DDPStrategy — mmengine 0.10.7 documentation (original) (raw)
class mmengine._strategy.DDPStrategy(*, model_wrapper=None, sync_bn=None, **kwargs)[source]¶
Distribution strategy for distributed data parallel training.
Parameters:
- model_wrapper (dict) – Dict for model wrapper. Defaults to None.
- sync_bn (str) – Type of sync batch norm. Defaults to None. Options are ‘torch’ and ‘mmcv’.
- **kwargs – Other arguments for BaseStrategy.
Convert all BatchNorm
layers in the model to SyncBatchNorm
(SyncBN) or mmcv.ops.sync_bn.SyncBatchNorm
(MMSyncBN) layers.
Parameters:
model (nn.Module) – Model to be converted.
Returns:
Converted model.
Return type:
nn.Module
save_checkpoint(filename, *, save_optimizer=True, save_param_scheduler=True, extra_ckpt=None, callback=None)[source]¶
Save checkpoint to given filename
.
Parameters:
- filename (str) – Filename to save checkpoint.
- save_optimizer (bool) –
- save_param_scheduler (bool) –
- extra_ckpt (dict | None) –
- callback (Callable | None) –
Keyword Arguments:
- save_optimizer (bool) – Whether to save the optimizer to the checkpoint. Defaults to True.
- save_param_scheduler (bool) – Whether to save the param_scheduler to the checkpoint. Defaults to True.
- extra_ckpt (dict, optional) – Extra checkpoint to save. Defaults to None.
- callback (callable, callable) – Callback function to modify the checkpoint before saving the checkpoint. Defaults to None.
Return type:
None