MLIR: lib/Dialect/MemRef/IR/MemRefOps.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallBitVector.h"
26
27using namespace mlir;
29
30
31
35 return arith::ConstantOp::materialize(builder, value, type, loc);
36}
37
38
39
40
41
42
43
44
46 bool folded = false;
48 auto cast = operand.get().getDefiningOp();
49 if (cast && operand.get() != inner &&
50 !llvm::isa(cast.getOperand().getType())) {
51 operand.set(cast.getOperand());
52 folded = true;
53 }
54 }
56}
57
58
59
61 if (auto memref = llvm::dyn_cast(type))
62 return RankedTensorType::get(memref.getShape(), memref.getElementType());
63 if (auto memref = llvm::dyn_cast(type))
64 return UnrankedTensorType::get(memref.getElementType());
65 return NoneType::get(type.getContext());
66}
67
70 auto memrefType = llvm::cast(value.getType());
71 if (memrefType.isDynamicDim(dim))
72 return builder.createOrFoldmemref::DimOp(loc, value, dim);
73
74 return builder.getIndexAttr(memrefType.getDimSize(dim));
75}
76
79 auto memrefType = llvm::cast(value.getType());
81 for (int64_t i = 0; i < memrefType.getRank(); ++i)
84}
85
86
87
88
89
90
91
92
93
94
95
98 assert(constValues.size() == values.size() &&
99 "incorrect number of const values");
100 for (auto [i, cstVal] : llvm::enumerate(constValues)) {
102 if (ShapedType::isStatic(cstVal)) {
103
105 continue;
106 }
108
110 }
111 }
112}
113
114
115
116static std::tuple<MemorySpaceCastOpInterface, PtrLikeTypeInterface, Type>
118 MemorySpaceCastOpInterface castOp =
119 MemorySpaceCastOpInterface::getIfPromotableCast(src);
120
121
122 if (!castOp)
123 return {};
124
125
126
127 FailureOr srcTy = resultTy.clonePtrWith(
128 castOp.getSourcePtr().getType().getMemorySpace(), std::nullopt);
129 if (failed(srcTy))
130 return {};
131
132 FailureOr tgtTy = resultTy.clonePtrWith(
133 castOp.getTargetPtr().getType().getMemorySpace(), std::nullopt);
134 if (failed(tgtTy))
135 return {};
136
137
138 if (!castOp.isValidMemorySpaceCast(*tgtTy, *srcTy))
139 return {};
140
141 return std::make_tuple(castOp, *tgtTy, *srcTy);
142}
143
144
145
146template
147static FailureOr<std::optional<SmallVector>>
151
152 if (!castOp)
153 return failure();
154
155
157 llvm::append_range(operands, op->getOperands());
159
160
161 auto newOp = ConcreteOpTy::create(
162 builder, op.getLoc(), TypeRange(resTy), operands, op.getProperties(),
163 llvm::to_vector_of(op->getDiscardableAttrs()));
164
165
166 MemorySpaceCastOpInterface result = castOp.cloneMemorySpaceCastOp(
167 builder, tgtTy,
169 return std::optional<SmallVector>(
171}
172
173
174
175
176
177void AllocOp::getAsmResultNames(
179 setNameFn(getResult(), "alloc");
180}
181
182void AllocaOp::getAsmResultNames(
184 setNameFn(getResult(), "alloca");
185}
186
187template
189 static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value,
190 "applies to only alloc or alloca");
191 auto memRefType = llvm::dyn_cast(op.getResult().getType());
192 if (!memRefType)
193 return op.emitOpError("result must be a memref");
194
195 if (op.getDynamicSizes().size() != memRefType.getNumDynamicDims())
196 return op.emitOpError("dimension operand count does not equal memref "
197 "dynamic dimension count");
198
199 unsigned numSymbols = 0;
200 if (!memRefType.getLayout().isIdentity())
201 numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols();
202 if (op.getSymbolOperands().size() != numSymbols)
203 return op.emitOpError("symbol operand count does not equal memref symbol "
204 "count: expected ")
205 << numSymbols << ", got " << op.getSymbolOperands().size();
206
208}
209
210LogicalResult AllocOp::verify() { return verifyAllocLikeOp(*this); }
211
212LogicalResult AllocaOp::verify() {
213
216 "requires an ancestor op with AutomaticAllocationScope trait");
217
219}
220
221namespace {
222
223template
224struct SimplifyAllocConst : public OpRewritePattern {
225 using OpRewritePattern::OpRewritePattern;
226
227 LogicalResult matchAndRewrite(AllocLikeOp alloc,
228 PatternRewriter &rewriter) const override {
229
230
231 if (llvm::none_of(alloc.getDynamicSizes(), [](Value operand) {
232 APInt constSizeArg;
233 if (!matchPattern(operand, m_ConstantInt(&constSizeArg)))
234 return false;
235 return constSizeArg.isNonNegative();
236 }))
237 return failure();
238
239 auto memrefType = alloc.getType();
240
241
242
243 SmallVector<int64_t, 4> newShapeConstants;
244 newShapeConstants.reserve(memrefType.getRank());
245 SmallVector<Value, 4> dynamicSizes;
246
247 unsigned dynamicDimPos = 0;
248 for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) {
249 int64_t dimSize = memrefType.getDimSize(dim);
250
251 if (ShapedType::isStatic(dimSize)) {
252 newShapeConstants.push_back(dimSize);
253 continue;
254 }
255 auto dynamicSize = alloc.getDynamicSizes()[dynamicDimPos];
256 APInt constSizeArg;
258 constSizeArg.isNonNegative()) {
259
260 newShapeConstants.push_back(constSizeArg.getZExtValue());
261 } else {
262
263 newShapeConstants.push_back(ShapedType::kDynamic);
264 dynamicSizes.push_back(dynamicSize);
265 }
266 dynamicDimPos++;
267 }
268
269
270 MemRefType newMemRefType =
271 MemRefType::Builder(memrefType).setShape(newShapeConstants);
272 assert(dynamicSizes.size() == newMemRefType.getNumDynamicDims());
273
274
275 auto newAlloc = AllocLikeOp::create(rewriter, alloc.getLoc(), newMemRefType,
276 dynamicSizes, alloc.getSymbolOperands(),
277 alloc.getAlignmentAttr());
278
279 rewriter.replaceOpWithNewOp(alloc, alloc.getType(), newAlloc);
281 }
282};
283
284
285template
287 using OpRewritePattern::OpRewritePattern;
288
289 LogicalResult matchAndRewrite(T alloc,
290 PatternRewriter &rewriter) const override {
291 if (llvm::any_of(alloc->getUsers(), [&](Operation *op) {
292 if (auto storeOp = dyn_cast(op))
293 return storeOp.getValue() == alloc;
294 return !isa(op);
295 }))
296 return failure();
297
298 for (Operation *user : llvm::make_early_inc_range(alloc->getUsers()))
300
303 }
304};
305}
306
307void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results,
309 results.add<SimplifyAllocConst, SimplifyDeadAlloc>(context);
310}
311
312void AllocaOp::getCanonicalizationPatterns(RewritePatternSet &results,
314 results.add<SimplifyAllocConst, SimplifyDeadAlloc>(
315 context);
316}
317
318
319
320
321
322LogicalResult ReallocOp::verify() {
323 auto sourceType = llvm::cast(getOperand(0).getType());
324 MemRefType resultType = getType();
325
326
327 if (!sourceType.getLayout().isIdentity())
328 return emitError("unsupported layout for source memref type ")
329 << sourceType;
330
331
332 if (!resultType.getLayout().isIdentity())
333 return emitError("unsupported layout for result memref type ")
334 << resultType;
335
336
337 if (sourceType.getMemorySpace() != resultType.getMemorySpace())
338 return emitError("different memory spaces specified for source memref "
339 "type ")
340 << sourceType << " and result memref type " << resultType;
341
342
343 if (sourceType.getElementType() != resultType.getElementType())
344 return emitError("different element types specified for source memref "
345 "type ")
346 << sourceType << " and result memref type " << resultType;
347
348
349 if (resultType.getNumDynamicDims() && !getDynamicResultSize())
350 return emitError("missing dimension operand for result type ")
351 << resultType;
352 if (!resultType.getNumDynamicDims() && getDynamicResultSize())
353 return emitError("unnecessary dimension operand for result type ")
354 << resultType;
355
357}
358
359void ReallocOp::getCanonicalizationPatterns(RewritePatternSet &results,
361 results.add<SimplifyDeadAlloc>(context);
362}
363
364
365
366
367
369 bool printBlockTerminators = false;
370
371 p << ' ';
372 if (!getResults().empty()) {
373 p << " -> (" << getResultTypes() << ")";
374 printBlockTerminators = true;
375 }
376 p << ' ';
378 false,
379 printBlockTerminators);
381}
382
384
385 result.regions.reserve(1);
387
388
390 return failure();
391
392
393 if (parser.parseRegion(*bodyRegion, {}))
394 return failure();
395 AllocaScopeOp::ensureTerminator(*bodyRegion, parser.getBuilder(),
397
398
400 return failure();
401
403}
404
405void AllocaScopeOp::getSuccessorRegions(
408 regions.push_back(RegionSuccessor(getOperation(), getResults()));
409 return;
410 }
411
413}
414
415
416
418 MemoryEffectOpInterface interface = dyn_cast(op);
419 if (!interface)
420 return false;
422 if (auto effect =
423 interface.getEffectOnValueMemoryEffects::Allocate(res)) {
424 if (isaSideEffects::AutomaticAllocationScopeResource(
425 effect->getResource()))
426 return true;
427 }
428 }
429 return false;
430}
431
432
433
434
435
437
438
440 return false;
441 MemoryEffectOpInterface interface = dyn_cast(op);
442 if (!interface)
443 return true;
445 if (auto effect =
446 interface.getEffectOnValueMemoryEffects::Allocate(res)) {
447 if (isaSideEffects::AutomaticAllocationScopeResource(
448 effect->getResource()))
449 return true;
450 }
451 }
452 return false;
453}
454
455
456
457
458
464
465
466
469
472 bool hasPotentialAlloca =
474 if (alloc == op)
481 }).wasInterrupted();
482
483
484
485 if (hasPotentialAlloca) {
486
487
489 return failure();
491 return failure();
492 }
493
494 Block *block = &op.getRegion().front();
499 rewriter.eraseOp(terminator);
501 }
502};
503
504
505
506
509
512
514 return failure();
515
517
518 if (!lastParentWithoutScope ||
520 return failure();
521
522
523
524
527 return failure();
528
529 while (!lastParentWithoutScope->getParentOp()
531 lastParentWithoutScope = lastParentWithoutScope->getParentOp();
532 if (!lastParentWithoutScope ||
534 return failure();
535 }
536 assert(lastParentWithoutScope->getParentOp()
538
539 Region *containingRegion = nullptr;
540 for (auto &r : lastParentWithoutScope->getRegions()) {
541 if (r.isAncestor(op->getParentRegion())) {
542 assert(containingRegion == nullptr &&
543 "only one region can contain the op");
544 containingRegion = &r;
545 }
546 }
547 assert(containingRegion && "op must be contained in a region");
548
553
554
555
557 return containingRegion->isAncestor(v.getParentRegion());
558 }))
560 toHoist.push_back(alloc);
562 });
563
564 if (toHoist.empty())
565 return failure();
567 for (auto *op : toHoist) {
568 auto *cloned = rewriter.clone(*op);
569 rewriter.replaceOp(op, cloned->getResults());
570 }
572 }
573};
574
575void AllocaScopeOp::getCanonicalizationPatterns(RewritePatternSet &results,
578}
579
580
581
582
583
584LogicalResult AssumeAlignmentOp::verify() {
585 if (!llvm::isPowerOf2_32(getAlignment()))
586 return emitOpError("alignment must be power of 2");
588}
589
590void AssumeAlignmentOp::getAsmResultNames(
592 setNameFn(getResult(), "assume_align");
593}
594
595OpFoldResult AssumeAlignmentOp::fold(FoldAdaptor adaptor) {
596 auto source = getMemref().getDefiningOp();
597 if (!source)
598 return {};
599 if (source.getAlignment() != getAlignment())
600 return {};
601 return getMemref();
602}
603
604FailureOr<std::optional<SmallVector>>
605AssumeAlignmentOp::bubbleDownCasts(OpBuilder &builder) {
607}
608
609
610
611
612
613LogicalResult DistinctObjectsOp::verify() {
614 if (getOperandTypes() != getResultTypes())
615 return emitOpError("operand types and result types must match");
616
617 if (getOperandTypes().empty())
618 return emitOpError("expected at least one operand");
619
621}
622
623LogicalResult DistinctObjectsOp::inferReturnTypes(
624 MLIRContext * , std::optional ,
625 ValueRange operands, DictionaryAttr ,
628 llvm::copy(operands.getTypes(), std::back_inserter(inferredReturnTypes));
630}
631
632
633
634
635
636void CastOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
637 setNameFn(getResult(), "cast");
638}
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677bool CastOp::canFoldIntoConsumerOp(CastOp castOp) {
678 MemRefType sourceType =
679 llvm::dyn_cast(castOp.getSource().getType());
680 MemRefType resultType = llvm::dyn_cast(castOp.getType());
681
682
683 if (!sourceType || !resultType)
684 return false;
685
686
687 if (sourceType.getElementType() != resultType.getElementType())
688 return false;
689
690
691 if (sourceType.getRank() != resultType.getRank())
692 return false;
693
694
695 int64_t sourceOffset, resultOffset;
697 if (failed(sourceType.getStridesAndOffset(sourceStrides, sourceOffset)) ||
698 failed(resultType.getStridesAndOffset(resultStrides, resultOffset)))
699 return false;
700
701
702 for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) {
703 auto ss = std::get<0>(it), st = std::get<1>(it);
704 if (ss != st)
705 if (ShapedType::isDynamic(ss) && ShapedType::isStatic(st))
706 return false;
707 }
708
709
710 if (sourceOffset != resultOffset)
711 if (ShapedType::isDynamic(sourceOffset) &&
712 ShapedType::isStatic(resultOffset))
713 return false;
714
715
716 for (auto it : llvm::zip(sourceStrides, resultStrides)) {
717 auto ss = std::get<0>(it), st = std::get<1>(it);
718 if (ss != st)
719 if (ShapedType::isDynamic(ss) && ShapedType::isStatic(st))
720 return false;
721 }
722
723 return true;
724}
725
727 if (inputs.size() != 1 || outputs.size() != 1)
728 return false;
729 Type a = inputs.front(), b = outputs.front();
730 auto aT = llvm::dyn_cast(a);
731 auto bT = llvm::dyn_cast(b);
732
733 auto uaT = llvm::dyn_cast(a);
734 auto ubT = llvm::dyn_cast(b);
735
736 if (aT && bT) {
737 if (aT.getElementType() != bT.getElementType())
738 return false;
739 if (aT.getLayout() != bT.getLayout()) {
740 int64_t aOffset, bOffset;
742 if (failed(aT.getStridesAndOffset(aStrides, aOffset)) ||
743 failed(bT.getStridesAndOffset(bStrides, bOffset)) ||
744 aStrides.size() != bStrides.size())
745 return false;
746
747
748
749
750
752 return (ShapedType::isDynamic(a) || ShapedType::isDynamic(b) || a == b);
753 };
754 if (!checkCompatible(aOffset, bOffset))
755 return false;
756 for (const auto &aStride : enumerate(aStrides))
757 if (!checkCompatible(aStride.value(), bStrides[aStride.index()]))
758 return false;
759 }
760 if (aT.getMemorySpace() != bT.getMemorySpace())
761 return false;
762
763
764 if (aT.getRank() != bT.getRank())
765 return false;
766
767 for (unsigned i = 0, e = aT.getRank(); i != e; ++i) {
768 int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i);
769 if (ShapedType::isStatic(aDim) && ShapedType::isStatic(bDim) &&
770 aDim != bDim)
771 return false;
772 }
773 return true;
774 } else {
775 if (!aT && !uaT)
776 return false;
777 if (!bT && !ubT)
778 return false;
779
780 if (uaT && ubT)
781 return false;
782
783 auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType();
784 auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType();
785 if (aEltType != bEltType)
786 return false;
787
788 auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace();
789 auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace();
790 return aMemSpace == bMemSpace;
791 }
792
793 return false;
794}
795
796OpFoldResult CastOp::fold(FoldAdaptor adaptor) {
798}
799
800FailureOr<std::optional<SmallVector>>
801CastOp::bubbleDownCasts(OpBuilder &builder) {
803}
804
805
806
807
808
809namespace {
810
811
813 using OpRewritePattern::OpRewritePattern;
814
815 LogicalResult matchAndRewrite(CopyOp copyOp,
816 PatternRewriter &rewriter) const override {
817 if (copyOp.getSource() != copyOp.getTarget())
818 return failure();
819
820 rewriter.eraseOp(copyOp);
822 }
823};
824
825struct FoldEmptyCopy final : public OpRewritePattern {
826 using OpRewritePattern::OpRewritePattern;
827
828 static bool isEmptyMemRef(BaseMemRefType type) {
829 return type.hasRank() && llvm::is_contained(type.getShape(), 0);
830 }
831
832 LogicalResult matchAndRewrite(CopyOp copyOp,
833 PatternRewriter &rewriter) const override {
834 if (isEmptyMemRef(copyOp.getSource().getType()) ||
835 isEmptyMemRef(copyOp.getTarget().getType())) {
836 rewriter.eraseOp(copyOp);
838 }
839
840 return failure();
841 }
842};
843}
844
845void CopyOp::getCanonicalizationPatterns(RewritePatternSet &results,
847 results.add<FoldEmptyCopy, FoldSelfCopy>(context);
848}
849
850
851
852
854 for (OpOperand &operand : op->getOpOperands()) {
855 auto castOp = operand.get().getDefiningOpmemref::CastOp();
856 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
857 operand.set(castOp.getOperand());
859 }
860 }
861 return failure();
862}
863
864LogicalResult CopyOp::fold(FoldAdaptor adaptor,
866
867
869}
870
871
872
873
874
875LogicalResult DeallocOp::fold(FoldAdaptor adaptor,
877
879}
880
881
882
883
884
885void DimOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
886 setNameFn(getResult(), "dim");
887}
888
891 auto loc = result.location;
893 build(builder, result, source, indexValue);
894}
895
896std::optional<int64_t> DimOp::getConstantIndex() {
898}
899
902 if (!constantIndex)
904
905 auto rankedSourceType = dyn_cast(getSource().getType());
906 if (!rankedSourceType)
908
909 if (rankedSourceType.getRank() <= constantIndex)
911
913}
914
917 setResultRange(getResult(),
919}
920
921
922
923
924
926 std::map<int64_t, unsigned> numOccurences;
927 for (auto val : vals)
928 numOccurences[val]++;
929 return numOccurences;
930}
931
932
933
934
935
936
937
938
939static FailureOrllvm::SmallBitVector
942 llvm::SmallBitVector unusedDims(originalType.getRank());
943 if (originalType.getRank() == reducedType.getRank())
944 return unusedDims;
945
946 for (const auto &dim : llvm::enumerate(sizes))
947 if (auto attr = llvm::dyn_cast_if_present(dim.value()))
948 if (llvm::cast(attr).getInt() == 1)
949 unusedDims.set(dim.index());
950
951
952
953 if (static_cast<int64_t>(unusedDims.count()) + reducedType.getRank() ==
954 originalType.getRank())
955 return unusedDims;
956
958 int64_t originalOffset, candidateOffset;
959 if (failed(
960 originalType.getStridesAndOffset(originalStrides, originalOffset)) ||
961 failed(
962 reducedType.getStridesAndOffset(candidateStrides, candidateOffset)))
963 return failure();
964
965
966
967
968
969
970
971
972
973
974 std::map<int64_t, unsigned> currUnaccountedStrides =
976 std::map<int64_t, unsigned> candidateStridesNumOccurences =
978 for (size_t dim = 0, e = unusedDims.size(); dim != e; ++dim) {
979 if (!unusedDims.test(dim))
980 continue;
981 int64_t originalStride = originalStrides[dim];
982 if (currUnaccountedStrides[originalStride] >
983 candidateStridesNumOccurences[originalStride]) {
984
985 currUnaccountedStrides[originalStride]--;
986 continue;
987 }
988 if (currUnaccountedStrides[originalStride] ==
989 candidateStridesNumOccurences[originalStride]) {
990
991 unusedDims.reset(dim);
992 continue;
993 }
994 if (currUnaccountedStrides[originalStride] <
995 candidateStridesNumOccurences[originalStride]) {
996
997
998 return failure();
999 }
1000 }
1001
1002 if ((int64_t)unusedDims.count() + reducedType.getRank() !=
1003 originalType.getRank())
1004 return failure();
1005 return unusedDims;
1006}
1007
1008llvm::SmallBitVector SubViewOp::getDroppedDims() {
1009 MemRefType sourceType = getSourceType();
1010 MemRefType resultType = getType();
1011 FailureOrllvm::SmallBitVector unusedDims =
1013 assert(succeeded(unusedDims) && "unable to find unused dims of subview");
1014 return *unusedDims;
1015}
1016
1017OpFoldResult DimOp::fold(FoldAdaptor adaptor) {
1018
1019 auto index = llvm::dyn_cast_if_present(adaptor.getIndex());
1021 return {};
1022
1023
1024 auto memrefType = llvm::dyn_cast(getSource().getType());
1025 if (!memrefType)
1026 return {};
1027
1028
1029
1031 if (indexVal < 0 || indexVal >= memrefType.getRank())
1032 return {};
1033
1034
1035 if (!memrefType.isDynamicDim(index.getInt())) {
1037 return builder.getIndexAttr(memrefType.getShape()[index.getInt()]);
1038 }
1039
1040
1041 unsigned unsignedIndex = index.getValue().getZExtValue();
1042
1043
1044 Operation *definingOp = getSource().getDefiningOp();
1045
1046 if (auto alloc = dyn_cast_or_null(definingOp))
1047 return *(alloc.getDynamicSizes().begin() +
1048 memrefType.getDynamicDimIndex(unsignedIndex));
1049
1050 if (auto alloca = dyn_cast_or_null(definingOp))
1051 return *(alloca.getDynamicSizes().begin() +
1052 memrefType.getDynamicDimIndex(unsignedIndex));
1053
1054 if (auto view = dyn_cast_or_null(definingOp))
1055 return *(view.getDynamicSizes().begin() +
1056 memrefType.getDynamicDimIndex(unsignedIndex));
1057
1058 if (auto subview = dyn_cast_or_null(definingOp)) {
1059 llvm::SmallBitVector unusedDims = subview.getDroppedDims();
1060 unsigned resultIndex = 0;
1061 unsigned sourceRank = subview.getSourceType().getRank();
1062 unsigned sourceIndex = 0;
1063 for (auto i : llvm::seq(0, sourceRank)) {
1064 if (unusedDims.test(i))
1065 continue;
1066 if (resultIndex == unsignedIndex) {
1067 sourceIndex = i;
1068 break;
1069 }
1070 resultIndex++;
1071 }
1072 assert(subview.isDynamicSize(sourceIndex) &&
1073 "expected dynamic subview size");
1074 return subview.getDynamicSize(sourceIndex);
1075 }
1076
1077
1079 return getResult();
1080
1081 return {};
1082}
1083
1084namespace {
1085
1086
1088 using OpRewritePattern::OpRewritePattern;
1089
1090 LogicalResult matchAndRewrite(DimOp dim,
1091 PatternRewriter &rewriter) const override {
1092 auto reshape = dim.getSource().getDefiningOp();
1093
1094 if (!reshape)
1096 dim, "Dim op is not defined by a reshape op.");
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107 if (dim.getIndex().getParentBlock() == reshape->getBlock()) {
1108 if (auto *definingOp = dim.getIndex().getDefiningOp()) {
1109 if (reshape->isBeforeInBlock(definingOp)) {
1111 dim,
1112 "dim.getIndex is not defined before reshape in the same block.");
1113 }
1114 }
1115
1116 }
1117 else if (dim->getBlock() != reshape->getBlock() &&
1118 !dim.getIndex().getParentRegion()->isProperAncestor(
1119 reshape->getParentRegion())) {
1120
1121
1122
1124 dim, "dim.getIndex does not dominate reshape.");
1125 }
1126
1127
1128
1130 Location loc = dim.getLoc();
1131 Value load =
1132 LoadOp::create(rewriter, loc, reshape.getShape(), dim.getIndex());
1133 if (load.getType() != dim.getType())
1134 load = arith::IndexCastOp::create(rewriter, loc, dim.getType(), load);
1137 }
1138};
1139
1140}
1141
1142void DimOp::getCanonicalizationPatterns(RewritePatternSet &results,
1144 results.add(context);
1145}
1146
1147
1148
1149
1150
1155 Value elementsPerStride) {
1156 result.addOperands(srcMemRef);
1157 result.addOperands(srcIndices);
1158 result.addOperands(destMemRef);
1159 result.addOperands(destIndices);
1160 result.addOperands({numElements, tagMemRef});
1161 result.addOperands(tagIndices);
1162 if (stride)
1163 result.addOperands({stride, elementsPerStride});
1164}
1165
1167 p << " " << getSrcMemRef() << '[' << getSrcIndices() << "], "
1168 << getDstMemRef() << '[' << getDstIndices() << "], " << getNumElements()
1169 << ", " << getTagMemRef() << '[' << getTagIndices() << ']';
1170 if (isStrided())
1171 p << ", " << getStride() << ", " << getNumElementsPerStride();
1172
1174 p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType()
1175 << ", " << getTagMemRef().getType();
1176}
1177
1178
1179
1180
1181
1182
1183
1184
1185
1195
1198
1199
1200
1201
1202
1210 return failure();
1211
1212
1214 return failure();
1215
1216 bool isStrided = strideInfo.size() == 2;
1217 if (!strideInfo.empty() && !isStrided) {
1219 "expected two stride related operands");
1220 }
1221
1223 return failure();
1224 if (types.size() != 3)
1225 return parser.emitError(parser.getNameLoc(), "fewer/more types expected");
1226
1231
1234
1236 return failure();
1237
1238 if (isStrided) {
1240 return failure();
1241 }
1242
1244}
1245
1246LogicalResult DmaStartOp::verify() {
1247 unsigned numOperands = getNumOperands();
1248
1249
1250
1251 if (numOperands < 4)
1252 return emitOpError("expected at least 4 operands");
1253
1254
1255
1256
1257 if (!llvm::isa(getSrcMemRef().getType()))
1258 return emitOpError("expected source to be of memref type");
1259 if (numOperands < getSrcMemRefRank() + 4)
1260 return emitOpError() << "expected at least " << getSrcMemRefRank() + 4
1261 << " operands";
1262 if (!getSrcIndices().empty() &&
1263 !llvm::all_of(getSrcIndices().getTypes(),
1265 return emitOpError("expected source indices to be of index type");
1266
1267
1268 if (!llvm::isa(getDstMemRef().getType()))
1269 return emitOpError("expected destination to be of memref type");
1270 unsigned numExpectedOperands = getSrcMemRefRank() + getDstMemRefRank() + 4;
1271 if (numOperands < numExpectedOperands)
1272 return emitOpError() << "expected at least " << numExpectedOperands
1273 << " operands";
1274 if (!getDstIndices().empty() &&
1275 !llvm::all_of(getDstIndices().getTypes(),
1277 return emitOpError("expected destination indices to be of index type");
1278
1279
1281 return emitOpError("expected num elements to be of index type");
1282
1283
1284 if (!llvm::isa(getTagMemRef().getType()))
1285 return emitOpError("expected tag to be of memref type");
1286 numExpectedOperands += getTagMemRefRank();
1287 if (numOperands < numExpectedOperands)
1288 return emitOpError() << "expected at least " << numExpectedOperands
1289 << " operands";
1290 if (!getTagIndices().empty() &&
1291 !llvm::all_of(getTagIndices().getTypes(),
1293 return emitOpError("expected tag indices to be of index type");
1294
1295
1296
1297 if (numOperands != numExpectedOperands &&
1298 numOperands != numExpectedOperands + 2)
1299 return emitOpError("incorrect number of operands");
1300
1301
1302 if (isStrided()) {
1303 if (!getStride().getType().isIndex() ||
1304 !getNumElementsPerStride().getType().isIndex())
1306 "expected stride and num elements per stride to be of type index");
1307 }
1308
1310}
1311
1312LogicalResult DmaStartOp::fold(FoldAdaptor adaptor,
1314
1316}
1317
1318
1319
1320
1321
1322LogicalResult DmaWaitOp::fold(FoldAdaptor adaptor,
1324
1326}
1327
1328LogicalResult DmaWaitOp::verify() {
1329
1330 unsigned numTagIndices = getTagIndices().size();
1331 unsigned tagMemRefRank = getTagMemRefRank();
1332 if (numTagIndices != tagMemRefRank)
1333 return emitOpError() << "expected tagIndices to have the same number of "
1334 "elements as the tagMemRef rank, expected "
1335 << tagMemRefRank << ", but got " << numTagIndices;
1337}
1338
1339
1340
1341
1342
1343void ExtractAlignedPointerAsIndexOp::getAsmResultNames(
1345 setNameFn(getResult(), "intptr");
1346}
1347
1348
1349
1350
1351
1352
1353
1354LogicalResult ExtractStridedMetadataOp::inferReturnTypes(
1355 MLIRContext *context, std::optional location,
1356 ExtractStridedMetadataOp::Adaptor adaptor,
1358 auto sourceType = llvm::dyn_cast(adaptor.getSource().getType());
1359 if (!sourceType)
1360 return failure();
1361
1362 unsigned sourceRank = sourceType.getRank();
1363 IndexType indexType = IndexType::get(context);
1364 auto memrefType =
1365 MemRefType::get({}, sourceType.getElementType(),
1366 MemRefLayoutAttrInterface{}, sourceType.getMemorySpace());
1367
1368 inferredReturnTypes.push_back(memrefType);
1369
1370 inferredReturnTypes.push_back(indexType);
1371
1372 for (unsigned i = 0; i < sourceRank * 2; ++i)
1373 inferredReturnTypes.push_back(indexType);
1375}
1376
1377void ExtractStridedMetadataOp::getAsmResultNames(
1379 setNameFn(getBaseBuffer(), "base_buffer");
1380 setNameFn(getOffset(), "offset");
1381
1382
1383 if (!getSizes().empty()) {
1384 setNameFn(getSizes().front(), "sizes");
1385 setNameFn(getStrides().front(), "strides");
1386 }
1387}
1388
1389
1390
1391
1392template
1394 Container values,
1396 assert(values.size() == maybeConstants.size() &&
1397 " expected values and maybeConstants of the same size");
1398 bool atLeastOneReplacement = false;
1399 for (auto [maybeConstant, result] : llvm::zip(maybeConstants, values)) {
1400
1401
1403 continue;
1404 assert(isa(maybeConstant) &&
1405 "The constified value should be either unchanged (i.e., == result) "
1406 "or a constant");
1408 rewriter, loc,
1409 llvm::cast(cast(maybeConstant)).getInt());
1410 for (Operation *op : llvm::make_early_inc_range(result.getUsers())) {
1411
1412
1414 atLeastOneReplacement = true;
1415 }
1416 }
1417 return atLeastOneReplacement;
1418}
1419
1420LogicalResult
1421ExtractStridedMetadataOp::fold(FoldAdaptor adaptor,
1424
1427 getConstifiedMixedOffset());
1429 getConstifiedMixedSizes());
1431 builder, getLoc(), getStrides(), getConstifiedMixedStrides());
1432
1433
1434 if (auto prev = getSource().getDefiningOp())
1435 if (isa(prev.getSource().getType())) {
1436 getSourceMutable().assign(prev.getSource());
1437 atLeastOneReplacement = true;
1438 }
1439
1440 return success(atLeastOneReplacement);
1441}
1442
1446 return values;
1447}
1448
1450ExtractStridedMetadataOp::getConstifiedMixedStrides() {
1454 LogicalResult status =
1455 getSource().getType().getStridesAndOffset(staticValues, unused);
1456 (void)status;
1457 assert(succeeded(status) && "could not get strides from type");
1459 return values;
1460}
1461
1462OpFoldResult ExtractStridedMetadataOp::getConstifiedMixedOffset() {
1467 LogicalResult status =
1468 getSource().getType().getStridesAndOffset(unused, offset);
1469 (void)status;
1470 assert(succeeded(status) && "could not get offset from type");
1471 staticValues.push_back(offset);
1473 return values[0];
1474}
1475
1476
1477
1478
1479
1484 result.addOperands(ivs);
1485
1486 if (auto memrefType = llvm::dyn_cast(memref.getType())) {
1487 Type elementType = memrefType.getElementType();
1488 result.addTypes(elementType);
1489
1493 }
1494}
1495
1496LogicalResult GenericAtomicRMWOp::verify() {
1497 auto &body = getRegion();
1498 if (body.getNumArguments() != 1)
1499 return emitOpError("expected single number of entry block arguments");
1500
1501 if (getResult().getType() != body.getArgument(0).getType())
1502 return emitOpError("expected block argument of the same type result type");
1503
1505 body.walk([&](Operation *nestedOp) {
1509 "body of 'memref.generic_atomic_rmw' should contain "
1510 "only operations with no side effects");
1512 })
1513 .wasInterrupted();
1515}
1516
1517ParseResult GenericAtomicRMWOp::parse(OpAsmParser &parser,
1520 Type memrefType;
1522
1529 return failure();
1530
1534 return failure();
1535 result.types.push_back(llvm::cast(memrefType).getElementType());
1537}
1538
1539void GenericAtomicRMWOp::print(OpAsmPrinter &p) {
1540 p << ' ' << getMemref() << "[" << getIndices()
1541 << "] : " << getMemref().getType() << ' ';
1544}
1545
1546
1547
1548
1549
1550LogicalResult AtomicYieldOp::verify() {
1551 Type parentType = (*this)->getParentOp()->getResultTypes().front();
1552 Type resultType = getResult().getType();
1553 if (parentType != resultType)
1554 return emitOpError() << "types mismatch between yield op: " << resultType
1555 << " and its parent: " << parentType;
1557}
1558
1559
1560
1561
1562
1564 TypeAttr type,
1566 p << type;
1567 if (!op.isExternal()) {
1568 p << " = ";
1569 if (op.isUninitialized())
1570 p << "uninitialized";
1571 else
1573 }
1574}
1575
1576static ParseResult
1581 return failure();
1582
1583 auto memrefType = llvm::dyn_cast(type);
1584 if (!memrefType || !memrefType.hasStaticShape())
1586 << "type should be static shaped memref, but got " << type;
1587 typeAttr = TypeAttr::get(type);
1588
1591
1593 initialValue = UnitAttr::get(parser.getContext());
1595 }
1596
1598 if (parser.parseAttribute(initialValue, tensorType))
1599 return failure();
1600 if (!llvm::isa(initialValue))
1602 << "initial value should be a unit or elements attribute";
1604}
1605
1606LogicalResult GlobalOp::verify() {
1607 auto memrefType = llvm::dyn_cast(getType());
1608 if (!memrefType || !memrefType.hasStaticShape())
1609 return emitOpError("type should be static shaped memref, but got ")
1611
1612
1613
1614 if (getInitialValue().has_value()) {
1615 Attribute initValue = getInitialValue().value();
1616 if (!llvm::isa(initValue) && !llvm::isa(initValue))
1617 return emitOpError("initial value should be a unit or elements "
1618 "attribute, but got ")
1619 << initValue;
1620
1621
1622
1623 if (auto elementsAttr = llvm::dyn_cast(initValue)) {
1624
1625 auto initElementType =
1626 cast(elementsAttr.getType()).getElementType();
1627 auto memrefElementType = memrefType.getElementType();
1628
1629 if (initElementType != memrefElementType)
1630 return emitOpError("initial value element expected to be of type ")
1631 << memrefElementType << ", but was of type " << initElementType;
1632
1633
1634
1635
1636 auto initShape = elementsAttr.getShapedType().getShape();
1637 auto memrefShape = memrefType.getShape();
1638 if (initShape != memrefShape)
1639 return emitOpError("initial value shape expected to be ")
1640 << memrefShape << " but was " << initShape;
1641 }
1642 }
1643
1644
1646}
1647
1648ElementsAttr GlobalOp::getConstantInitValue() {
1649 auto initVal = getInitialValue();
1650 if (getConstant() && initVal.has_value())
1651 return llvm::cast(initVal.value());
1652 return {};
1653}
1654
1655
1656
1657
1658
1659LogicalResult
1661
1662
1663 auto global =
1665 if (!global)
1667 << getName() << "' does not reference a valid global memref";
1668
1669 Type resultType = getResult().getType();
1670 if (global.getType() != resultType)
1672 << resultType << " does not match type " << global.getType()
1673 << " of the global memref @" << getName();
1675}
1676
1677
1678
1679
1680
1681LogicalResult LoadOp::verify() {
1683 return emitOpError("incorrect number of indices for load, expected ")
1685 }
1687}
1688
1689OpFoldResult LoadOp::fold(FoldAdaptor adaptor) {
1690
1692 return getResult();
1694}
1695
1696FailureOr<std::optional<SmallVector>>
1697LoadOp::bubbleDownCasts(OpBuilder &builder) {
1699 getResult());
1700}
1701
1702
1703
1704
1705
1706void MemorySpaceCastOp::getAsmResultNames(
1708 setNameFn(getResult(), "memspacecast");
1709}
1710
1711bool MemorySpaceCastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
1712 if (inputs.size() != 1 || outputs.size() != 1)
1713 return false;
1714 Type a = inputs.front(), b = outputs.front();
1715 auto aT = llvm::dyn_cast(a);
1716 auto bT = llvm::dyn_cast(b);
1717
1718 auto uaT = llvm::dyn_cast(a);
1719 auto ubT = llvm::dyn_cast(b);
1720
1721 if (aT && bT) {
1722 if (aT.getElementType() != bT.getElementType())
1723 return false;
1724 if (aT.getLayout() != bT.getLayout())
1725 return false;
1726 if (aT.getShape() != bT.getShape())
1727 return false;
1728 return true;
1729 }
1730 if (uaT && ubT) {
1731 return uaT.getElementType() == ubT.getElementType();
1732 }
1733 return false;
1734}
1735
1736OpFoldResult MemorySpaceCastOp::fold(FoldAdaptor adaptor) {
1737
1738
1739 if (auto parentCast = getSource().getDefiningOp()) {
1740 getSourceMutable().assign(parentCast.getSource());
1741 return getResult();
1742 }
1744}
1745
1747 return getSource();
1748}
1749
1751 return getDest();
1752}
1753
1754bool MemorySpaceCastOp::isValidMemorySpaceCast(PtrLikeTypeInterface tgt,
1755 PtrLikeTypeInterface src) {
1756 return isa(tgt) &&
1757 tgt.clonePtrWith(src.getMemorySpace(), std::nullopt) == src;
1758}
1759
1760MemorySpaceCastOpInterface MemorySpaceCastOp::cloneMemorySpaceCastOp(
1761 OpBuilder &b, PtrLikeTypeInterface tgt,
1763 assert(isValidMemorySpaceCast(tgt, src.getType()) && "invalid arguments");
1764 return MemorySpaceCastOp::create(b, getLoc(), tgt, src);
1765}
1766
1767
1768bool MemorySpaceCastOp::isSourcePromotable() {
1769 return getDest().getType().getMemorySpace() == nullptr;
1770}
1771
1772
1773
1774
1775
1777 p << " " << getMemref() << '[';
1779 p << ']' << ", " << (getIsWrite() ? "write" : "read");
1780 p << ", locality<" << getLocalityHint();
1781 p << ">, " << (getIsDataCache() ? "data" : "instr");
1783 (*this)->getAttrs(),
1784 {"localityHint", "isWrite", "isDataCache"});
1786}
1787
1791 IntegerAttr localityHint;
1792 MemRefType type;
1793 StringRef readOrWrite, cacheType;
1794
1802 parser.parseAttribute(localityHint, i32Type, "localityHint",
1803 result.attributes) ||
1808 return failure();
1809
1810 if (readOrWrite != "read" && readOrWrite != "write")
1812 "rw specifier has to be 'read' or 'write'");
1813 result.addAttribute(PrefetchOp::getIsWriteAttrStrName(),
1815
1816 if (cacheType != "data" && cacheType != "instr")
1818 "cache type has to be 'data' or 'instr'");
1819
1820 result.addAttribute(PrefetchOp::getIsDataCacheAttrStrName(),
1822
1824}
1825
1826LogicalResult PrefetchOp::verify() {
1827 if (getNumOperands() != 1 + getMemRefType().getRank())
1829
1831}
1832
1833LogicalResult PrefetchOp::fold(FoldAdaptor adaptor,
1835
1837}
1838
1839
1840
1841
1842
1843OpFoldResult RankOp::fold(FoldAdaptor adaptor) {
1844
1845 auto type = getOperand().getType();
1846 auto shapedType = llvm::dyn_cast(type);
1847 if (shapedType && shapedType.hasRank())
1848 return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank());
1849 return IntegerAttr();
1850}
1851
1852
1853
1854
1855
1856void ReinterpretCastOp::getAsmResultNames(
1858 setNameFn(getResult(), "reinterpret_cast");
1859}
1860
1861
1862
1863
1865 MemRefType resultType, Value source,
1874 result.addAttributes(attrs);
1875 build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
1876 dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets),
1877 b.getDenseI64ArrayAttr(staticSizes),
1878 b.getDenseI64ArrayAttr(staticStrides));
1879}
1880
1886 auto sourceType = cast(source.getType());
1892 auto stridedLayout = StridedLayoutAttr::get(
1893 b.getContext(), staticOffsets.front(), staticStrides);
1894 auto resultType = MemRefType::get(staticSizes, sourceType.getElementType(),
1895 stridedLayout, sourceType.getMemorySpace());
1896 build(b, result, resultType, source, offset, sizes, strides, attrs);
1897}
1898
1900 MemRefType resultType, Value source,
1905 llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult {
1906 return b.getI64IntegerAttr(v);
1907 }));
1910 return b.getI64IntegerAttr(v);
1911 }));
1912 build(b, result, resultType, source, b.getI64IntegerAttr(offset), sizeValues,
1913 strideValues, attrs);
1914}
1915
1917 MemRefType resultType, Value source, Value offset,
1921 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
1923 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
1924 build(b, result, resultType, source, offset, sizeValues, strideValues, attrs);
1925}
1926
1927
1928
1929LogicalResult ReinterpretCastOp::verify() {
1930
1931 auto srcType = llvm::cast(getSource().getType());
1932 auto resultType = llvm::cast(getType());
1933 if (srcType.getMemorySpace() != resultType.getMemorySpace())
1934 return emitError("different memory spaces specified for source type ")
1935 << srcType << " and result memref type " << resultType;
1936 if (srcType.getElementType() != resultType.getElementType())
1937 return emitError("different element types specified for source type ")
1938 << srcType << " and result memref type " << resultType;
1939
1940
1941 for (auto [idx, resultSize, expectedSize] :
1942 llvm::enumerate(resultType.getShape(), getStaticSizes())) {
1943 if (ShapedType::isStatic(resultSize) && resultSize != expectedSize)
1944 return emitError("expected result type with size = ")
1945 << (ShapedType::isDynamic(expectedSize)
1946 ? std::string("dynamic")
1947 : std::to_string(expectedSize))
1948 << " instead of " << resultSize << " in dim = " << idx;
1949 }
1950
1951
1952
1953
1956 if (failed(resultType.getStridesAndOffset(resultStrides, resultOffset)))
1957 return emitError("expected result type to have strided layout but found ")
1958 << resultType;
1959
1960
1961 int64_t expectedOffset = getStaticOffsets().front();
1962 if (ShapedType::isStatic(resultOffset) && resultOffset != expectedOffset)
1963 return emitError("expected result type with offset = ")
1964 << (ShapedType::isDynamic(expectedOffset)
1965 ? std::string("dynamic")
1966 : std::to_string(expectedOffset))
1967 << " instead of " << resultOffset;
1968
1969
1970 for (auto [idx, resultStride, expectedStride] :
1971 llvm::enumerate(resultStrides, getStaticStrides())) {
1972 if (ShapedType::isStatic(resultStride) && resultStride != expectedStride)
1973 return emitError("expected result type with stride = ")
1974 << (ShapedType::isDynamic(expectedStride)
1975 ? std::string("dynamic")
1976 : std::to_string(expectedStride))
1977 << " instead of " << resultStride << " in dim = " << idx;
1978 }
1979
1981}
1982
1983OpFoldResult ReinterpretCastOp::fold(FoldAdaptor ) {
1984 Value src = getSource();
1985 auto getPrevSrc = [&]() -> Value {
1986
1987 if (auto prev = src.getDefiningOp())
1988 return prev.getSource();
1989
1990
1992 return prev.getSource();
1993
1994
1995
1997 if (llvm::all_of(prev.getMixedOffsets(), isZeroInteger))
1998 return prev.getSource();
1999
2000 return nullptr;
2001 };
2002
2003 if (auto prevSrc = getPrevSrc()) {
2004 getSourceMutable().assign(prevSrc);
2005 return getResult();
2006 }
2007
2008
2010 src.getType() == getType() && getStaticOffsets().front() == 0) {
2011 return src;
2012 }
2013
2014 return nullptr;
2015}
2016
2020 return values;
2021}
2022
2027 LogicalResult status = getType().getStridesAndOffset(staticValues, unused);
2028 (void)status;
2029 assert(succeeded(status) && "could not get strides from type");
2031 return values;
2032}
2033
2034OpFoldResult ReinterpretCastOp::getConstifiedMixedOffset() {
2036 assert(values.size() == 1 &&
2037 "reinterpret_cast must have one and only one offset");
2040 LogicalResult status = getType().getStridesAndOffset(unused, offset);
2041 (void)status;
2042 assert(succeeded(status) && "could not get offset from type");
2043 staticValues.push_back(offset);
2045 return values[0];
2046}
2047
2048namespace {
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091struct ReinterpretCastOpExtractStridedMetadataFolder
2093public:
2094 using OpRewritePattern::OpRewritePattern;
2095
2096 LogicalResult matchAndRewrite(ReinterpretCastOp op,
2097 PatternRewriter &rewriter) const override {
2098 auto extractStridedMetadata =
2099 op.getSource().getDefiningOp();
2100 if (!extractStridedMetadata)
2101 return failure();
2102
2103
2104
2105 auto isReinterpretCastNoop = [&]() -> bool {
2106
2107 if (!llvm::equal(extractStridedMetadata.getConstifiedMixedStrides(),
2108 op.getConstifiedMixedStrides()))
2109 return false;
2110
2111
2112 if (!llvm::equal(extractStridedMetadata.getConstifiedMixedSizes(),
2113 op.getConstifiedMixedSizes()))
2114 return false;
2115
2116
2117 assert(op.getMixedOffsets().size() == 1 &&
2118 "reinterpret_cast with more than one offset should have been "
2119 "rejected by the verifier");
2120 return extractStridedMetadata.getConstifiedMixedOffset() ==
2121 op.getConstifiedMixedOffset();
2122 };
2123
2124 if (!isReinterpretCastNoop()) {
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2141 op.getSourceMutable().assign(extractStridedMetadata.getSource());
2142 });
2144 }
2145
2146
2147
2148
2149
2150
2151 Type srcTy = extractStridedMetadata.getSource().getType();
2152 if (srcTy == op.getResult().getType())
2153 rewriter.replaceOp(op, extractStridedMetadata.getSource());
2154 else
2156 extractStridedMetadata.getSource());
2157
2159 }
2160};
2161
2162struct ReinterpretCastOpConstantFolder
2164public:
2165 using OpRewritePattern::OpRewritePattern;
2166
2167 LogicalResult matchAndRewrite(ReinterpretCastOp op,
2168 PatternRewriter &rewriter) const override {
2169 unsigned srcStaticCount = llvm::count_if(
2170 llvm::concat(op.getMixedOffsets(), op.getMixedSizes(),
2171 op.getMixedStrides()),
2172 [](OpFoldResult ofr) { return isa(ofr); });
2173
2174 SmallVector offsets = {op.getConstifiedMixedOffset()};
2175 SmallVector sizes = op.getConstifiedMixedSizes();
2176 SmallVector strides = op.getConstifiedMixedStrides();
2177
2178
2179
2180
2181
2182 if (srcStaticCount ==
2183 llvm::count_if(llvm::concat(offsets, sizes, strides),
2184 [](OpFoldResult ofr) { return isa(ofr); }))
2185 return failure();
2186
2187 auto newReinterpretCast = ReinterpretCastOp::create(
2188 rewriter, op->getLoc(), op.getSource(), offsets[0], sizes, strides);
2189
2190 rewriter.replaceOpWithNewOp(op, op.getType(), newReinterpretCast);
2192 }
2193};
2194}
2195
2196void ReinterpretCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
2198 results.add<ReinterpretCastOpExtractStridedMetadataFolder,
2199 ReinterpretCastOpConstantFolder>(context);
2200}
2201
2202FailureOr<std::optional<SmallVector>>
2203ReinterpretCastOp::bubbleDownCasts(OpBuilder &builder) {
2205}
2206
2207
2208
2209
2210
2211void CollapseShapeOp::getAsmResultNames(
2213 setNameFn(getResult(), "collapse_shape");
2214}
2215
2216void ExpandShapeOp::getAsmResultNames(
2217 function_ref<void(Value, StringRef)> setNameFn) {
2218 setNameFn(getResult(), "expand_shape");
2219}
2220
2221LogicalResult ExpandShapeOp::reifyResultShapes(
2223 reifiedResultShapes = {
2224 getMixedValues(getStaticOutputShape(), getOutputShape(), builder)};
2226}
2227
2228
2229
2230
2231
2232
2233static LogicalResult
2237 bool allowMultipleDynamicDimsPerGroup) {
2238
2239 if (collapsedShape.size() != reassociation.size())
2240 return op->emitOpError("invalid number of reassociation groups: found ")
2241 << reassociation.size() << ", expected " << collapsedShape.size();
2242
2243
2244
2246 for (const auto &it : llvm::enumerate(reassociation)) {
2248 int64_t collapsedDim = it.index();
2249
2250 bool foundDynamic = false;
2251 for (int64_t expandedDim : group) {
2252 if (expandedDim != nextDim++)
2253 return op->emitOpError("reassociation indices must be contiguous");
2254
2255 if (expandedDim >= static_cast<int64_t>(expandedShape.size()))
2256 return op->emitOpError("reassociation index ")
2257 << expandedDim << " is out of bounds";
2258
2259
2260 if (ShapedType::isDynamic(expandedShape[expandedDim])) {
2261 if (foundDynamic && !allowMultipleDynamicDimsPerGroup)
2263 "at most one dimension in a reassociation group may be dynamic");
2264 foundDynamic = true;
2265 }
2266 }
2267
2268
2269 if (ShapedType::isDynamic(collapsedShape[collapsedDim]) != foundDynamic)
2270 return op->emitOpError("collapsed dim (")
2271 << collapsedDim
2272 << ") must be dynamic if and only if reassociation group is "
2273 "dynamic";
2274
2275
2276
2277 if (!foundDynamic) {
2279 for (int64_t expandedDim : group)
2280 groupSize *= expandedShape[expandedDim];
2281 if (groupSize != collapsedShape[collapsedDim])
2282 return op->emitOpError("collapsed dim size (")
2283 << collapsedShape[collapsedDim]
2284 << ") must equal reassociation group size (" << groupSize << ")";
2285 }
2286 }
2287
2288 if (collapsedShape.empty()) {
2289
2290 for (int64_t d : expandedShape)
2291 if (d != 1)
2293 "rank 0 memrefs can only be extended/collapsed with/from ones");
2294 } else if (nextDim != static_cast<int64_t>(expandedShape.size())) {
2295
2296
2297 return op->emitOpError("expanded rank (")
2298 << expandedShape.size()
2299 << ") inconsistent with number of reassociation indices (" << nextDim
2300 << ")";
2301 }
2302
2304}
2305
2306SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() {
2308}
2309
2310SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() {
2312 getReassociationIndices());
2313}
2314
2315SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() {
2317}
2318
2319SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() {
2321 getReassociationIndices());
2322}
2323
2324
2325
2326static FailureOr
2331 if (failed(srcType.getStridesAndOffset(srcStrides, srcOffset)))
2332 return failure();
2333 assert(srcStrides.size() == reassociation.size() && "invalid reassociation");
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2348 reverseResultStrides.reserve(resultShape.size());
2349 unsigned shapeIndex = resultShape.size() - 1;
2350 for (auto it : llvm::reverse(llvm::zip(reassociation, srcStrides))) {
2352 int64_t currentStrideToExpand = std::get<1>(it);
2353 for (unsigned idx = 0, e = reassoc.size(); idx < e; ++idx) {
2354 reverseResultStrides.push_back(currentStrideToExpand);
2355 currentStrideToExpand =
2358 .asInteger();
2359 }
2360 }
2361 auto resultStrides = llvm::to_vector<8>(llvm::reverse(reverseResultStrides));
2362 resultStrides.resize(resultShape.size(), 1);
2363 return StridedLayoutAttr::get(srcType.getContext(), srcOffset, resultStrides);
2364}
2365
2366FailureOr ExpandShapeOp::computeExpandedType(
2367 MemRefType srcType, ArrayRef<int64_t> resultShape,
2368 ArrayRef reassociation) {
2369 if (srcType.getLayout().isIdentity()) {
2370
2371
2372 MemRefLayoutAttrInterface layout;
2373 return MemRefType::get(resultShape, srcType.getElementType(), layout,
2374 srcType.getMemorySpace());
2375 }
2376
2377
2378 FailureOr computedLayout =
2380 if (failed(computedLayout))
2381 return failure();
2382 return MemRefType::get(resultShape, srcType.getElementType(), *computedLayout,
2383 srcType.getMemorySpace());
2384}
2385
2386FailureOr<SmallVector>
2387ExpandShapeOp::inferOutputShape(OpBuilder &b, Location loc,
2388 MemRefType expandedType,
2389 ArrayRef reassociation,
2390 ArrayRef inputShape) {
2391 std::optional<SmallVector> outputShape =
2393 inputShape);
2394 if (!outputShape)
2395 return failure();
2396 return *outputShape;
2397}
2398
2399void ExpandShapeOp::build(OpBuilder &builder, OperationState &result,
2400 Type resultType, Value src,
2401 ArrayRef reassociation,
2402 ArrayRef outputShape) {
2403 auto [staticOutputShape, dynamicOutputShape] =
2405 build(builder, result, llvm::cast(resultType), src,
2407 dynamicOutputShape, staticOutputShape);
2408}
2409
2410void ExpandShapeOp::build(OpBuilder &builder, OperationState &result,
2411 Type resultType, Value src,
2412 ArrayRef reassociation) {
2413 SmallVector inputShape =
2415 MemRefType memrefResultTy = llvm::cast(resultType);
2416 FailureOr<SmallVector> outputShape = inferOutputShape(
2417 builder, result.location, memrefResultTy, reassociation, inputShape);
2418
2419
2420 assert(succeeded(outputShape) && "unable to infer output shape");
2421 build(builder, result, memrefResultTy, src, reassociation, *outputShape);
2422}
2423
2424void ExpandShapeOp::build(OpBuilder &builder, OperationState &result,
2425 ArrayRef<int64_t> resultShape, Value src,
2426 ArrayRef reassociation) {
2427
2428 auto srcType = llvm::cast(src.getType());
2429 FailureOr resultType =
2430 ExpandShapeOp::computeExpandedType(srcType, resultShape, reassociation);
2431
2432
2433 assert(succeeded(resultType) && "could not compute layout");
2434 build(builder, result, *resultType, src, reassociation);
2435}
2436
2437void ExpandShapeOp::build(OpBuilder &builder, OperationState &result,
2438 ArrayRef<int64_t> resultShape, Value src,
2439 ArrayRef reassociation,
2440 ArrayRef outputShape) {
2441
2442 auto srcType = llvm::cast(src.getType());
2443 FailureOr resultType =
2444 ExpandShapeOp::computeExpandedType(srcType, resultShape, reassociation);
2445
2446
2447 assert(succeeded(resultType) && "could not compute layout");
2448 build(builder, result, *resultType, src, reassociation, outputShape);
2449}
2450
2451LogicalResult ExpandShapeOp::verify() {
2452 MemRefType srcType = getSrcType();
2453 MemRefType resultType = getResultType();
2454
2455 if (srcType.getRank() > resultType.getRank()) {
2456 auto r0 = srcType.getRank();
2457 auto r1 = resultType.getRank();
2459 << r0 << " and result rank " << r1 << ". This is not an expansion ("
2460 << r0 << " > " << r1 << ").";
2461 }
2462
2463
2465 resultType.getShape(),
2466 getReassociationIndices(),
2467 true)))
2468 return failure();
2469
2470
2471 FailureOr expectedResultType = ExpandShapeOp::computeExpandedType(
2472 srcType, resultType.getShape(), getReassociationIndices());
2473 if (failed(expectedResultType))
2474 return emitOpError("invalid source layout map");
2475
2476
2477 if (*expectedResultType != resultType)
2478 return emitOpError("expected expanded type to be ")
2479 << *expectedResultType << " but found " << resultType;
2480
2481 if ((int64_t)getStaticOutputShape().size() != resultType.getRank())
2482 return emitOpError("expected number of static shape bounds to be equal to "
2483 "the output rank (")
2484 << resultType.getRank() << ") but found "
2485 << getStaticOutputShape().size() << " inputs instead";
2486
2487 if ((int64_t)getOutputShape().size() !=
2488 llvm::count(getStaticOutputShape(), ShapedType::kDynamic))
2489 return emitOpError("mismatch in dynamic dims in output_shape and "
2490 "static_output_shape: static_output_shape has ")
2491 << llvm::count(getStaticOutputShape(), ShapedType::kDynamic)
2492 << " dynamic dims while output_shape has " << getOutputShape().size()
2493 << " values";
2494
2495
2496 DenseI64ArrayAttr staticOutputShapes = getStaticOutputShapeAttr();
2497 ArrayRef<int64_t> resShape = getResult().getType().getShape();
2498 for (auto [pos, shape] : llvm::enumerate(resShape)) {
2499 if (ShapedType::isStatic(shape) && shape != staticOutputShapes[pos]) {
2500 return emitOpError("invalid output shape provided at pos ") << pos;
2501 }
2502 }
2503
2505}
2506
2507void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
2508 MLIRContext *context) {
2509 results.add<
2510 ComposeReassociativeReshapeOps<ExpandShapeOp, ReshapeOpKind::kExpand>,
2511 ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>>(context);
2512}
2513
2514FailureOr<std::optional<SmallVector>>
2515ExpandShapeOp::bubbleDownCasts(OpBuilder &builder) {
2517}
2518
2519
2520
2521
2522
2523
2524
2525
2526static FailureOr
2529 bool strict = false) {
2532 auto srcShape = srcType.getShape();
2533 if (failed(srcType.getStridesAndOffset(srcStrides, srcOffset)))
2534 return failure();
2535
2536
2537
2538
2539
2540
2542 resultStrides.reserve(reassociation.size());
2545 while (srcShape[ref.back()] == 1 && ref.size() > 1)
2546 ref = ref.drop_back();
2547 if (ShapedType::isStatic(srcShape[ref.back()]) || ref.size() == 1) {
2548 resultStrides.push_back(srcStrides[ref.back()]);
2549 } else {
2550
2551
2552
2553
2554 resultStrides.push_back(ShapedType::kDynamic);
2555 }
2556 }
2557
2558
2559 unsigned resultStrideIndex = resultStrides.size() - 1;
2561 auto trailingReassocs = ArrayRef<int64_t>(reassoc).drop_front();
2563 for (int64_t idx : llvm::reverse(trailingReassocs)) {
2565
2566
2567
2568
2569
2570
2571
2572
2573
2575 if (strict && (stride.saturated || srcStride.saturated))
2576 return failure();
2577
2578
2579
2580 if (srcShape[idx - 1] == 1)
2581 continue;
2582
2583 if (!stride.saturated && !srcStride.saturated && stride != srcStride)
2584 return failure();
2585 }
2586 }
2587 return StridedLayoutAttr::get(srcType.getContext(), srcOffset, resultStrides);
2588}
2589
2590bool CollapseShapeOp::isGuaranteedCollapsible(
2591 MemRefType srcType, ArrayRef reassociation) {
2592
2593 if (srcType.getLayout().isIdentity())
2594 return true;
2595
2597 true));
2598}
2599
2600MemRefType CollapseShapeOp::computeCollapsedType(
2601 MemRefType srcType, ArrayRef reassociation) {
2602 SmallVector<int64_t> resultShape;
2603 resultShape.reserve(reassociation.size());
2606 for (int64_t srcDim : group)
2607 groupSize =
2609 resultShape.push_back(groupSize.asInteger());
2610 }
2611
2612 if (srcType.getLayout().isIdentity()) {
2613
2614
2615 MemRefLayoutAttrInterface layout;
2616 return MemRefType::get(resultShape, srcType.getElementType(), layout,
2617 srcType.getMemorySpace());
2618 }
2619
2620
2621
2622
2623 FailureOr computedLayout =
2625 assert(succeeded(computedLayout) &&
2626 "invalid source layout map or collapsing non-contiguous dims");
2627 return MemRefType::get(resultShape, srcType.getElementType(), *computedLayout,
2628 srcType.getMemorySpace());
2629}
2630
2631void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src,
2632 ArrayRef reassociation,
2633 ArrayRef attrs) {
2634 auto srcType = llvm::cast(src.getType());
2635 MemRefType resultType =
2636 CollapseShapeOp::computeCollapsedType(srcType, reassociation);
2639 build(b, result, resultType, src, attrs);
2640}
2641
2642LogicalResult CollapseShapeOp::verify() {
2643 MemRefType srcType = getSrcType();
2644 MemRefType resultType = getResultType();
2645
2646 if (srcType.getRank() < resultType.getRank()) {
2647 auto r0 = srcType.getRank();
2648 auto r1 = resultType.getRank();
2650 << r0 << " and result rank " << r1 << ". This is not a collapse ("
2651 << r0 << " < " << r1 << ").";
2652 }
2653
2654
2656 srcType.getShape(), getReassociationIndices(),
2657 true)))
2658 return failure();
2659
2660
2661 MemRefType expectedResultType;
2662 if (srcType.getLayout().isIdentity()) {
2663
2664
2665 MemRefLayoutAttrInterface layout;
2666 expectedResultType =
2667 MemRefType::get(resultType.getShape(), srcType.getElementType(), layout,
2668 srcType.getMemorySpace());
2669 } else {
2670
2671
2672
2673 FailureOr computedLayout =
2675 if (failed(computedLayout))
2677 "invalid source layout map or collapsing non-contiguous dims");
2678 expectedResultType =
2679 MemRefType::get(resultType.getShape(), srcType.getElementType(),
2680 *computedLayout, srcType.getMemorySpace());
2681 }
2682
2683 if (expectedResultType != resultType)
2684 return emitOpError("expected collapsed type to be ")
2685 << expectedResultType << " but found " << resultType;
2686
2688}
2689
2692public:
2694
2697 auto cast = op.getOperand().getDefiningOp();
2698 if (!cast)
2699 return failure();
2700
2701 if (!CastOp::canFoldIntoConsumerOp(cast))
2702 return failure();
2703
2704 Type newResultType = CollapseShapeOp::computeCollapsedType(
2705 llvm::cast(cast.getOperand().getType()),
2706 op.getReassociationIndices());
2707
2708 if (newResultType == op.getResultType()) {
2710 op, [&]() { op.getSrcMutable().assign(cast.getSource()); });
2711 } else {
2713 CollapseShapeOp::create(rewriter, op->getLoc(), cast.getSource(),
2714 op.getReassociationIndices());
2716 }
2718 }
2719};
2720
2721void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
2722 MLIRContext *context) {
2723 results.add<
2724 ComposeReassociativeReshapeOps<CollapseShapeOp, ReshapeOpKind::kCollapse>,
2725 ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp, CastOp,
2726 memref::DimOp, MemRefType>,
2727 CollapseShapeOpMemRefCastFolder>(context);
2728}
2729
2730OpFoldResult ExpandShapeOp::fold(FoldAdaptor adaptor) {
2732 adaptor.getOperands());
2733}
2734
2735OpFoldResult CollapseShapeOp::fold(FoldAdaptor adaptor) {
2737 adaptor.getOperands());
2738}
2739
2740FailureOr<std::optional<SmallVector>>
2741CollapseShapeOp::bubbleDownCasts(OpBuilder &builder) {
2743}
2744
2745
2746
2747
2748
2749void ReshapeOp::getAsmResultNames(
2750 function_ref<void(Value, StringRef)> setNameFn) {
2751 setNameFn(getResult(), "reshape");
2752}
2753
2754LogicalResult ReshapeOp::verify() {
2755 Type operandType = getSource().getType();
2756 Type resultType = getResult().getType();
2757
2758 Type operandElementType =
2759 llvm::cast(operandType).getElementType();
2760 Type resultElementType = llvm::cast(resultType).getElementType();
2761 if (operandElementType != resultElementType)
2762 return emitOpError("element types of source and destination memref "
2763 "types should be the same");
2764
2765 if (auto operandMemRefType = llvm::dyn_cast(operandType))
2766 if (!operandMemRefType.getLayout().isIdentity())
2767 return emitOpError("source memref type should have identity affine map");
2768
2769 int64_t shapeSize =
2770 llvm::cast(getShape().getType()).getDimSize(0);
2771 auto resultMemRefType = llvm::dyn_cast(resultType);
2772 if (resultMemRefType) {
2773 if (!resultMemRefType.getLayout().isIdentity())
2774 return emitOpError("result memref type should have identity affine map");
2775 if (shapeSize == ShapedType::kDynamic)
2776 return emitOpError("cannot use shape operand with dynamic length to "
2777 "reshape to statically-ranked memref type");
2778 if (shapeSize != resultMemRefType.getRank())
2780 "length of shape operand differs from the result's memref rank");
2781 }
2783}
2784
2785FailureOr<std::optional<SmallVector>>
2786ReshapeOp::bubbleDownCasts(OpBuilder &builder) {
2788}
2789
2790
2791
2792
2793
2794LogicalResult StoreOp::verify() {
2795 if (getNumOperands() != 2 + getMemRefType().getRank())
2796 return emitOpError("store index operand count not equal to memref rank");
2797
2799}
2800
2801LogicalResult StoreOp::fold(FoldAdaptor adaptor,
2802 SmallVectorImpl &results) {
2803
2805}
2806
2807FailureOr<std::optional<SmallVector>>
2808StoreOp::bubbleDownCasts(OpBuilder &builder) {
2811}
2812
2813
2814
2815
2816
2817void SubViewOp::getAsmResultNames(
2818 function_ref<void(Value, StringRef)> setNameFn) {
2819 setNameFn(getResult(), "subview");
2820}
2821
2822
2823
2824
2825MemRefType SubViewOp::inferResultType(MemRefType sourceMemRefType,
2826 ArrayRef<int64_t> staticOffsets,
2827 ArrayRef<int64_t> staticSizes,
2828 ArrayRef<int64_t> staticStrides) {
2829 unsigned rank = sourceMemRefType.getRank();
2830 (void)rank;
2831 assert(staticOffsets.size() == rank && "staticOffsets length mismatch");
2832 assert(staticSizes.size() == rank && "staticSizes length mismatch");
2833 assert(staticStrides.size() == rank && "staticStrides length mismatch");
2834
2835
2836 auto [sourceStrides, sourceOffset] = sourceMemRefType.getStridesAndOffset();
2837
2838
2839
2840 int64_t targetOffset = sourceOffset;
2841 for (auto it : llvm::zip(staticOffsets, sourceStrides)) {
2842 auto staticOffset = std::get<0>(it), sourceStride = std::get<1>(it);
2846 .asInteger();
2847 }
2848
2849
2850
2851 SmallVector<int64_t, 4> targetStrides;
2852 targetStrides.reserve(staticOffsets.size());
2853 for (auto it : llvm::zip(sourceStrides, staticStrides)) {
2854 auto sourceStride = std::get<0>(it), staticStride = std::get<1>(it);
2857 .asInteger());
2858 }
2859
2860
2861 return MemRefType::get(staticSizes, sourceMemRefType.getElementType(),
2862 StridedLayoutAttr::get(sourceMemRefType.getContext(),
2863 targetOffset, targetStrides),
2864 sourceMemRefType.getMemorySpace());
2865}
2866
2867MemRefType SubViewOp::inferResultType(MemRefType sourceMemRefType,
2868 ArrayRef offsets,
2869 ArrayRef sizes,
2870 ArrayRef strides) {
2871 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
2872 SmallVector dynamicOffsets, dynamicSizes, dynamicStrides;
2877 return {};
2879 return {};
2881 return {};
2882 return SubViewOp::inferResultType(sourceMemRefType, staticOffsets,
2883 staticSizes, staticStrides);
2884}
2885
2886MemRefType SubViewOp::inferRankReducedResultType(
2887 ArrayRef<int64_t> resultShape, MemRefType sourceRankedTensorType,
2888 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
2889 ArrayRef<int64_t> strides) {
2890 MemRefType inferredType =
2891 inferResultType(sourceRankedTensorType, offsets, sizes, strides);
2892 assert(inferredType.getRank() >= static_cast<int64_t>(resultShape.size()) &&
2893 "expected ");
2894 if (inferredType.getRank() == static_cast<int64_t>(resultShape.size()))
2895 return inferredType;
2896
2897
2898 std::optional<llvm::SmallDenseSet> dimsToProject =
2900 assert(dimsToProject.has_value() && "invalid rank reduction");
2901
2902
2903 auto inferredLayout = llvm::cast(inferredType.getLayout());
2904 SmallVector<int64_t> rankReducedStrides;
2905 rankReducedStrides.reserve(resultShape.size());
2906 for (auto [idx, value] : llvm::enumerate(inferredLayout.getStrides())) {
2907 if (!dimsToProject->contains(idx))
2908 rankReducedStrides.push_back(value);
2909 }
2910 return MemRefType::get(resultShape, inferredType.getElementType(),
2911 StridedLayoutAttr::get(inferredLayout.getContext(),
2912 inferredLayout.getOffset(),
2913 rankReducedStrides),
2914 inferredType.getMemorySpace());
2915}
2916
2917MemRefType SubViewOp::inferRankReducedResultType(
2918 ArrayRef<int64_t> resultShape, MemRefType sourceRankedTensorType,
2919 ArrayRef offsets, ArrayRef sizes,
2920 ArrayRef strides) {
2921 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
2922 SmallVector dynamicOffsets, dynamicSizes, dynamicStrides;
2926 return SubViewOp::inferRankReducedResultType(
2927 resultShape, sourceRankedTensorType, staticOffsets, staticSizes,
2928 staticStrides);
2929}
2930
2931
2932
2933void SubViewOp::build(OpBuilder &b, OperationState &result,
2934 MemRefType resultType, Value source,
2935 ArrayRef offsets,
2936 ArrayRef sizes,
2937 ArrayRef strides,
2938 ArrayRef attrs) {
2939 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
2940 SmallVector dynamicOffsets, dynamicSizes, dynamicStrides;
2944 auto sourceMemRefType = llvm::cast(source.getType());
2945
2946 if (!resultType) {
2947 resultType = SubViewOp::inferResultType(sourceMemRefType, staticOffsets,
2948 staticSizes, staticStrides);
2949 }
2950 result.addAttributes(attrs);
2951 build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
2952 dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets),
2953 b.getDenseI64ArrayAttr(staticSizes),
2954 b.getDenseI64ArrayAttr(staticStrides));
2955}
2956
2957
2958
2959void SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
2960 ArrayRef offsets,
2961 ArrayRef sizes,
2962 ArrayRef strides,
2963 ArrayRef attrs) {
2964 build(b, result, MemRefType(), source, offsets, sizes, strides, attrs);
2965}
2966
2967
2968void SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
2969 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
2970 ArrayRef<int64_t> strides,
2971 ArrayRef attrs) {
2972 SmallVector offsetValues = llvm::to_vector<4>(
2973 llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult {
2974 return b.getI64IntegerAttr(v);
2975 }));
2976 SmallVector sizeValues =
2977 llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult {
2978 return b.getI64IntegerAttr(v);
2979 }));
2980 SmallVector strideValues = llvm::to_vector<4>(
2981 llvm::map_range(strides, [&](int64_t v) -> OpFoldResult {
2982 return b.getI64IntegerAttr(v);
2983 }));
2984 build(b, result, source, offsetValues, sizeValues, strideValues, attrs);
2985}
2986
2987
2988
2989void SubViewOp::build(OpBuilder &b, OperationState &result,
2990 MemRefType resultType, Value source,
2991 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
2992 ArrayRef<int64_t> strides,
2993 ArrayRef attrs) {
2994 SmallVector offsetValues = llvm::to_vector<4>(
2995 llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult {
2996 return b.getI64IntegerAttr(v);
2997 }));
2998 SmallVector sizeValues =
2999 llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult {
3000 return b.getI64IntegerAttr(v);
3001 }));
3002 SmallVector strideValues = llvm::to_vector<4>(
3003 llvm::map_range(strides, [&](int64_t v) -> OpFoldResult {
3004 return b.getI64IntegerAttr(v);
3005 }));
3006 build(b, result, resultType, source, offsetValues, sizeValues, strideValues,
3007 attrs);
3008}
3009
3010
3011
3012void SubViewOp::build(OpBuilder &b, OperationState &result,
3013 MemRefType resultType, Value source, ValueRange offsets,
3015 ArrayRef attrs) {
3016 SmallVector offsetValues = llvm::to_vector<4>(
3017 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
3018 SmallVector sizeValues = llvm::to_vector<4>(
3019 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
3020 SmallVector strideValues = llvm::to_vector<4>(
3021 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
3022 build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
3023}
3024
3025
3026void SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
3028 ArrayRef attrs) {
3029 build(b, result, MemRefType(), source, offsets, sizes, strides, attrs);
3030}
3031
3032
3033Value SubViewOp::getViewSource() { return getSource(); }
3034
3035
3036
3038 int64_t t1Offset, t2Offset;
3040 auto res1 = t1.getStridesAndOffset(t1Strides, t1Offset);
3041 auto res2 = t2.getStridesAndOffset(t2Strides, t2Offset);
3042 return succeeded(res1) && succeeded(res2) && t1Offset == t2Offset;
3043}
3044
3045
3046
3047
3049 const llvm::SmallBitVector &droppedDims) {
3050 assert(size_t(t1.getRank()) == droppedDims.size() &&
3051 "incorrect number of bits");
3052 assert(size_t(t1.getRank() - t2.getRank()) == droppedDims.count() &&
3053 "incorrect number of dropped dims");
3054 int64_t t1Offset, t2Offset;
3056 auto res1 = t1.getStridesAndOffset(t1Strides, t1Offset);
3057 auto res2 = t2.getStridesAndOffset(t2Strides, t2Offset);
3058 if (failed(res1) || failed(res2))
3059 return false;
3060 for (int64_t i = 0, j = 0, e = t1.getRank(); i < e; ++i) {
3061 if (droppedDims[i])
3062 continue;
3063 if (t1Strides[i] != t2Strides[j])
3064 return false;
3065 ++j;
3066 }
3067 return true;
3068}
3069
3071 SubViewOp op, Type expectedType) {
3072 auto memrefType = llvm::cast(expectedType);
3077 return op->emitError("expected result rank to be smaller or equal to ")
3078 << "the source rank, but got " << op.getType();
3080 return op->emitError("expected result type to be ")
3081 << expectedType
3082 << " or a rank-reduced version. (mismatch of result sizes), but got "
3083 << op.getType();
3085 return op->emitError("expected result element type to be ")
3086 << memrefType.getElementType() << ", but got " << op.getType();
3088 return op->emitError(
3089 "expected result and source memory spaces to match, but got ")
3090 << op.getType();
3092 return op->emitError("expected result type to be ")
3093 << expectedType
3094 << " or a rank-reduced version. (mismatch of result layout), but "
3095 "got "
3096 << op.getType();
3097 }
3098 llvm_unreachable("unexpected subview verification result");
3099}
3100
3101
3102LogicalResult SubViewOp::verify() {
3103 MemRefType baseType = getSourceType();
3104 MemRefType subViewType = getType();
3105 ArrayRef<int64_t> staticOffsets = getStaticOffsets();
3106 ArrayRef<int64_t> staticSizes = getStaticSizes();
3107 ArrayRef<int64_t> staticStrides = getStaticStrides();
3108
3109
3110 if (baseType.getMemorySpace() != subViewType.getMemorySpace())
3111 return emitError("different memory spaces specified for base memref "
3112 "type ")
3113 << baseType << " and subview memref type " << subViewType;
3114
3115
3116 if (!baseType.isStrided())
3117 return emitError("base type ") << baseType << " is not strided";
3118
3119
3120
3121 MemRefType expectedType = SubViewOp::inferResultType(
3122 baseType, staticOffsets, staticSizes, staticStrides);
3123
3124
3125
3127 expectedType, subViewType);
3130
3131
3132 if (expectedType.getMemorySpace() != subViewType.getMemorySpace())
3134 *this, expectedType);
3135
3136
3139 *this, expectedType);
3140
3141
3142
3143
3144
3147 if (failed(unusedDims))
3149 *this, expectedType);
3150
3151
3154 *this, expectedType);
3155
3156
3157
3158 SliceBoundsVerificationResult boundsResult =
3160 staticStrides, true);
3161 if (!boundsResult.isValid)
3162 return getOperation()->emitError(boundsResult.errorMessage);
3163
3165}
3166
3168 return os << "range " << range.offset << ":" << range.size << ":"
3170}
3171
3172
3173
3174
3177 std::array<unsigned, 3> ranks = op.getArrayAttrMaxRanks();
3178 assert(ranks[0] == ranks[1] && "expected offset and sizes of equal ranks");
3179 assert(ranks[1] == ranks[2] && "expected sizes and strides of equal ranks");
3181 unsigned rank = ranks[0];
3182 res.reserve(rank);
3183 for (unsigned idx = 0; idx < rank; ++idx) {
3185 op.isDynamicOffset(idx)
3186 ? op.getDynamicOffset(idx)
3189 op.isDynamicSize(idx)
3190 ? op.getDynamicSize(idx)
3193 op.isDynamicStride(idx)
3194 ? op.getDynamicStride(idx)
3196 res.emplace_back(Range{offset, size, stride});
3197 }
3198 return res;
3199}
3200
3201
3202
3203
3204
3205
3206
3207
3209 MemRefType currentResultType, MemRefType currentSourceType,
3212 MemRefType nonRankReducedType = SubViewOp::inferResultType(
3213 sourceType, mixedOffsets, mixedSizes, mixedStrides);
3215 currentSourceType, currentResultType, mixedSizes);
3216 if (failed(unusedDims))
3217 return nullptr;
3218
3219 auto layout = llvm::cast(nonRankReducedType.getLayout());
3221 unsigned numDimsAfterReduction =
3222 nonRankReducedType.getRank() - unusedDims->count();
3223 shape.reserve(numDimsAfterReduction);
3224 strides.reserve(numDimsAfterReduction);
3225 for (const auto &[idx, size, stride] :
3226 llvm::zip(llvm::seq(0, nonRankReducedType.getRank()),
3227 nonRankReducedType.getShape(), layout.getStrides())) {
3228 if (unusedDims->test(idx))
3229 continue;
3230 shape.push_back(size);
3231 strides.push_back(stride);
3232 }
3233
3234 return MemRefType::get(shape, nonRankReducedType.getElementType(),
3235 StridedLayoutAttr::get(sourceType.getContext(),
3236 layout.getOffset(), strides),
3237 nonRankReducedType.getMemorySpace());
3238}
3239
3242 auto memrefType = llvm::cast(memref.getType());
3243 unsigned rank = memrefType.getRank();
3247 MemRefType targetType = SubViewOp::inferRankReducedResultType(
3248 targetShape, memrefType, offsets, sizes, strides);
3249 return b.createOrFoldmemref::SubViewOp(loc, targetType, memref, offsets,
3250 sizes, strides);
3251}
3252
3253FailureOr SubViewOp::rankReduceIfNeeded(OpBuilder &b, Location loc,
3256 auto sourceMemrefType = llvm::dyn_cast(value.getType());
3257 assert(sourceMemrefType && "not a ranked memref type");
3258 auto sourceShape = sourceMemrefType.getShape();
3259 if (sourceShape.equals(desiredShape))
3260 return value;
3261 auto maybeRankReductionMask =
3263 if (!maybeRankReductionMask)
3264 return failure();
3266}
3267
3268
3269
3270
3271
3273 if (subViewOp.getSourceType().getRank() != subViewOp.getType().getRank())
3274 return false;
3275
3276 auto mixedOffsets = subViewOp.getMixedOffsets();
3277 auto mixedSizes = subViewOp.getMixedSizes();
3278 auto mixedStrides = subViewOp.getMixedStrides();
3279
3280
3281 if (llvm::any_of(mixedOffsets, [](OpFoldResult ofr) {
3283 return !intValue || intValue.value() != 0;
3284 }))
3285 return false;
3286
3287
3288 if (llvm::any_of(mixedStrides, [](OpFoldResult ofr) {
3290 return !intValue || intValue.value() != 1;
3291 }))
3292 return false;
3293
3294
3295 ArrayRef<int64_t> sourceShape = subViewOp.getSourceType().getShape();
3296 for (const auto &size : llvm::enumerate(mixedSizes)) {
3298 if (!intValue || *intValue != sourceShape[size.index()])
3299 return false;
3300 }
3301
3302 return true;
3303}
3304
3305namespace {
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322class SubViewOpMemRefCastFolder final : public OpRewritePattern {
3323public:
3324 using OpRewritePattern::OpRewritePattern;
3325
3326 LogicalResult matchAndRewrite(SubViewOp subViewOp,
3327 PatternRewriter &rewriter) const override {
3328
3329
3330 if (llvm::any_of(subViewOp.getOperands(), [](Value operand) {
3331 return matchPattern(operand, matchConstantIndex());
3332 }))
3333 return failure();
3334
3335 auto castOp = subViewOp.getSource().getDefiningOp();
3336 if (!castOp)
3337 return failure();
3338
3339 if (!CastOp::canFoldIntoConsumerOp(castOp))
3340 return failure();
3341
3342
3343
3344
3345
3347 subViewOp.getType(), subViewOp.getSourceType(),
3348 llvm::cast(castOp.getSource().getType()),
3349 subViewOp.getMixedOffsets(), subViewOp.getMixedSizes(),
3350 subViewOp.getMixedStrides());
3351 if (!resultType)
3352 return failure();
3353
3354 Value newSubView = SubViewOp::create(
3355 rewriter, subViewOp.getLoc(), resultType, castOp.getSource(),
3356 subViewOp.getOffsets(), subViewOp.getSizes(), subViewOp.getStrides(),
3357 subViewOp.getStaticOffsets(), subViewOp.getStaticSizes(),
3358 subViewOp.getStaticStrides());
3360 newSubView);
3362 }
3363};
3364
3365
3366
3367class TrivialSubViewOpFolder final : public OpRewritePattern {
3368public:
3369 using OpRewritePattern::OpRewritePattern;
3370
3371 LogicalResult matchAndRewrite(SubViewOp subViewOp,
3372 PatternRewriter &rewriter) const override {
3374 return failure();
3375 if (subViewOp.getSourceType() == subViewOp.getType()) {
3376 rewriter.replaceOp(subViewOp, subViewOp.getSource());
3378 }
3380 subViewOp.getSource());
3382 }
3383};
3384}
3385
3386
3391
3392 MemRefType resTy = SubViewOp::inferResultType(
3393 op.getSourceType(), mixedOffsets, mixedSizes, mixedStrides);
3394 if (!resTy)
3395 return {};
3396 MemRefType nonReducedType = resTy;
3397
3398
3399 llvm::SmallBitVector droppedDims = op.getDroppedDims();
3400 if (droppedDims.none())
3401 return nonReducedType;
3402
3403
3404 auto [nonReducedStrides, offset] = nonReducedType.getStridesAndOffset();
3405
3406
3409 for (int64_t i = 0; i < static_cast<int64_t>(mixedSizes.size()); ++i) {
3410 if (droppedDims.test(i))
3411 continue;
3412 targetStrides.push_back(nonReducedStrides[i]);
3413 targetShape.push_back(nonReducedType.getDimSize(i));
3414 }
3415
3416 return MemRefType::get(targetShape, nonReducedType.getElementType(),
3417 StridedLayoutAttr::get(nonReducedType.getContext(),
3418 offset, targetStrides),
3419 nonReducedType.getMemorySpace());
3420 }
3421};
3422
3423
3429
3430void SubViewOp::getCanonicalizationPatterns(RewritePatternSet &results,
3431 MLIRContext *context) {
3432 results
3433 .add<OpWithOffsetSizesAndStridesConstantArgumentFolder<
3434 SubViewOp, SubViewReturnTypeCanonicalizer, SubViewCanonicalizer>,
3435 SubViewOpMemRefCastFolder, TrivialSubViewOpFolder>(context);
3436}
3437
3438OpFoldResult SubViewOp::fold(FoldAdaptor adaptor) {
3439 MemRefType sourceMemrefType = getSource().getType();
3440 MemRefType resultMemrefType = getResult().getType();
3441 auto resultLayout =
3442 dyn_cast_if_present(resultMemrefType.getLayout());
3443
3444 if (resultMemrefType == sourceMemrefType &&
3445 resultMemrefType.hasStaticShape() &&
3446 (!resultLayout || resultLayout.hasStaticLayout())) {
3447 return getViewSource();
3448 }
3449
3450
3451
3452
3453 if (auto srcSubview = getViewSource().getDefiningOp()) {
3454 auto srcSizes = srcSubview.getMixedSizes();
3456 auto offsets = getMixedOffsets();
3457 bool allOffsetsZero = llvm::all_of(offsets, isZeroInteger);
3458 auto strides = getMixedStrides();
3459 bool allStridesOne = llvm::all_of(strides, isOneInteger);
3460 bool allSizesSame = llvm::equal(sizes, srcSizes);
3461 if (allOffsetsZero && allStridesOne && allSizesSame &&
3462 resultMemrefType == sourceMemrefType)
3463 return getViewSource();
3464 }
3465
3466 return {};
3467}
3468
3469FailureOr<std::optional<SmallVector>>
3470SubViewOp::bubbleDownCasts(OpBuilder &builder) {
3472}
3473
3474void SubViewOp::inferStridedMetadataRanges(
3475 ArrayRef ranges, GetIntRangeFn getIntRange,
3477 auto isUninitialized =
3478 +[](IntegerValueRange range) { return range.isUninitialized(); };
3479
3480
3481 SmallVector offsetOperands =
3482 getIntValueRanges(getMixedOffsets(), getIntRange, indexBitwidth);
3483 if (llvm::any_of(offsetOperands, isUninitialized))
3484 return;
3485
3486 SmallVector sizeOperands =
3488 if (llvm::any_of(sizeOperands, isUninitialized))
3489 return;
3490
3491 SmallVector stridesOperands =
3492 getIntValueRanges(getMixedStrides(), getIntRange, indexBitwidth);
3493 if (llvm::any_of(stridesOperands, isUninitialized))
3494 return;
3495
3496 StridedMetadataRange sourceRange =
3497 ranges[getSourceMutable().getOperandNumber()];
3499 return;
3500
3501 ArrayRef srcStrides = sourceRange.getStrides();
3502
3503
3504 llvm::SmallBitVector droppedDims = getDroppedDims();
3505
3506
3507 ConstantIntRanges offset = sourceRange.getOffsets()[0];
3508 SmallVector strides, sizes;
3509
3510 for (size_t i = 0, e = droppedDims.size(); i < e; ++i) {
3511 bool dropped = droppedDims.test(i);
3512
3513 ConstantIntRanges off =
3516
3517
3518 if (dropped)
3519 continue;
3520
3521 strides.push_back(
3522 intrange::inferMul({stridesOperands[i].getValue(), srcStrides[i]}));
3523
3524 sizes.push_back(sizeOperands[i].getValue());
3525 }
3526
3527 setMetadata(getResult(),
3529 SmallVector({std::move(offset)}),
3530 std::move(sizes), std::move(strides)));
3531}
3532
3533
3534
3535
3536
3537void TransposeOp::getAsmResultNames(
3538 function_ref<void(Value, StringRef)> setNameFn) {
3539 setNameFn(getResult(), "transpose");
3540}
3541
3542
3545 auto originalSizes = memRefType.getShape();
3546 auto [originalStrides, offset] = memRefType.getStridesAndOffset();
3547 assert(originalStrides.size() == static_cast<unsigned>(memRefType.getRank()));
3548
3549
3552
3556 StridedLayoutAttr::get(memRefType.getContext(), offset, strides));
3557}
3558
3559void TransposeOp::build(OpBuilder &b, OperationState &result, Value in,
3560 AffineMapAttr permutation,
3561 ArrayRef attrs) {
3562 auto permutationMap = permutation.getValue();
3563 assert(permutationMap);
3564
3565 auto memRefType = llvm::cast(in.getType());
3566
3568
3569 result.addAttribute(TransposeOp::getPermutationAttrStrName(), permutation);
3570 build(b, result, resultType, in, attrs);
3571}
3572
3573
3574void TransposeOp::print(OpAsmPrinter &p) {
3575 p << " " << getIn() << " " << getPermutation();
3577 p << " : " << getIn().getType() << " to " << getType();
3578}
3579
3580ParseResult TransposeOp::parse(OpAsmParser &parser, OperationState &result) {
3581 OpAsmParser::UnresolvedOperand in;
3582 AffineMap permutation;
3583 MemRefType srcType, dstType;
3590 return failure();
3591
3592 result.addAttribute(TransposeOp::getPermutationAttrStrName(),
3593 AffineMapAttr::get(permutation));
3595}
3596
3597LogicalResult TransposeOp::verify() {
3599 return emitOpError("expected a permutation map");
3600 if (getPermutation().getNumDims() != getIn().getType().getRank())
3601 return emitOpError("expected a permutation map of same rank as the input");
3602
3603 auto srcType = llvm::cast(getIn().getType());
3604 auto resultType = llvm::cast(getType());
3606 .canonicalizeStridedLayout();
3607
3608 if (resultType.canonicalizeStridedLayout() != canonicalResultType)
3610 << resultType
3611 << " is not equivalent to the canonical transposed input type "
3612 << canonicalResultType;
3614}
3615
3616OpFoldResult TransposeOp::fold(FoldAdaptor) {
3617
3618
3619 if (getPermutation().isIdentity() && getType() == getIn().getType())
3620 return getIn();
3621
3622
3623 if (auto otherTransposeOp = getIn().getDefiningOpmemref::TransposeOp()) {
3624 AffineMap composedPermutation =
3625 getPermutation().compose(otherTransposeOp.getPermutation());
3626 getInMutable().assign(otherTransposeOp.getIn());
3627 setPermutation(composedPermutation);
3628 return getResult();
3629 }
3630 return {};
3631}
3632
3633FailureOr<std::optional<SmallVector>>
3634TransposeOp::bubbleDownCasts(OpBuilder &builder) {
3636}
3637
3638
3639
3640
3641
3642void ViewOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
3643 setNameFn(getResult(), "view");
3644}
3645
3646LogicalResult ViewOp::verify() {
3647 auto baseType = llvm::cast(getOperand(0).getType());
3648 auto viewType = getType();
3649
3650
3651 if (!baseType.getLayout().isIdentity())
3652 return emitError("unsupported map for base memref type ") << baseType;
3653
3654
3655 if (!viewType.getLayout().isIdentity())
3656 return emitError("unsupported map for result memref type ") << viewType;
3657
3658
3659 if (baseType.getMemorySpace() != viewType.getMemorySpace())
3660 return emitError("different memory spaces specified for base memref "
3661 "type ")
3662 << baseType << " and view memref type " << viewType;
3663
3664
3665 unsigned numDynamicDims = viewType.getNumDynamicDims();
3666 if (getSizes().size() != numDynamicDims)
3667 return emitError("incorrect number of size operands for type ") << viewType;
3668
3670}
3671
3672Value ViewOp::getViewSource() { return getSource(); }
3673
3674OpFoldResult ViewOp::fold(FoldAdaptor adaptor) {
3675 MemRefType sourceMemrefType = getSource().getType();
3676 MemRefType resultMemrefType = getResult().getType();
3677
3678 if (resultMemrefType == sourceMemrefType && resultMemrefType.hasStaticShape())
3679 return getViewSource();
3680
3681 return {};
3682}
3683
3684namespace {
3685
3686struct ViewOpShapeFolder : public OpRewritePattern {
3687 using OpRewritePattern::OpRewritePattern;
3688
3689 LogicalResult matchAndRewrite(ViewOp viewOp,
3690 PatternRewriter &rewriter) const override {
3691
3692 if (llvm::none_of(viewOp.getOperands(), [](Value operand) {
3693 return matchPattern(operand, matchConstantIndex());
3694 }))
3695 return failure();
3696
3697
3698 auto memrefType = viewOp.getType();
3699
3700
3701 int64_t oldOffset;
3702 SmallVector<int64_t, 4> oldStrides;
3703 if (failed(memrefType.getStridesAndOffset(oldStrides, oldOffset)))
3704 return failure();
3705 assert(oldOffset == 0 && "Expected 0 offset");
3706
3707 SmallVector<Value, 4> newOperands;
3708
3709
3710
3711
3712 SmallVector<int64_t, 4> newShapeConstants;
3713 newShapeConstants.reserve(memrefType.getRank());
3714
3715 unsigned dynamicDimPos = 0;
3716 unsigned rank = memrefType.getRank();
3717 for (unsigned dim = 0, e = rank; dim < e; ++dim) {
3718 int64_t dimSize = memrefType.getDimSize(dim);
3719
3720 if (ShapedType::isStatic(dimSize)) {
3721 newShapeConstants.push_back(dimSize);
3722 continue;
3723 }
3724 auto *defOp = viewOp.getSizes()[dynamicDimPos].getDefiningOp();
3725 if (auto constantIndexOp =
3726 dyn_cast_or_nullarith::ConstantIndexOp(defOp)) {
3727
3728 newShapeConstants.push_back(constantIndexOp.value());
3729 } else {
3730
3731 newShapeConstants.push_back(dimSize);
3732 newOperands.push_back(viewOp.getSizes()[dynamicDimPos]);
3733 }
3734 dynamicDimPos++;
3735 }
3736
3737
3738 MemRefType newMemRefType =
3739 MemRefType::Builder(memrefType).setShape(newShapeConstants);
3740
3741 if (newMemRefType == memrefType)
3742 return failure();
3743
3744
3745 auto newViewOp = ViewOp::create(rewriter, viewOp.getLoc(), newMemRefType,
3746 viewOp.getOperand(0), viewOp.getByteShift(),
3747 newOperands);
3748
3749 rewriter.replaceOpWithNewOp(viewOp, viewOp.getType(), newViewOp);
3751 }
3752};
3753
3754struct ViewOpMemrefCastFolder : public OpRewritePattern {
3755 using OpRewritePattern::OpRewritePattern;
3756
3757 LogicalResult matchAndRewrite(ViewOp viewOp,
3758 PatternRewriter &rewriter) const override {
3759 Value memrefOperand = viewOp.getOperand(0);
3760 CastOp memrefCastOp = memrefOperand.getDefiningOp();
3761 if (!memrefCastOp)
3762 return failure();
3763 Value allocOperand = memrefCastOp.getOperand();
3764 AllocOp allocOp = allocOperand.getDefiningOp();
3765 if (!allocOp)
3766 return failure();
3767 rewriter.replaceOpWithNewOp(viewOp, viewOp.getType(), allocOperand,
3768 viewOp.getByteShift(),
3769 viewOp.getSizes());
3771 }
3772};
3773
3774}
3775
3776void ViewOp::getCanonicalizationPatterns(RewritePatternSet &results,
3777 MLIRContext *context) {
3778 results.add<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context);
3779}
3780
3781FailureOr<std::optional<SmallVector>>
3782ViewOp::bubbleDownCasts(OpBuilder &builder) {
3784}
3785
3786
3787
3788
3789
3790LogicalResult AtomicRMWOp::verify() {
3791 if (getMemRefType().getRank() != getNumOperands() - 2)
3793 "expects the number of subscripts to be equal to memref rank");
3794 switch (getKind()) {
3795 case arith::AtomicRMWKind::addf:
3796 case arith::AtomicRMWKind::maximumf:
3797 case arith::AtomicRMWKind::minimumf:
3798 case arith::AtomicRMWKind::mulf:
3799 if (!llvm::isa(getValue().getType()))
3801 << arith::stringifyAtomicRMWKind(getKind())
3802 << "' expects a floating-point type";
3803 break;
3804 case arith::AtomicRMWKind::addi:
3805 case arith::AtomicRMWKind::maxs:
3806 case arith::AtomicRMWKind::maxu:
3807 case arith::AtomicRMWKind::mins:
3808 case arith::AtomicRMWKind::minu:
3809 case arith::AtomicRMWKind::muli:
3810 case arith::AtomicRMWKind::ori:
3811 case arith::AtomicRMWKind::xori:
3812 case arith::AtomicRMWKind::andi:
3813 if (!llvm::isa(getValue().getType()))
3815 << arith::stringifyAtomicRMWKind(getKind())
3816 << "' expects an integer type";
3817 break;
3818 default:
3819 break;
3820 }
3822}
3823
3824OpFoldResult AtomicRMWOp::fold(FoldAdaptor adaptor) {
3825
3827 return getResult();
3828 return OpFoldResult();
3829}
3830
3831FailureOr<std::optional<SmallVector>>
3832AtomicRMWOp::bubbleDownCasts(OpBuilder &builder) {
3834 getResult());
3835}
3836
3837
3838
3839
3840
3841#define GET_OP_CLASSES
3842#include "mlir/Dialect/MemRef/IR/MemRefOps.cpp.inc"
p<< " : "<< getMemRefType()<< ", "<< getType();}static LogicalResult verifyVectorMemoryOp(Operation *op, MemRefType memrefType, VectorType vectorType) { if(memrefType.getElementType() !=vectorType.getElementType()) return op-> emitOpError("requires memref and vector types of the same elemental type")
Given a list of lists of parsed operands, populates uniqueOperands with unique operands.
static bool hasSideEffects(Operation *op)
static bool isPermutation(const std::vector< PermutationTy > &permutation)
static Type getElementType(Type type)
Determine the element type of type.
static int64_t getNumElements(Type t)
Compute the total number of elements in the given type, also taking into account nested types.
b
Return true if permutation is a valid permutation of the outer_dims_perm (case OuterOrInnerPerm::Oute...
static void constifyIndexValues(SmallVectorImpl< OpFoldResult > &values, ArrayRef< int64_t > constValues)
Helper function that sets values[i] to constValues[i] if the latter is a static value,...
Definition MemRefOps.cpp:96
static void printGlobalMemrefOpTypeAndInitialValue(OpAsmPrinter &p, GlobalOp op, TypeAttr type, Attribute initialValue)
Definition MemRefOps.cpp:1563
static LogicalResult verifyCollapsedShape(Operation *op, ArrayRef< int64_t > collapsedShape, ArrayRef< int64_t > expandedShape, ArrayRef< ReassociationIndices > reassociation, bool allowMultipleDynamicDimsPerGroup)
Helper function for verifying the shape of ExpandShapeOp and ResultShapeOp result and operand.
Definition MemRefOps.cpp:2234
static bool isOpItselfPotentialAutomaticAllocation(Operation *op)
Given an operation, return whether this op itself could allocate an AutomaticAllocationScopeResource.
Definition MemRefOps.cpp:436
static MemRefType inferTransposeResultType(MemRefType memRefType, AffineMap permutationMap)
Build a strided memref type by applying permutationMap to memRefType.
Definition MemRefOps.cpp:3543
static bool isGuaranteedAutomaticAllocation(Operation *op)
Given an operation, return whether this op is guaranteed to allocate an AutomaticAllocationScopeResou...
Definition MemRefOps.cpp:417
static FailureOr< StridedLayoutAttr > computeExpandedLayoutMap(MemRefType srcType, ArrayRef< int64_t > resultShape, ArrayRef< ReassociationIndices > reassociation)
Compute the layout map after expanding a given source MemRef type with the specified reassociation in...
Definition MemRefOps.cpp:2327
static bool haveCompatibleOffsets(MemRefType t1, MemRefType t2)
Return true if t1 and t2 have equal offsets (both dynamic or of same static value).
Definition MemRefOps.cpp:3037
static LogicalResult FoldCopyOfCast(CopyOp op)
If the source/target of a CopyOp is a CastOp that does not modify the shape and element type,...
Definition MemRefOps.cpp:853
static bool replaceConstantUsesOf(OpBuilder &rewriter, Location loc, Container values, ArrayRef< OpFoldResult > maybeConstants)
Helper function to perform the replacement of all constant uses of values by a materialized constant ...
Definition MemRefOps.cpp:1393
static LogicalResult produceSubViewErrorMsg(SliceVerificationResult result, SubViewOp op, Type expectedType)
Definition MemRefOps.cpp:3070
static MemRefType getCanonicalSubViewResultType(MemRefType currentResultType, MemRefType currentSourceType, MemRefType sourceType, ArrayRef< OpFoldResult > mixedOffsets, ArrayRef< OpFoldResult > mixedSizes, ArrayRef< OpFoldResult > mixedStrides)
Compute the canonical result type of a SubViewOp.
Definition MemRefOps.cpp:3208
static ParseResult parseGlobalMemrefOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr, Attribute &initialValue)
Definition MemRefOps.cpp:1577
static std::tuple< MemorySpaceCastOpInterface, PtrLikeTypeInterface, Type > getMemorySpaceCastInfo(BaseMemRefType resultTy, Value src)
Helper function to retrieve a lossless memory-space cast, and the corresponding new result memref typ...
Definition MemRefOps.cpp:117
static FailureOr< llvm::SmallBitVector > computeMemRefRankReductionMask(MemRefType originalType, MemRefType reducedType, ArrayRef< OpFoldResult > sizes)
Given the originalType and a candidateReducedType whose shape is assumed to be a subset of originalTy...
Definition MemRefOps.cpp:940
static bool isTrivialSubViewOp(SubViewOp subViewOp)
Helper method to check if a subview operation is trivially a no-op.
Definition MemRefOps.cpp:3272
static bool lastNonTerminatorInRegion(Operation *op)
Return whether this op is the last non terminating op in a region.
Definition MemRefOps.cpp:459
static std::map< int64_t, unsigned > getNumOccurences(ArrayRef< int64_t > vals)
Return a map with key being elements in vals and data being number of occurences of it.
Definition MemRefOps.cpp:925
static bool haveCompatibleStrides(MemRefType t1, MemRefType t2, const llvm::SmallBitVector &droppedDims)
Return true if t1 and t2 have equal strides (both dynamic or of same static value).
Definition MemRefOps.cpp:3048
static FailureOr< StridedLayoutAttr > computeCollapsedLayoutMap(MemRefType srcType, ArrayRef< ReassociationIndices > reassociation, bool strict=false)
Compute the layout map after collapsing a given source MemRef type with the specified reassociation i...
Definition MemRefOps.cpp:2527
static FailureOr< std::optional< SmallVector< Value > > > bubbleDownCastsPassthroughOpImpl(ConcreteOpTy op, OpBuilder &builder, OpOperand &src)
Implementation of bubbleDownCasts method for memref operations that return a single memref result.
Definition MemRefOps.cpp:148
static LogicalResult verifyAllocLikeOp(AllocLikeOp op)
Definition MemRefOps.cpp:188
static llvm::SmallBitVector getDroppedDims(ArrayRef< int64_t > reducedShape, ArrayRef< OpFoldResult > mixedSizes)
Compute the dropped dimensions of a rank-reducing tensor.extract_slice op or rank-extending tensor....
static ArrayRef< int64_t > getShape(Type type)
Returns the shape of the given type.
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
@ Square
Square brackets surrounding zero or more operands.
virtual ParseResult parseColonTypeList(SmallVectorImpl< Type > &result)=0
Parse a colon followed by a type list, which must have at least one type.
virtual Builder & getBuilder() const =0
Return a builder which provides useful access to MLIRContext, global objects like types and attribute...
virtual ParseResult parseOptionalAttrDict(NamedAttrList &result)=0
Parse a named dictionary into 'result' if it is present.
virtual ParseResult parseOptionalEqual()=0
Parse a = token if present.
virtual ParseResult parseOptionalKeyword(StringRef keyword)=0
Parse the given keyword if present.
MLIRContext * getContext() const
virtual InFlightDiagnostic emitError(SMLoc loc, const Twine &message={})=0
Emit a diagnostic at the specified location and return failure.
virtual ParseResult parseAffineMap(AffineMap &map)=0
Parse an affine map instance into 'map'.
ParseResult addTypeToList(Type type, SmallVectorImpl< Type > &result)
Add the specified type to the end of the specified type list and return success.
virtual ParseResult parseLess()=0
Parse a '<' token.
virtual ParseResult parseColonType(Type &result)=0
Parse a colon followed by a type.
virtual SMLoc getNameLoc() const =0
Return the location of the original name token.
virtual ParseResult parseGreater()=0
Parse a '>' token.
virtual ParseResult parseType(Type &result)=0
Parse a type.
virtual ParseResult parseComma()=0
Parse a , token.
virtual ParseResult parseOptionalArrowTypeList(SmallVectorImpl< Type > &result)=0
Parse an optional arrow followed by a type list.
ParseResult parseKeywordType(const char *keyword, Type &result)
Parse a keyword followed by a type.
ParseResult parseKeyword(StringRef keyword)
Parse a given keyword.
virtual ParseResult parseAttribute(Attribute &result, Type type={})=0
Parse an arbitrary attribute of a given type and return it in result.
virtual void printAttributeWithoutType(Attribute attr)
Print the given attribute without its type.
Attributes are known-constant values of operations.
This class provides a shared interface for ranked and unranked memref types.
ArrayRef< int64_t > getShape() const
Returns the shape of this memref type.
FailureOr< PtrLikeTypeInterface > clonePtrWith(Attribute memorySpace, std::optional< Type > elementType) const
Clone this type with the given memory space and element type.
bool hasRank() const
Returns if this type is ranked, i.e. it has a known number of dimensions.
Block represents an ordered list of Operations.
Operation * getTerminator()
Get the terminator operation of this block.
bool mightHaveTerminator()
Return "true" if this block might have a terminator.
This class is a general helper class for creating context-global objects like types,...
IntegerAttr getIndexAttr(int64_t value)
IntegerType getIntegerType(unsigned width)
BoolAttr getBoolAttr(bool value)
IRValueT get() const
Return the current value being used by this operand.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
MLIRContext is the top-level object for a collection of MLIR operations.
This is a builder type that keeps local references to arguments.
Builder & setShape(ArrayRef< int64_t > newShape)
Builder & setLayout(MemRefLayoutAttrInterface newLayout)
The OpAsmParser has methods for interacting with the asm parser: parsing things from it,...
virtual ParseResult parseRegion(Region ®ion, ArrayRef< Argument > arguments={}, bool enableNameShadowing=false)=0
Parses a region.
ParseResult parseTrailingOperandList(SmallVectorImpl< UnresolvedOperand > &result, Delimiter delimiter=Delimiter::None)
Parse zero or more trailing SSA comma-separated trailing operand references with a specified surround...
virtual ParseResult resolveOperand(const UnresolvedOperand &operand, Type type, SmallVectorImpl< Value > &result)=0
Resolve an operand to an SSA value, emitting an error on failure.
ParseResult resolveOperands(Operands &&operands, Type type, SmallVectorImpl< Value > &result)
Resolve a list of operands to SSA values, emitting an error on failure, or appending the results to t...
virtual ParseResult parseOperand(UnresolvedOperand &result, bool allowResultNumber=true)=0
Parse a single SSA value operand name along with a result number if allowResultNumber is true.
virtual ParseResult parseOperandList(SmallVectorImpl< UnresolvedOperand > &result, Delimiter delimiter=Delimiter::None, bool allowResultNumber=true, int requiredOperandCount=-1)=0
Parse zero or more SSA comma-separated operand references with a specified surrounding delimiter,...
This is a pure-virtual base class that exposes the asmprinter hooks necessary to implement a custom p...
void printOperands(const ContainerType &container)
Print a comma separated list of operands.
virtual void printOptionalAttrDict(ArrayRef< NamedAttribute > attrs, ArrayRef< StringRef > elidedAttrs={})=0
If the specified operation has attributes, print out an attribute dictionary with their values.
virtual void printRegion(Region &blocks, bool printEntryBlockArgs=true, bool printBlockTerminators=true, bool printEmptyBlock=false)=0
Prints a region.
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
Block * createBlock(Region *parent, Region::iterator insertPt={}, TypeRange argTypes={}, ArrayRef< Location > locs={})
Add new block with 'argTypes' arguments and set the insertion point to the end of it.
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
void createOrFold(SmallVectorImpl< Value > &results, Location location, Args &&...args)
Create an operation of specific op type at the current insertion point, and immediately try to fold i...
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
This class represents a single result from folding an operation.
This class represents an operand of an operation.
unsigned getOperandNumber()
Return which operand this is in the OpOperand list of the Operation.
A trait of region holding operations that define a new scope for automatic allocations,...
This trait indicates that the memory effects of an operation includes the effects of operations neste...
Simple wrapper around a void* in order to express generically how to pass in op properties through AP...
type_range getType() const
Operation is the basic unit of execution within MLIR.
void replaceUsesOfWith(Value from, Value to)
Replace any uses of 'from' with 'to' within this operation.
bool hasTrait()
Returns true if the operation was registered with a particular trait, e.g.
Block * getBlock()
Returns the operation block that contains this operation.
Operation * getParentOp()
Returns the closest surrounding operation that contains this operation or nullptr if this is a top-le...
MutableArrayRef< OpOperand > getOpOperands()
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
MutableArrayRef< Region > getRegions()
Returns the regions held by this operation.
operand_range getOperands()
Returns an iterator on the underlying Value's.
result_range getResults()
Region * getParentRegion()
Returns the region to which the instruction belongs.
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
This class represents a point being branched from in the methods of the RegionBranchOpInterface.
bool isParent() const
Returns true if branching from the parent op.
This class provides an abstraction over the different types of ranges over Regions.
This class represents a successor of a region.
This class contains a list of basic blocks and a link to the parent operation it is attached to.
BlockArgument addArgument(Type type, Location loc)
Add one value to the argument list.
bool hasOneBlock()
Return true if this region has exactly one block.
RewritePatternSet & add(ConstructorArg &&arg, ConstructorArgs &&...args)
Add an instance of each of the pattern types 'Ts' to the pattern list with the given arguments.
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
virtual void inlineBlockBefore(Block *source, Block *dest, Block::iterator before, ValueRange argValues={})
Inline the operations of block 'source' into block 'dest' before the given position.
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
void modifyOpInPlace(Operation *root, CallableT &&callable)
This method is a utility wrapper around an in-place modification of an operation.
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
This class represents a collection of SymbolTables.
virtual Operation * lookupNearestSymbolFrom(Operation *from, StringAttr symbol)
Returns the operation registered with the given symbol name within the closest parent operation of,...
This class provides an abstraction over the various different ranges of value types.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
MLIRContext * getContext() const
Return the MLIRContext in which this type was uniqued.
This class provides an abstraction over the different types of ranges over Values.
type_range getTypes() const
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
static WalkResult advance()
static WalkResult interrupt()
static ConstantIndexOp create(OpBuilder &builder, Location location, int64_t value)
Speculatability
This enum is returned from the getSpeculatability method in the ConditionallySpeculatable op interfac...
constexpr auto Speculatable
constexpr auto NotSpeculatable
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
FailureOr< std::optional< SmallVector< Value > > > bubbleDownInPlaceMemorySpaceCastImpl(OpOperand &operand, ValueRange results)
Tries to bubble-down inplace a MemorySpaceCastOpInterface operation referenced by operand.
ConstantIntRanges inferAdd(ArrayRef< ConstantIntRanges > argRanges, OverflowFlags ovfFlags=OverflowFlags::None)
ConstantIntRanges inferMul(ArrayRef< ConstantIntRanges > argRanges, OverflowFlags ovfFlags=OverflowFlags::None)
ConstantIntRanges inferShapedDimOpInterface(ShapedDimOpInterface op, const IntegerValueRange &maybeDim)
Returns the integer range for the result of a ShapedDimOpInterface given the optional inferred ranges...
Type getTensorTypeFromMemRefType(Type type)
Return an unranked/ranked tensor type for the given unranked/ranked memref type.
Definition MemRefOps.cpp:60
OpFoldResult getMixedSize(OpBuilder &builder, Location loc, Value value, int64_t dim)
Return the dimension of the given memref value.
Definition MemRefOps.cpp:68
LogicalResult foldMemRefCast(Operation *op, Value inner=nullptr)
This is a common utility used for patterns of the form "someop(memref.cast) -> someop".
Definition MemRefOps.cpp:45
SmallVector< OpFoldResult > getMixedSizes(OpBuilder &builder, Location loc, Value value)
Return the dimensions of the given memref value.
Definition MemRefOps.cpp:77
Value createCanonicalRankReducingSubViewOp(OpBuilder &b, Location loc, Value memref, ArrayRef< int64_t > targetShape)
Create a rank-reducing SubViewOp @[0 .
Definition MemRefOps.cpp:3240
Operation::operand_range getIndices(Operation *op)
Get the indices that the given load/store operation is operating on.
DynamicAPInt getIndex(const ConeV &cone)
Get the index of a cone, i.e., the volume of the parallelepiped spanned by its generators,...
Value constantIndex(OpBuilder &builder, Location loc, int64_t i)
Generates a constant of index type.
MemRefType getMemRefType(T &&t)
Convenience method to abbreviate casting getType().
SmallVector< OpFoldResult > getMixedSizes(OpBuilder &builder, Location loc, Value value)
Return the dimensions of the given tensor value.
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
SmallVector< OpFoldResult > getMixedValues(ArrayRef< int64_t > staticValues, ValueRange dynamicValues, MLIRContext *context)
Return a vector of OpFoldResults with the same size a staticValues, but all elements for which Shaped...
detail::constant_int_value_binder m_ConstantInt(IntegerAttr::ValueType *bind_value)
Matches a constant holding a scalar/vector/tensor integer (splat) and writes the integer value to bin...
SliceVerificationResult
Enum that captures information related to verifier error conditions on slice insert/extract type of o...
constexpr StringRef getReassociationAttrName()
Attribute name for the ArrayAttr which encodes reassociation indices.
detail::DenseArrayAttrImpl< int64_t > DenseI64ArrayAttr
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
raw_ostream & operator<<(raw_ostream &os, const AliasResult &result)
llvm::function_ref< void(Value, const IntegerValueRange &)> SetIntLatticeFn
Similar to SetIntRangeFn, but operating on IntegerValueRange lattice values.
static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp, ArrayRef< Attribute > operands)
SliceBoundsVerificationResult verifyInBoundsSlice(ArrayRef< int64_t > shape, ArrayRef< int64_t > staticOffsets, ArrayRef< int64_t > staticSizes, ArrayRef< int64_t > staticStrides, bool generateErrorMessage=false)
Verify that the offsets/sizes/strides-style access into the given shape is in-bounds.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
SmallVector< Range, 8 > getOrCreateRanges(OffsetSizeAndStrideOpInterface op, OpBuilder &b, Location loc)
Return the list of Range (i.e.
Definition MemRefOps.cpp:3175
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
SmallVector< AffineMap, 4 > getSymbolLessAffineMaps(ArrayRef< ReassociationExprs > reassociation)
Constructs affine maps out of Array<Array>.
bool isMemoryEffectFree(Operation *op)
Returns true if the given operation is free of memory effects.
bool hasValidSizesOffsets(SmallVector< int64_t > sizesOrOffsets)
Helper function to check whether the passed in sizes or offsets are valid.
SmallVector< SmallVector< OpFoldResult > > ReifiedRankedShapedTypeDims
SmallVector< IntegerValueRange > getIntValueRanges(ArrayRef< OpFoldResult > values, GetIntRangeFn getIntRange, int32_t indexBitwidth)
Helper function to collect the integer range values of an array of op fold results.
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
bool isZeroInteger(OpFoldResult v)
Return true if v is an IntegerAttr with value 0.
bool hasValidStrides(SmallVector< int64_t > strides)
Helper function to check whether the passed in strides are valid.
void dispatchIndexOpFoldResults(ArrayRef< OpFoldResult > ofrs, SmallVectorImpl< Value > &dynamicVec, SmallVectorImpl< int64_t > &staticVec)
Helper function to dispatch multiple OpFoldResults according to the behavior of dispatchIndexOpFoldRe...
SmallVector< SmallVector< AffineExpr, 2 >, 2 > convertReassociationIndicesToExprs(MLIRContext *context, ArrayRef< ReassociationIndices > reassociationIndices)
Convert reassociation indices to affine expressions.
std::optional< SmallVector< OpFoldResult > > inferExpandShapeOutputShape(OpBuilder &b, Location loc, ShapedType expandedType, ArrayRef< ReassociationIndices > reassociation, ArrayRef< OpFoldResult > inputShape)
Infer the output shape for a {memref|tensor}.expand_shape when it is possible to do so.
SmallVector< T > applyPermutationMap(AffineMap map, llvm::ArrayRef< T > source)
Apply a permutation from map to source and return the result.
OpFoldResult getAsOpFoldResult(Value val)
Given a value, try to extract a constant Attribute.
function_ref< void(Value, const StridedMetadataRange &)> SetStridedMetadataRangeFn
Callback function type for setting the strided metadata of a value.
std::optional< llvm::SmallDenseSet< unsigned > > computeRankReductionMask(ArrayRef< int64_t > originalShape, ArrayRef< int64_t > reducedShape, bool matchDynamic=false)
Given an originalShape and a reducedShape assumed to be a subset of originalShape with some 1 entries...
SmallVector< int64_t, 2 > ReassociationIndices
SliceVerificationResult isRankReducedType(ShapedType originalType, ShapedType candidateReducedType)
Check if originalType can be rank reduced to candidateReducedType type by dropping some dimensions wi...
ArrayAttr getReassociationIndicesAttribute(Builder &b, ArrayRef< ReassociationIndices > reassociation)
Wraps a list of reassociations in an ArrayAttr.
llvm::function_ref< Fn > function_ref
bool isOneInteger(OpFoldResult v)
Return true if v is an IntegerAttr with value 1.
std::pair< SmallVector< int64_t >, SmallVector< Value > > decomposeMixedValues(ArrayRef< OpFoldResult > mixedValues)
Decompose a vector of mixed static or dynamic values into the corresponding pair of arrays.
function_ref< IntegerValueRange(Value)> GetIntRangeFn
Helper callback type to get the integer range of a value.
Move allocations into an allocation scope, if it is legal to move them (e.g.
Definition MemRefOps.cpp:507
LogicalResult matchAndRewrite(AllocaScopeOp op, PatternRewriter &rewriter) const override
Definition MemRefOps.cpp:510
Inline an AllocaScopeOp if either the direct parent is an allocation scope or it contains no allocati...
Definition MemRefOps.cpp:467
LogicalResult matchAndRewrite(AllocaScopeOp op, PatternRewriter &rewriter) const override
Definition MemRefOps.cpp:470
Definition MemRefOps.cpp:2691
LogicalResult matchAndRewrite(CollapseShapeOp op, PatternRewriter &rewriter) const override
Definition MemRefOps.cpp:2695
A canonicalizer wrapper to replace SubViewOps.
Definition MemRefOps.cpp:3424
void operator()(PatternRewriter &rewriter, SubViewOp op, SubViewOp newOp)
Definition MemRefOps.cpp:3425
Return the canonical type of the result of a subview.
Definition MemRefOps.cpp:3387
MemRefType operator()(SubViewOp op, ArrayRef< OpFoldResult > mixedOffsets, ArrayRef< OpFoldResult > mixedSizes, ArrayRef< OpFoldResult > mixedStrides)
Definition MemRefOps.cpp:3388
This is the representation of an operand reference.
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
OpRewritePattern(MLIRContext *context, PatternBenefit benefit=1, ArrayRef< StringRef > generatedNames={})
This represents an operation in an abstracted form, suitable for use with the builder APIs.
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...
static SaturatedInteger wrap(int64_t v)
bool isValid
If set to "true", the slice bounds verification was successful.
std::string errorMessage
An error message that can be printed during op verification.
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.