDims),
237 operands.drop_front(numDims));
238 }));
239 if (llvm::all_of(expanded, [](Value v) { return v; }))
240 return expanded;
241 return std::nullopt;
242 }
243
244
245
246
248 if (elseBlock)
249 assert(ifOp.hasElse() && "else block expected");
250
251 Block *destBlock = ifOp->getBlock();
252 Block *srcBlock = elseBlock ? ifOp.getElseBlock() : ifOp.getThenBlock();
255 std::prev(srcBlock->end()));
256 ifOp.erase();
257 }
258
259
260
261
262
264
269 if (auto forOp = dyn_cast(parentOp)) {
270 if (llvm::is_contained(ifOperands, forOp.getInductionVar()))
271 break;
272 } else if (auto parallelOp = dyn_cast(parentOp)) {
273 if (llvm::any_of(parallelOp.getIVs(), [&](Value iv) {
274 return llvm::is_contained(ifOperands, iv);
275 }))
276 break;
277 } else if (!isa(parentOp)) {
278
279 break;
280 }
281
282 res = parentOp;
283 }
284 return res;
285 }
286
287
288
289
291
292 if (hoistOverOp == ifOp)
293 return ifOp;
294
295
296
297
298
299
302 auto hoistedIfOp = b.create(ifOp.getLoc(), ifOp.getIntegerSet(),
303 ifOp.getOperands(),
304 true);
305
306
307
308 Operation *hoistOverOpClone = nullptr;
309
310
311 StringAttr idForIfOp = b.getStringAttr("__mlir_if_hoisting");
312 operandMap.clear();
314
315 ifOp->setAttr(idForIfOp, b.getBoolAttr(true));
316 hoistOverOpClone = b.clone(*hoistOverOp, operandMap);
317
318
320
321
322 auto *thenBlock = hoistedIfOp.getThenBlock();
323 thenBlock->getOperations().splice(thenBlock->begin(),
326
327
328 AffineIfOp ifCloneInElse;
329 hoistOverOpClone->walk([&](AffineIfOp ifClone) {
330 if (!ifClone->getAttr(idForIfOp))
332 ifCloneInElse = ifClone;
334 });
335 assert(ifCloneInElse && "if op clone should exist");
336
337
338 if (!ifCloneInElse.hasElse())
339 ifCloneInElse.erase();
340 else
342
343
344 auto *elseBlock = hoistedIfOp.getElseBlock();
345 elseBlock->getOperations().splice(
346 elseBlock->begin(), hoistOverOpClone->getBlock()->getOperations(),
348
349 return hoistedIfOp;
350 }
351
352 LogicalResult
355 AffineParallelOp *resOp) {
356
357 unsigned numReductions = parallelReductions.size();
358 if (numReductions != forOp.getNumIterOperands())
359 return failure();
360
361 Location loc = forOp.getLoc();
363 AffineMap lowerBoundMap = forOp.getLowerBoundMap();
364 ValueRange lowerBoundOperands = forOp.getLowerBoundOperands();
365 AffineMap upperBoundMap = forOp.getUpperBoundMap();
366 ValueRange upperBoundOperands = forOp.getUpperBoundOperands();
367
368
369 auto reducedValues = llvm::to_vector<4>(llvm::map_range(
370 parallelReductions, [](const LoopReduction &red) { return red.value; }));
371 auto reductionKinds = llvm::to_vector<4>(llvm::map_range(
372 parallelReductions, [](const LoopReduction &red) { return red.kind; }));
373 AffineParallelOp newPloop = outsideBuilder.create(
378
380 Operation *yieldOp = &newPloop.getBody()->back();
381
382
383
385 newResults.reserve(numReductions);
386 for (unsigned i = 0; i < numReductions; ++i) {
387 Value init = forOp.getInits()[i];
388
389
390
392 assert(reductionOp && "yielded value is expected to be produced by an op");
394 outsideBuilder.getInsertionPoint(), newPloop.getBody()->getOperations(),
395 reductionOp);
396 reductionOp->setOperands({init, newPloop->getResult(i)});
397 forOp->getResult(i).replaceAllUsesWith(reductionOp->getResult(0));
398 }
399
400
401
402
403
404 unsigned numIVs = 1;
406 newPloop.getBody()->eraseArguments(numIVs, numReductions);
407
408 forOp.erase();
409 if (resOp)
410 *resOp = newPloop;
411 return success();
412 }
413
414
416
417
418 if (ifOp.getNumResults() != 0)
419 return failure();
420
421
422
423
424
425
427 AffineIfOp::getCanonicalizationPatterns(patterns, ifOp.getContext());
429 bool erased;
431 ifOp.getOperation(), frozenPatterns,
433 nullptr, &erased);
434 if (erased) {
435 if (folded)
436 *folded = true;
437 return failure();
438 }
439 if (folded)
440 *folded = false;
441
442
443 assert(llvm::all_of(ifOp.getOperands(),
445 return isTopLevelValue(v) || isAffineInductionVar(v);
446 }) &&
447 "operands not composed");
448
449
450
452
454
455 if (hoistedIfOp == ifOp)
456 return failure();
457
458
459
462 frozenPatterns);
463
464 return success();
465 }
466
467
470 bool positivePath) {
471 if (e == dim)
472 return positivePath ? min : max;
473 if (auto bin = dyn_cast(e)) {
479
480 auto c1 = dyn_cast(bin.getLHS());
481 auto c2 = dyn_cast(bin.getRHS());
482 if (c1 && c1.getValue() < 0)
485 if (c2 && c2.getValue() < 0)
491 }
492 return e;
493 }
494
496
497 if (op.hasMinMaxBounds())
498 return;
499
500 AffineMap lbMap = op.getLowerBoundsMap();
502
503 bool isAlreadyNormalized =
504 llvm::all_of(llvm::zip(steps, lbMap.getResults()), [](auto tuple) {
505 int64_t step = std::get<0>(tuple);
506 auto lbExpr = dyn_cast(std::get<1>(tuple));
507 return lbExpr && lbExpr.getValue() == 0 && step == 1;
508 });
509 if (isAlreadyNormalized)
510 return;
511
514 op.getLowerBoundsValueMap(), &ranges);
516 auto zeroExpr = builder.getAffineConstantExpr(0);
519 for (unsigned i = 0, e = steps.size(); i < e; ++i) {
520 int64_t step = steps[i];
521
522
523 lbExprs.push_back(zeroExpr);
524
525
527 ubExprs.push_back(ubExpr);
528
529
533 auto expr = lbExpr + builder.getAffineDimExpr(nDims) * step;
536
537
538
539 OperandRange lbOperands = op.getLowerBoundsOperands();
540 OperandRange dimOperands = lbOperands.take_front(nDims);
541 OperandRange symbolOperands = lbOperands.drop_front(nDims);
543 applyOperands.push_back(iv);
544 applyOperands.append(symbolOperands.begin(), symbolOperands.end());
545 auto apply = builder.create(op.getLoc(), map, applyOperands);
547 }
548
550 op.setSteps(newSteps);
552 0, 0, lbExprs, op.getContext());
553 op.setLowerBounds({}, newLowerMap);
555 ubExprs, op.getContext());
556 op.setUpperBounds(ranges.getOperands(), newUpperMap);
557 }
558
560 bool promoteSingleIter) {
562 return success();
563
564
565 if (op.hasConstantLowerBound() && (op.getConstantLowerBound() == 0) &&
566 (op.getStep() == 1))
567 return success();
568
569
570
571
572
573 if (op.getLowerBoundMap().getNumResults() != 1)
574 return failure();
575
578 int64_t origLoopStep = op.getStepAsInt();
579
580
581 AffineMap oldLbMap = op.getLowerBoundMap();
582
583
584
585
586
588 op.getLowerBoundMap().getResult(0));
589 AffineValueMap lbMap(oldLbMap, op.getLowerBoundOperands());
592 op.getContext());
593 AffineValueMap paddedLbValueMap(paddedLbMap, op.getLowerBoundOperands());
594 AffineValueMap ubValueMap(op.getUpperBoundMap(), op.getUpperBoundOperands());
596
599
600
601 unsigned numResult = newUbValueMap.getNumResults();
603 for (unsigned i = 0; i < numResult; ++i)
605
606
608 AffineMap::get(numResult, 0, scaleDownExprs, op.getContext());
610
611
612 op.setUpperBound(newUbValueMap.getOperands(), newUbMap);
614 op.setStep(1);
615
616
617
619
625 (void)newIvToOldIvMap.canonicalize();
626 auto newIV = opBuilder.create(
627 loc, newIvToOldIvMap.getAffineMap(), newIvToOldIvMap.getOperands());
628 op.getInductionVar().replaceAllUsesExcept(newIV->getResult(0), newIV);
629 return success();
630 }
631
632
633
634
637
638
641 return false;
642
643 unsigned nsLoops =
648 }
649
650
651
652
654 unsigned minSurroundingLoops) {
657
658
659
660
661
662
668 for (unsigned d = nsLoops + 1; d > minSurroundingLoops; d--) {
670 srcAccess, destAccess, d, &dependenceConstraints,
671 nullptr);
672
673
675 return true;
676 }
677
678 return false;
679 }
680
681
682 return true;
683 }
684
685 template <typename EffectType, typename T>
689
690
691 bool hasSideEffect = false;
692
693
694 Value memref = memOp.getMemRef();
695 std::function<void(Operation *)> checkOperation = [&](Operation *op) {
696
697 if (hasSideEffect)
698 return;
699
700 if (auto memEffect = dyn_cast(op)) {
702 memEffect.getEffects(effects);
703
704 bool opMayHaveEffect = false;
705 for (auto effect : effects) {
706
707
708 if (isa(effect.getEffect())) {
709 if (effect.getValue() && effect.getValue() != memref &&
710 (effect.getValue(), memref))
711 continue;
712 opMayHaveEffect = true;
713 break;
714 }
715 }
716
717 if (!opMayHaveEffect)
718 return;
719
720
721
722 if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) {
723
724
725
726
727
728
729 unsigned minSurroundingLoops =
731 if (mayHaveEffect(op, memOp, minSurroundingLoops))
732 hasSideEffect = true;
733 return;
734 }
735
736
737
738 hasSideEffect = true;
739 return;
740 }
741
743
744
745 for (Region ®ion : op->getRegions())
746 for (Block &block : region)
748 checkOperation(&op);
749 return;
750 }
751
752
753
754 hasSideEffect = true;
755 };
756
757
758
760
761
762
763
765 checkOperation(parent);
766 };
767
768
769
772 assert(
774 "Checking for side effect between two operations without a common "
775 "ancestor");
776
777
778
779
782 until(untilOp->getParentOp(), untilOp);
783 return;
784 }
785
786
787
788
789
791 {
792
793
794 for (auto iter = ++from->getIterator(), end = from->getBlock()->end();
795 iter != end && &*iter != untilOp; ++iter) {
796 checkOperation(&*iter);
797 }
798
799
800
801 if (untilOp->getBlock() != from->getBlock())
803 todoBlocks.push_back(succ);
804 }
805
807
808 while (!todoBlocks.empty()) {
809 Block *blk = todoBlocks.pop_back_val();
810 if (done.count(blk))
811 continue;
812 done.insert(blk);
813 for (auto &op : *blk) {
814 if (&op == untilOp)
815 break;
816 checkOperation(&op);
819 todoBlocks.push_back(succ);
820 }
821 }
822 };
823 recur(start, memOp);
824 return !hasSideEffect;
825 }
826
827
828
829
830
831
832
833
838
839
840
841 Operation *lastWriteStoreOp = nullptr;
842
843 for (auto *user : loadOp.getMemRef().getUsers()) {
844 auto storeOp = dyn_cast(user);
845 if (!storeOp)
846 continue;
849
850
851
852
853
854
855
856
857
858 if (srcAccess != destAccess)
859 continue;
860
861
862 if (!domInfo.dominates(storeOp, loadOp))
863 continue;
864
865
866
867
869 continue;
870
871
872
873 if (!affine::hasNoInterveningEffectMemoryEffects::Write(storeOp, loadOp,
875 continue;
876
877
878 assert(lastWriteStoreOp == nullptr &&
879 "multiple simultaneous replacement stores");
880 lastWriteStoreOp = storeOp;
881 }
882
883 if (!lastWriteStoreOp)
884 return;
885
886
888 cast(lastWriteStoreOp).getValueToStore();
889
890
891 if (storeVal.getType() != loadOp.getValue().getType())
892 return;
894
895 memrefsToErase.insert(loadOp.getMemRef());
896
897 loadOpsToErase.push_back(loadOp);
898 }
899
900 template bool
902 affine::AffineReadOpInterface>(
905
906
907
908
909
910
915
917
918 auto writeB = dyn_cast(user);
919 if (!writeB)
920 continue;
921
922
923 if (writeB == writeA)
924 continue;
925
926
927 if (writeB->getParentRegion() != writeA->getParentRegion())
928 continue;
929
930
933
934 if (srcAccess != destAccess)
935 continue;
936
937
938 if (!postDominanceInfo.postDominates(writeB, writeA))
939 continue;
940
941
942
943 if (!affine::hasNoInterveningEffectMemoryEffects::Read(writeA, writeB,
945 continue;
946
947 opsToErase.push_back(writeA);
948 break;
949 }
950 }
951
952
953
954
955
956
957
958 static void loadCSE(AffineReadOpInterface loadA,
963 for (auto *user : loadA.getMemRef().getUsers()) {
964 auto loadB = dyn_cast(user);
965 if (!loadB || loadB == loadA)
966 continue;
967
970
971
972 if (srcAccess != destAccess) {
973 continue;
974 }
975
976
977 if (!domInfo.dominates(loadB, loadA))
978 continue;
979
980
981 if (!affine::hasNoInterveningEffectMemoryEffects::Write(
982 loadB.getOperation(), loadA, mayAlias))
983 continue;
984
985
986
987 if (loadB.getValue().getType() != loadA.getValue().getType())
988 continue;
989
990 loadCandidates.push_back(loadB);
991 }
992
993
994
996 for (AffineReadOpInterface option : loadCandidates) {
997 if (llvm::all_of(loadCandidates, [&](AffineReadOpInterface depStore) {
998 return depStore == option ||
999 domInfo.dominates(option.getOperation(),
1000 depStore.getOperation());
1001 })) {
1002 loadB = option.getValue();
1003 break;
1004 }
1005 }
1006
1007 if (loadB) {
1009
1010 loadOpsToErase.push_back(loadA);
1011 }
1012 }
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1042
1044
1045
1047
1049 return !aliasAnalysis.alias(val1, val2).isNo();
1050 };
1051
1052
1053 f.walk([&](AffineReadOpInterface loadOp) {
1055 });
1056 for (auto *op : opsToErase)
1057 op->erase();
1058 opsToErase.clear();
1059
1060
1061 f.walk([&](AffineWriteOpInterface storeOp) {
1063 });
1064 for (auto *op : opsToErase)
1065 op->erase();
1066 opsToErase.clear();
1067
1068
1069
1070
1071
1072 for (auto memref : memrefsToErase) {
1073
1074 Operation *defOp = memref.getDefiningOp();
1075 if (!defOp || !hasSingleEffectMemoryEffects::Allocate(defOp, memref))
1076
1077
1078 continue;
1079 if (llvm::any_of(memref.getUsers(), [&](Operation *ownerOp) {
1080 return !isa(ownerOp) &&
1081 !hasSingleEffectMemoryEffects::Free(ownerOp, memref);
1082 }))
1083 continue;
1084
1085
1086 for (auto *user : llvm::make_early_inc_range(memref.getUsers()))
1089 }
1090
1091
1092
1093
1094 f.walk([&](AffineReadOpInterface loadOp) {
1096 });
1097 for (auto *op : opsToErase)
1098 op->erase();
1099 }
1100
1101
1102
1104 return isa<AffineMapAccessInterface, memref::LoadOp, memref::StoreOp>(op);
1105 }
1106
1107
1112 bool allowNonDereferencingOps) {
1113 unsigned newMemRefRank = cast(newMemRef.getType()).getRank();
1114 (void)newMemRefRank;
1115 unsigned oldMemRefRank = cast(oldMemRef.getType()).getRank();
1116 (void)oldMemRefRank;
1117 if (indexRemap) {
1118 assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
1119 "symbolic operand count mismatch");
1121 extraOperands.size() + oldMemRefRank + symbolOperands.size());
1122 assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
1123 } else {
1124 assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
1125 }
1126
1127
1128 assert(cast(oldMemRef.getType()).getElementType() ==
1129 cast(newMemRef.getType()).getElementType());
1130
1133 if (opEntry.value() == oldMemRef)
1134 usePositions.push_back(opEntry.index());
1135 }
1136
1137
1138 if (usePositions.empty())
1139 return success();
1140
1141 unsigned memRefOperandPos = usePositions.front();
1142
1144
1145
1147 if (!allowNonDereferencingOps) {
1148
1149
1150
1151 return failure();
1152 }
1153 for (unsigned pos : usePositions)
1155 return success();
1156 }
1157
1158 if (usePositions.size() > 1) {
1159
1160 LLVM_DEBUG(llvm::dbgs()
1161 << "multiple dereferencing uses in a single op not supported");
1162 return failure();
1163 }
1164
1165
1168 unsigned oldMemRefNumIndices = oldMemRefRank;
1169 auto startIdx = op->operand_begin() + memRefOperandPos + 1;
1170 auto affMapAccInterface = dyn_cast(op);
1171 if (affMapAccInterface) {
1172
1173
1174
1176 affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef);
1177 oldMap = cast(oldMapAttrPair.getValue()).getValue();
1178 oldMemRefNumIndices = oldMap.getNumInputs();
1179 }
1180 oldMapOperands.assign(startIdx, startIdx + oldMemRefNumIndices);
1181
1182
1185 oldMemRefOperands.reserve(oldMemRefRank);
1186 if (affMapAccInterface &&
1188 for (auto resultExpr : oldMap.getResults()) {
1191 auto afOp = builder.create(op->getLoc(), singleResMap,
1192 oldMapOperands);
1193 oldMemRefOperands.push_back(afOp);
1194 affineApplyOps.push_back(afOp);
1195 }
1196 } else {
1197 oldMemRefOperands.assign(oldMapOperands.begin(), oldMapOperands.end());
1198 }
1199
1200
1201
1202
1204 remapOperands.reserve(extraOperands.size() + oldMemRefRank +
1205 symbolOperands.size());
1206 remapOperands.append(extraOperands.begin(), extraOperands.end());
1207 remapOperands.append(oldMemRefOperands.begin(), oldMemRefOperands.end());
1208 remapOperands.append(symbolOperands.begin(), symbolOperands.end());
1209
1211 remapOutputs.reserve(oldMemRefRank);
1212 if (indexRemap &&
1214
1215 for (auto resultExpr : indexRemap.getResults()) {
1218 auto afOp = builder.create(op->getLoc(), singleResMap,
1219 remapOperands);
1220 remapOutputs.push_back(afOp);
1221 affineApplyOps.push_back(afOp);
1222 }
1223 } else {
1224
1225 remapOutputs.assign(remapOperands.begin(), remapOperands.end());
1226 }
1228 newMapOperands.reserve(newMemRefRank);
1229
1230
1231 for (Value extraIndex : extraIndices) {
1233 "invalid memory op index");
1234 newMapOperands.push_back(extraIndex);
1235 }
1236
1237
1238 newMapOperands.append(remapOutputs.begin(), remapOutputs.end());
1239
1240
1241 assert(newMapOperands.size() == newMemRefRank);
1246
1247 for (Value value : affineApplyOps)
1248 if (value.use_empty())
1249 value.getDefiningOp()->erase();
1250
1252
1253 state.operands.reserve(op->getNumOperands() + extraIndices.size());
1254
1257
1258 state.operands.push_back(newMemRef);
1259
1260
1261 if (affMapAccInterface) {
1262 state.operands.append(newMapOperands.begin(), newMapOperands.end());
1263 } else {
1264
1265
1266
1267 for (unsigned i = 0; i < newMemRefRank; i++) {
1268 state.operands.push_back(builder.create(
1270 AffineMap::get(newMap.getNumDims(), newMap.getNumSymbols(),
1271 newMap.getResult(i)),
1272 newMapOperands));
1273 }
1274 }
1275
1276
1277 unsigned oldMapNumInputs = oldMapOperands.size();
1278 state.operands.append(op->operand_begin() + memRefOperandPos + 1 +
1279 oldMapNumInputs,
1281
1283 for (auto result : op->getResults())
1284 state.types.push_back(result.getType());
1285
1286
1288 for (auto namedAttr : op->getAttrs()) {
1289 if (affMapAccInterface &&
1290 namedAttr.getName() ==
1291 affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef).getName())
1292 state.attributes.push_back({namedAttr.getName(), newMapAttr});
1293 else
1294 state.attributes.push_back(namedAttr);
1295 }
1296
1297
1298 auto *repOp = builder.create(state);
1301
1302 return success();
1303 }
1304
1309 Operation *postDomOpFilter, bool allowNonDereferencingOps,
1310 bool replaceInDeallocOp) {
1311 unsigned newMemRefRank = cast(newMemRef.getType()).getRank();
1312 (void)newMemRefRank;
1313 unsigned oldMemRefRank = cast(oldMemRef.getType()).getRank();
1314 (void)oldMemRefRank;
1315 if (indexRemap) {
1316 assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
1317 "symbol operand count mismatch");
1319 extraOperands.size() + oldMemRefRank + symbolOperands.size());
1320 assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
1321 } else {
1322 assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
1323 }
1324
1325
1326 assert(cast(oldMemRef.getType()).getElementType() ==
1327 cast(newMemRef.getType()).getElementType());
1328
1329 std::unique_ptr domInfo;
1330 std::unique_ptr postDomInfo;
1331 if (domOpFilter)
1332 domInfo = std::make_unique(
1334
1335 if (postDomOpFilter)
1336 postDomInfo = std::make_unique(
1337 postDomOpFilter->getParentOfType());
1338
1339
1340
1341
1343 for (auto *op : oldMemRef.getUsers()) {
1344
1345 if (domOpFilter && !domInfo->dominates(domOpFilter, op))
1346 continue;
1347
1348
1349 if (postDomOpFilter && !postDomInfo->postDominates(postDomOpFilter, op))
1350 continue;
1351
1352
1353
1354 if (hasSingleEffectMemoryEffects::Free(op, oldMemRef) &&
1355 !replaceInDeallocOp)
1356 continue;
1357
1358
1359
1360
1361 if (!isa(*op)) {
1362 if (!allowNonDereferencingOps) {
1363 LLVM_DEBUG(llvm::dbgs()
1364 << "Memref replacement failed: non-deferencing memref op: \n"
1365 << *op << '\n');
1366 return failure();
1367 }
1368
1369
1371 LLVM_DEBUG(llvm::dbgs() << "Memref replacement failed: use without a "
1372 "memrefs normalizable trait: \n"
1373 << *op << '\n');
1374 return failure();
1375 }
1376 }
1377
1378
1379
1380 opsToReplace.insert(op);
1381 }
1382
1383 for (auto *op : opsToReplace) {
1385 oldMemRef, newMemRef, op, extraIndices, indexRemap, extraOperands,
1386 symbolOperands, allowNonDereferencingOps)))
1387 llvm_unreachable("memref replacement guaranteed to succeed here");
1388 }
1389
1390 return success();
1391 }
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1423
1426 for (auto operand : opInst->getOperands())
1427 if (isa_and_nonnull(operand.getDefiningOp()))
1428 subOperands.push_back(operand);
1429
1430
1433
1434 if (affineApplyOps.empty())
1435 return;
1436
1437
1438
1439 bool localized = true;
1440 for (auto *op : affineApplyOps) {
1441 for (auto result : op->getResults()) {
1442 for (auto *user : result.getUsers()) {
1443 if (user != opInst) {
1444 localized = false;
1445 break;
1446 }
1447 }
1448 }
1449 }
1450 if (localized)
1451 return;
1452
1457
1458
1459 sliceOps->reserve(composedMap.getNumResults());
1460 for (auto resultExpr : composedMap.getResults()) {
1461 auto singleResMap = AffineMap::get(composedMap.getNumDims(),
1462 composedMap.getNumSymbols(), resultExpr);
1463 sliceOps->push_back(builder.create(
1464 opInst->getLoc(), singleResMap, composedOpOperands));
1465 }
1466
1467
1468
1469
1470
1472 for (Value &operand : newOperands) {
1473
1474 unsigned j, f;
1475 for (j = 0, f = subOperands.size(); j < f; j++) {
1476 if (operand == subOperands[j])
1477 break;
1478 }
1479 if (j < subOperands.size())
1480 operand = (*sliceOps)[j];
1481 }
1482 for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++)
1483 opInst->setOperand(idx, newOperands[idx]);
1484 }
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1496
1497
1498
1499
1500
1501
1502
1505 SmallVectorImpl<std::tuple<AffineExpr, unsigned, unsigned>> &tileSizePos) {
1506
1507
1508
1509
1510
1512 unsigned pos = 0;
1516 if (isa(binaryExpr.getRHS()))
1517 floordivExprs.emplace_back(
1518 std::make_tuple(binaryExpr.getLHS(), binaryExpr.getRHS(), pos));
1519 }
1520 pos++;
1521 }
1522
1523 if (floordivExprs.empty()) {
1525 return success();
1526 }
1527
1528
1529
1530 for (std::tuple<AffineExpr, AffineExpr, unsigned> fexpr : floordivExprs) {
1531 AffineExpr floordivExprLHS = std::get<0>(fexpr);
1532 AffineExpr floordivExprRHS = std::get<1>(fexpr);
1533 unsigned floordivPos = std::get<2>(fexpr);
1534
1535
1536
1537
1538
1539
1540
1541
1542 bool found = false;
1543 pos = 0;
1545 bool notTiled = false;
1546 if (pos != floordivPos) {
1548 if (e == floordivExprLHS) {
1550 AffineBinaryOpExpr binaryExpr = cast(expr);
1551
1552 if (floordivExprLHS == binaryExpr.getLHS() &&
1553 floordivExprRHS == binaryExpr.getRHS()) {
1554
1555
1556 if (!found) {
1557 tileSizePos.emplace_back(
1558 std::make_tuple(binaryExpr.getRHS(), floordivPos, pos));
1559 found = true;
1560 } else {
1561
1562
1563
1564 notTiled = true;
1565 }
1566 } else {
1567
1568
1569
1570 notTiled = true;
1571 }
1572 } else {
1573
1574
1575
1576 notTiled = true;
1577 }
1578 }
1579 });
1580 }
1581 if (notTiled) {
1583 return success();
1584 }
1585 pos++;
1586 }
1587 }
1588 return success();
1589 }
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601 static bool
1605
1606
1608 return expr
1610 if (isa(e) &&
1611 llvm::any_of(inMemrefTypeDynDims, [&](unsigned dim) {
1613 }))
1616 })
1617 .wasInterrupted();
1618 }
1619
1620
1623
1624
1625
1628 switch (pat) {
1630 binaryExpr = cast(oldMapOutput);
1631 newMapOutput = binaryExpr.getRHS();
1632 break;
1634 binaryExpr = cast(oldMapOutput);
1637 break;
1638 default:
1639 newMapOutput = oldMapOutput;
1640 }
1641 return newMapOutput;
1642 }
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676 template
1678 MemRefType newMemRefType, AffineMap map,
1679 AllocLikeOp allocOp, OpBuilder b,
1681
1684 unsigned dynIdx = 0;
1685 for (unsigned d = 0; d < oldMemRefType.getRank(); ++d) {
1686 if (oldMemRefShape[d] < 0) {
1687
1688 inAffineApply.emplace_back(allocOp.getDynamicSizes()[dynIdx]);
1689 dynIdx++;
1690 } else {
1691
1693 inAffineApply.emplace_back(
1694 b.createarith::ConstantOp(allocOp.getLoc(), constantAttr));
1695 }
1696 }
1697
1698
1699
1700 unsigned newDimIdx = 0;
1705 if (newMemRefShape[newDimIdx] < 0) {
1706
1708 for (auto pos : tileSizePos) {
1709 if (newDimIdx == std::get<1>(pos))
1711 else if (newDimIdx == std::get<2>(pos))
1713 }
1717 Value affineApp =
1718 b.create(allocOp.getLoc(), newMap, inAffineApply);
1719 newDynamicSizes.emplace_back(affineApp);
1720 }
1721 newDimIdx++;
1722 }
1723 }
1724
1725 template
1727 MemRefType memrefType = allocOp.getType();
1729
1730
1731
1733 if (newMemRefType == memrefType)
1734
1735
1736 return failure();
1737
1738 Value oldMemRef = allocOp.getResult();
1739
1741 AffineMap layoutMap = memrefType.getLayout().getAffineMap();
1742 AllocLikeOp newAlloc;
1743
1744
1747 if (newMemRefType.getNumDynamicDims() > 0 && !tileSizePos.empty()) {
1748 auto oldMemRefType = cast(oldMemRef.getType());
1751 newDynamicSizes);
1752
1753 newAlloc =
1754 b.create(allocOp.getLoc(), newMemRefType, newDynamicSizes,
1755 allocOp.getAlignmentAttr());
1756 } else {
1757 newAlloc = b.create(allocOp.getLoc(), newMemRefType,
1758 allocOp.getAlignmentAttr());
1759 }
1760
1762 {},
1763 layoutMap,
1764 {},
1765 symbolOperands,
1766 nullptr,
1767 nullptr,
1768 true))) {
1769
1770 newAlloc.erase();
1771 return failure();
1772 }
1773
1774
1776 return hasSingleEffectMemoryEffects::Free(op, oldMemRef);
1777 }));
1779 allocOp.erase();
1780 return success();
1781 }
1782
1783 LogicalResult
1785 MemRefType memrefType = reinterpretCastOp.getType();
1786 AffineMap oldLayoutMap = memrefType.getLayout().getAffineMap();
1787 Value oldMemRef = reinterpretCastOp.getResult();
1788
1789
1791 return success();
1792
1793
1794
1796 if (newMemRefType == memrefType)
1797
1798 return failure();
1799
1800 uint64_t newRank = newMemRefType.getRank();
1804 Location loc = reinterpretCastOp.getLoc();
1805
1809 ValueRange oldSizes = reinterpretCastOp.getSizes();
1810 unsigned idx = 0;
1812
1813
1814 for (unsigned i = 0, e = memrefType.getRank(); i < e; i++) {
1815 if (memrefType.isDynamicDim(i))
1816 mapOperands[i] =
1817 b.createarith::SubIOp(loc, oldSizes[0].getType(), oldSizes[idx++],
1819 else
1821 }
1822 for (unsigned i = 0, e = oldStrides.size(); i < e; i++)
1823 mapOperands[memrefType.getRank() + i] = oldStrides[i];
1826
1827 for (unsigned i = 0; i < newRank; i++) {
1828 if (!newMemRefType.isDynamicDim(i))
1829 continue;
1830 newSizes.push_back(b.create(
1831 loc,
1834 mapOperands));
1835 }
1836 for (unsigned i = 0, e = newSizes.size(); i < e; i++) {
1837 newSizes[i] =
1838 b.createarith::AddIOp(loc, newSizes[i].getType(), newSizes[i],
1840 }
1841
1842 auto newReinterpretCast = b.creatememref::ReinterpretCastOp(
1843 loc, newMemRefType, reinterpretCastOp.getSource(),
1846 newStaticOffsets,
1847 newShape,
1848 newStaticStrides);
1849
1850
1852 newReinterpretCast,
1853 {},
1854 oldLayoutMap,
1855 {},
1856 oldStrides,
1857 nullptr,
1858 nullptr,
1859 true))) {
1860
1861 newReinterpretCast.erase();
1862 return failure();
1863 }
1864
1866 reinterpretCastOp.erase();
1867 return success();
1868 }
1869
1870 template LogicalResult
1871 mlir::affine::normalizeMemRefmemref::AllocaOp(memref::AllocaOp op);
1872 template LogicalResult
1873 mlir::affine::normalizeMemRefmemref::AllocOp(memref::AllocOp op);
1874
1876 unsigned rank = memrefType.getRank();
1877 if (rank == 0)
1878 return memrefType;
1879
1880 if (memrefType.getLayout().isIdentity()) {
1881
1882
1883 return memrefType;
1884 }
1885 AffineMap layoutMap = memrefType.getLayout().getAffineMap();
1886 unsigned numSymbolicOperands = layoutMap.getNumSymbols();
1887
1888
1889
1890
1891
1892
1893
1896 if (memrefType.getNumDynamicDims() > 0 && tileSizePos.empty())
1897 return memrefType;
1898
1899
1900
1902
1905 for (unsigned d = 0; d < rank; ++d) {
1906
1907 if (shape[d] > 0) {
1908 fac.addBound(BoundType::LB, d, 0);
1909 fac.addBound(BoundType::UB, d, shape[d] - 1);
1910 } else {
1911 memrefTypeDynDims.emplace_back(d);
1912 }
1913 }
1914
1915
1918 return memrefType;
1919
1920
1923 MLIRContext *context = memrefType.getContext();
1924 for (unsigned d = 0; d < newRank; ++d) {
1925
1927 newShape[d] = ShapedType::kDynamic;
1928 continue;
1929 }
1930
1931 std::optional<int64_t> ubConst = fac.getConstantBound64(BoundType::UB, d);
1932
1933
1934
1935
1936 if (!ubConst.has_value() || *ubConst < 0) {
1937 LLVM_DEBUG(llvm::dbgs()
1938 << "can't normalize map due to unknown/invalid upper bound");
1939 return memrefType;
1940 }
1941
1942 newShape[d] = *ubConst + 1;
1943 }
1944
1945
1946 auto newMemRefType =
1951 return newMemRefType;
1952 }
1953
1963 return result;
1964 }
1965
1966
1967
1975 }
1976
1977 FailureOr<SmallVector>
1980 if (hasOuterBound)
1981 basis = basis.drop_front();
1982
1983
1986 for (OpFoldResult basisElem : llvm::reverse(basis)) {
1987 FailureOr nextProd =
1989 if (failed(nextProd))
1990 return failure();
1991 basisProd = *nextProd;
1993 }
1994
1996 results.reserve(divisors.size() + 1);
1997 Value residual = linearIndex;
1998 for (Value divisor : llvm::reverse(divisors)) {
2000 results.push_back(divMod.quotient);
2002 }
2003 results.push_back(residual);
2004 return results;
2005 }
2006
2007 FailureOr<SmallVector>
2010 bool hasOuterBound) {
2011 if (hasOuterBound)
2012 basis = basis.drop_front();
2013
2014
2017 for (OpFoldResult basisElem : llvm::reverse(basis)) {
2018 FailureOr nextProd =
2020 if (failed(nextProd))
2021 return failure();
2022 basisProd = *nextProd;
2024 }
2025
2027 results.reserve(divisors.size() + 1);
2028 Value residual = linearIndex;
2029 for (Value divisor : llvm::reverse(divisors)) {
2031 results.push_back(divMod.quotient);
2033 }
2034 results.push_back(residual);
2035 return results;
2036 }
2037
2042 }
2043
2047 assert(multiIndex.size() == basis.size() ||
2048 multiIndex.size() == basis.size() + 1);
2050
2051
2052
2053 if (multiIndex.size() == basis.size() + 1)
2055
2056 for (size_t i = 0; i < basis.size(); ++i) {
2058 }
2059
2062 strides.reserve(stridesAffine.size());
2063 llvm::transform(stridesAffine, std::back_inserter(strides),
2064 [&builder, &basis, loc](AffineExpr strideExpr) {
2066 builder, loc, strideExpr, basis);
2067 });
2068
2069 auto &&[linearIndexExpr, multiIndexAndStrides] = computeLinearIndex(
2072 multiIndexAndStrides);
2073 }
static bool mayHaveEffect(Operation *srcMemOp, Operation *destMemOp, unsigned minSurroundingLoops)
Returns true if srcMemOp may have an effect on destMemOp within the scope of the outermost minSurroun...
static void createNewDynamicSizes(MemRefType oldMemRefType, MemRefType newMemRefType, AffineMap map, AllocLikeOp allocOp, OpBuilder b, SmallVectorImpl< Value > &newDynamicSizes)
Create new maps to calculate each dimension size of newMemRefType, and create newDynamicSizes from th...
static bool isDereferencingOp(Operation *op)
static LogicalResult getTileSizePos(AffineMap map, SmallVectorImpl< std::tuple< AffineExpr, unsigned, unsigned >> &tileSizePos)
Check if map is a tiled layout.
TileExprPattern
Enum to set patterns of affine expr in tiled-layout map.
static void promoteIfBlock(AffineIfOp ifOp, bool elseBlock)
Promotes the then or the else block of ifOp (depending on whether elseBlock is false or true) into if...
static bool isNormalizedMemRefDynamicDim(unsigned dim, AffineMap layoutMap, SmallVectorImpl< unsigned > &inMemrefTypeDynDims)
Check if dim dimension of memrefType with layoutMap becomes dynamic after normalization.
static FailureOr< OpFoldResult > composedAffineMultiply(OpBuilder &b, Location loc, OpFoldResult lhs, OpFoldResult rhs)
Create an affine map that computes lhs * rhs, composing in any other affine maps.
static void loadCSE(AffineReadOpInterface loadA, SmallVectorImpl< Operation * > &loadOpsToErase, DominanceInfo &domInfo, llvm::function_ref< bool(Value, Value)> mayAlias)
static AffineExpr createDimSizeExprForTiledLayout(AffineExpr oldMapOutput, TileExprPattern pat)
Create affine expr to calculate dimension size for a tiled-layout map.
static Operation * getOutermostInvariantForOp(AffineIfOp ifOp)
Returns the outermost affine.for/parallel op that the ifOp is invariant on.
static void findUnusedStore(AffineWriteOpInterface writeA, SmallVectorImpl< Operation * > &opsToErase, PostDominanceInfo &postDominanceInfo, llvm::function_ref< bool(Value, Value)> mayAlias)
static bool mustReachAtInnermost(const MemRefAccess &srcAccess, const MemRefAccess &destAccess)
Returns true if the memory operation of destAccess depends on srcAccess inside of the innermost commo...
static void forwardStoreToLoad(AffineReadOpInterface loadOp, SmallVectorImpl< Operation * > &loadOpsToErase, SmallPtrSetImpl< Value > &memrefsToErase, DominanceInfo &domInfo, llvm::function_ref< bool(Value, Value)> mayAlias)
Attempt to eliminate loadOp by replacing it with a value stored into memory which the load is guarant...
static void visit(Operation *op, DenseSet< Operation * > &visited)
Visits all the pdl.operand(s), pdl.result(s), and pdl.operation(s) connected to the given operation.
static bool mayAlias(Value first, Value second)
Returns true if two values may be referencing aliasing memory.
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound)
Affine binary operation expression.
AffineExpr getLHS() const
AffineExpr getRHS() const
An integer constant appearing in affine expression.
A dimensional identifier appearing in an affine expression.
unsigned getPosition() const
See documentation for AffineExprVisitorBase.
Base type for affine expression.
AffineExpr floorDiv(uint64_t v) const
RetT walk(FnT &&callback) const
Walk all of the AffineExpr's in this expression in postorder.
AffineExpr ceilDiv(uint64_t v) const
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
MLIRContext * getContext() const
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
unsigned getNumSymbols() const
unsigned getNumDims() const
ArrayRef< AffineExpr > getResults() const
unsigned getNumResults() const
unsigned getNumInputs() const
AffineExpr getResult(unsigned idx) const
AffineMap compose(AffineMap map) const
Returns the AffineMap resulting from composing this with map.
bool isIdentity() const
Returns true if this affine map is an identity affine map.
A symbolic identifier appearing in an affine expression.
unsigned getPosition() const
This class represents the main alias analysis interface in MLIR.
AliasResult alias(Value lhs, Value rhs)
Given two values, return their aliasing behavior.
bool isNo() const
Returns if this result indicates no possibility of aliasing.
This class represents an argument of a Block.
Block represents an ordered list of Operations.
OpListType::iterator iterator
SuccessorRange getSuccessors()
Operation * getTerminator()
Get the terminator operation of this block.
OpListType & getOperations()
IntegerAttr getIndexAttr(int64_t value)
IntegerAttr getIntegerAttr(Type type, int64_t value)
AffineMap getMultiDimIdentityMap(unsigned rank)
BoolAttr getBoolAttr(bool value)
StringAttr getStringAttr(const Twine &bytes)
AffineExpr getAffineDimExpr(unsigned position)
AffineMap getConstantAffineMap(int64_t val)
Returns a single constant result affine map with 0 dimensions and 0 symbols.
MLIRContext * getContext() const
A class for computing basic dominance information.
bool dominates(Operation *a, Operation *b) const
Return true if operation A dominates operation B, i.e.
LogicalResult composeMatchingMap(AffineMap other)
Composes an affine map whose dimensions and symbols match one to one with the dimensions and symbols ...
void projectOut(Value val)
Projects out the variable that is associate with Value.
This class represents a frozen set of patterns that can be processed by a pattern applicator.
This class allows control over how the GreedyPatternRewriteDriver works.
GreedyRewriteConfig & setStrictness(GreedyRewriteStrictness mode)
This is a utility class for mapping one set of IR entities to another.
void clear()
Clears all mappings held by the mapper.
ImplicitLocOpBuilder maintains a 'current location', allowing use of the create<> method without spec...
Location getLoc() const
Accessors for the implied location.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
MLIRContext is the top-level object for a collection of MLIR operations.
This is a builder type that keeps local references to arguments.
Builder & setLayout(MemRefLayoutAttrInterface newLayout)
Builder & setShape(ArrayRef< int64_t > newShape)
NamedAttribute represents a combination of a name and an Attribute value.
Attribute getValue() const
Return the value of the attribute.
This class helps build Operations.
static OpBuilder atBlockBegin(Block *block, Listener *listener=nullptr)
Create a builder and set the insertion point to before the first operation in the block but still ins...
Block::iterator getInsertionPoint() const
Returns the current insertion point of the builder.
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Block * getInsertionBlock() const
Return the block the current insertion point belongs to.
This class represents a single result from folding an operation.
This trait indicates that the memory effects of an operation includes the effects of operations neste...
This class provides the API for ops that are known to be isolated from above.
This class implements the operand iterators for the Operation class.
Operation is the basic unit of execution within MLIR.
Value getOperand(unsigned idx)
bool hasTrait()
Returns true if the operation was registered with a particular trait, e.g.
void setOperand(unsigned idx, Value value)
operand_iterator operand_begin()
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
Location getLoc()
The source location the operation was defined or derived from.
unsigned getNumOperands()
Operation * getParentOp()
Returns the closest surrounding operation that contains this operation or nullptr if this is a top-le...
ArrayRef< NamedAttribute > getAttrs()
Return all of the attributes on this operation.
Block * getBlock()
Returns the operation block that contains this operation.
OpTy getParentOfType()
Return the closest surrounding parent operation that is of type 'OpTy'.
operand_iterator operand_end()
Region & getRegion(unsigned index)
Returns the region held by this operation at position 'index'.
OperationName getName()
The name of an operation is the key identifier for it.
operand_range getOperands()
Returns an iterator on the underlying Value's.
bool isAncestor(Operation *other)
Return true if this operation is an ancestor of the other operation.
void replaceAllUsesWith(ValuesT &&values)
Replace all uses of results of this operation with the provided 'values'.
void setOperands(ValueRange operands)
Replace the current operands of this operation with the ones provided in 'operands'.
user_range getUsers()
Returns a range of all users.
Region * getParentRegion()
Returns the region to which the instruction belongs.
result_range getResults()
void erase()
Remove this operation from its parent block and delete it.
unsigned getNumResults()
Return the number of results held by this operation.
A class for computing basic postdominance information.
bool postDominates(Operation *a, Operation *b) const
Return true if operation A postdominates operation B.
This class contains a list of basic blocks and a link to the parent operation it is attached to.
Region * getParentRegion()
Return the region containing this region or nullptr if the region is attached to a top-level operatio...
bool isAncestor(Region *other)
Return true if this region is ancestor of the other region.
void takeBody(Region &other)
Takes body of another region (that region will have no body after this operation completes).
This class provides an abstraction over the different types of ranges over Values.
type_range getType() const
type_range getTypes() const
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
void replaceAllUsesExcept(Value newValue, const SmallPtrSetImpl< Operation * > &exceptions)
Replace all uses of 'this' value with 'newValue', updating anything in the IR that uses 'this' to use...
void replaceAllUsesWith(Value newValue)
Replace all uses of 'this' value with the new value, updating anything in the IR that uses 'this' to ...
user_range getUsers() const
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
static WalkResult advance()
static WalkResult interrupt()
An AffineValueMap is an affine map plus its ML value operands and results for analysis purposes.
LogicalResult canonicalize()
Attempts to canonicalize the map and operands.
unsigned getNumSymbols() const
ArrayRef< Value > getOperands() const
unsigned getNumDims() const
AffineExpr getResult(unsigned i)
AffineMap getAffineMap() const
unsigned getNumResults() const
static void difference(const AffineValueMap &a, const AffineValueMap &b, AffineValueMap *res)
Return the value map that is the difference of value maps 'a' and 'b', represented as an affine map a...
FlatAffineValueConstraints is an extension of FlatLinearValueConstraints with helper functions for Af...
LogicalResult addBound(presburger::BoundType type, unsigned pos, AffineMap boundMap, ValueRange operands)
Adds a bound for the variable at the specified position with constraints being drawn from the specifi...
Specialization of arith.constant op that returns an integer of index type.
std::optional< int64_t > getConstantBound64(BoundType type, unsigned pos) const
The same, but casts to int64_t.
unsigned getNumVars() const
unsigned getNumLocalVars() const
std::optional< SmallVector< Value, 8 > > expandAffineMap(OpBuilder &builder, Location loc, AffineMap affineMap, ValueRange operands)
Create a sequence of operations that implement the affineMap applied to the given operands (as it it ...
void fullyComposeAffineMapAndOperands(AffineMap *map, SmallVectorImpl< Value > *operands)
Given an affine map map and its input operands, this method composes into map, maps of AffineApplyOps...
void affineScalarReplace(func::FuncOp f, DominanceInfo &domInfo, PostDominanceInfo &postDomInfo, AliasAnalysis &analysis)
Replace affine store and load accesses by scalars by forwarding stores to loads and eliminate invaria...
LogicalResult promoteIfSingleIteration(AffineForOp forOp)
Promotes the loop body of a AffineForOp to its containing block if the loop was known to have a singl...
bool isValidDim(Value value)
Returns true if the given Value can be used as a dimension id in the region of the closest surroundin...
Value expandAffineExpr(OpBuilder &builder, Location loc, AffineExpr expr, ValueRange dimValues, ValueRange symbolValues)
Emit code that computes the given affine expression using standard arithmetic operations applied to t...
unsigned getNumCommonSurroundingLoops(Operation &a, Operation &b)
Returns the number of surrounding loops common to both A and B.
void normalizeAffineParallel(AffineParallelOp op)
Normalize a affine.parallel op so that lower bounds are 0 and steps are 1.
DependenceResult checkMemrefAccessDependence(const MemRefAccess &srcAccess, const MemRefAccess &dstAccess, unsigned loopDepth, FlatAffineValueConstraints *dependenceConstraints=nullptr, SmallVector< DependenceComponent, 2 > *dependenceComponents=nullptr, bool allowRAR=false)
LogicalResult affineParallelize(AffineForOp forOp, ArrayRef< LoopReduction > parallelReductions={}, AffineParallelOp *resOp=nullptr)
Replaces a parallel affine.for op with a 1-d affine.parallel op.
AffineApplyOp makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Returns a composed AffineApplyOp by composing map and operands with other AffineApplyOps supplying th...
void canonicalizeMapAndOperands(AffineMap *map, SmallVectorImpl< Value > *operands)
Modifies both map and operands in-place so as to:
void getReachableAffineApplyOps(ArrayRef< Value > operands, SmallVectorImpl< Operation * > &affineApplyOps)
Returns in affineApplyOps, the sequence of those AffineApplyOp Operations that are reachable via a se...
LogicalResult normalizeAffineFor(AffineForOp op, bool promoteSingleIter=false)
Normalize an affine.for op.
Region * getAffineAnalysisScope(Operation *op)
Returns the closest region enclosing op that is held by a non-affine operation; nullptr if there is n...
bool isValidSymbol(Value value)
Returns true if the given value can be used as a symbol in the region of the closest surrounding op t...
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
bool hasDependence(DependenceResult result)
Utility function that returns true if the provided DependenceResult corresponds to a dependence resul...
MemRefType normalizeMemRefType(MemRefType memrefType)
Normalizes memrefType so that the affine layout map of the memref is transformed to an identity map w...
LogicalResult normalizeMemRef(AllocLikeOp op)
Rewrites the memref defined by alloc or reinterpret_cast op to have an identity layout map and update...
FailureOr< SmallVector< Value > > delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex, ArrayRef< Value > basis, bool hasOuterBound=true)
Generate the IR to delinearize linearIndex given the basis and return the multi-index.
OpFoldResult linearizeIndex(ArrayRef< OpFoldResult > multiIndex, ArrayRef< OpFoldResult > basis, ImplicitLocOpBuilder &builder)
DivModValue getDivMod(OpBuilder &b, Location loc, Value lhs, Value rhs)
Create IR to calculate (div lhs, rhs) and (mod lhs, rhs).
bool hasNoInterveningEffect(Operation *start, T memOp, llvm::function_ref< bool(Value, Value)> mayAlias)
Ensure that all operations that could be executed after start (noninclusive) and prior to memOp (e....
void createAffineComputationSlice(Operation *opInst, SmallVectorImpl< AffineApplyOp > *sliceOps)
Given an operation, inserts one or more single result affine apply operations, results of which are e...
LogicalResult hoistAffineIfOp(AffineIfOp ifOp, bool *folded=nullptr)
Hoists out affine.if/else to as high as possible, i.e., past all invariant affine....
bool noDependence(DependenceResult result)
Returns true if the provided DependenceResult corresponds to the absence of a dependence.
AffineExpr substWithMin(AffineExpr e, AffineExpr dim, AffineExpr min, AffineExpr max, bool positivePath=true)
Traverse e and return an AffineExpr where all occurrences of dim have been replaced by either:
LogicalResult replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef, ArrayRef< Value > extraIndices={}, AffineMap indexRemap=AffineMap(), ArrayRef< Value > extraOperands={}, ArrayRef< Value > symbolOperands={}, Operation *domOpFilter=nullptr, Operation *postDomOpFilter=nullptr, bool allowNonDereferencingOps=false, bool replaceInDeallocOp=false)
Replaces all "dereferencing" uses of oldMemRef with newMemRef while optionally remapping the old memr...
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Include the generated interface declarations.
AffineMap simplifyAffineMap(AffineMap map)
Simplifies an affine map by simplifying its underlying AffineExpr results.
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
std::pair< AffineExpr, SmallVector< OpFoldResult > > computeLinearIndex(OpFoldResult sourceOffset, ArrayRef< OpFoldResult > strides, ArrayRef< OpFoldResult > indices)
Compute linear index from provided strides and indices, assuming strided layout.
LogicalResult applyPatternsGreedily(Region ®ion, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr)
Rewrite ops in the given region, which must be isolated from above, by repeatedly applying the highes...
SmallVector< int64_t > computeStrides(ArrayRef< int64_t > sizes)
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
LogicalResult applyOpPatternsGreedily(ArrayRef< Operation * > ops, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr, bool *allErased=nullptr)
Rewrite the specified ops by repeatedly applying the highest benefit patterns in a greedy worklist dr...
@ CeilDiv
RHS of ceildiv is always a constant or a symbolic expression.
@ Mod
RHS of mod is always a constant or a symbolic expression with a positive value.
@ FloorDiv
RHS of floordiv is always a constant or a symbolic expression.
AffineExpr getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs, AffineExpr rhs)
const FrozenRewritePatternSet & patterns
void bindSymbols(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to SymbolExpr at positions: [0 .
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context)
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
@ ExistingOps
Only pre-existing ops are processed.
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
AffineExpr getAffineSymbolExpr(unsigned position, MLIRContext *context)
The following effect indicates that the operation reads from some resource.
This represents an operation in an abstracted form, suitable for use with the builder APIs.
Checks whether two accesses to the same memref access the same element.
Holds the result of (div a, b) and (mod a, b).
A description of a (parallelizable) reduction in an affine loop.
arith::AtomicRMWKind kind
Reduction kind.
Value value
The value being reduced.
Encapsulates a memref load or store access information.
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.