SingleDeviceStrategy — mmengine 0.10.7 documentation (original) (raw)
class mmengine._strategy.SingleDeviceStrategy(*, work_dir='work_dirs', experiment_name=None, env_kwargs=None, log_kwargs=None, auto_scale_lr=None)[source]¶
Strategy for single device training.
Parameters:
- work_dir (str) –
- experiment_name (str | None) –
- env_kwargs (dict | None) –
- log_kwargs (dict | None) –
- auto_scale_lr (dict | None) –
Convert layers of model.
convert all SyncBatchNorm
(SyncBN) andmmcv.ops.sync_bn.SyncBatchNorm
(MMSyncBN) layers in the model toBatchNormXd
layers.
Parameters:
model (nn.Module) – Model to convert.
Return type:
load_checkpoint(filename, *, map_location='cpu', strict=False, revise_keys=[('^module.', '')], callback=None)[source]¶
Load checkpoint from given filename
.
Parameters:
- filename (str) – Accept local filepath, URL,
torchvision://xxx
,open-mmlab://xxx
. - map_location (str | Callable) –
- strict (bool) –
- revise_keys (list) –
- callback (Callable | None) –
Keyword Arguments:
- map_location (str or callable) – A string or a callable function to specifying how to remap storage locations. Defaults to ‘cpu’.
- strict (bool) – strict (bool): Whether to allow different params for the model and checkpoint.
- revise_keys (list) – A list of customized keywords to modify the state_dict in checkpoint. Each item is a (pattern, replacement) pair of the regular expression operations. Defaults to strip the prefix ‘module.’ by [(r’^module.’, ‘’)].
- callback (callable, callable) – Callback function to modify the checkpoint after loading the checkpoint. Defaults to None.
Return type:
prepare(model, *, optim_wrapper=None, param_scheduler=None, compile=False, dispatch_kwargs=None)[source]¶
Prepare model and some components.
Parameters:
- model (torch.nn.Module or dict) – The model to be run. It can be a dict used for build a model.
- optim_wrapper (BaseOptimWrapper | dict | None) –
- param_scheduler (_ParamScheduler | Dict | List | None) –
- compile (dict | bool) –
- dispatch_kwargs (dict | None) –
Keyword Arguments:
- optim_wrapper (BaseOptimWrapper or dict, optional) – Computing the gradient of model parameters and updating them. Defaults to None. See
build_optim_wrapper()
for examples. - param_scheduler (_ParamScheduler or dict or list, optional) – Parameter scheduler for updating optimizer parameters. If specified,
optim_wrapper
should also be specified. Defaults to None. Seebuild_param_scheduler()
for examples. - compile (dict, optional) – Config to compile model. Defaults to False. Requires PyTorch>=2.0.
- dispatch_kwargs (dict, optional) – Kwargs to be passed to other methods of Strategy. Defaults to None. If
accumulative_counts
is set inoptim_wrapper
, you need to providemax_iters
indispatch_kwargs
.
resume(filename, *, resume_optimizer=True, resume_param_scheduler=True, map_location='default', callback=None)[source]¶
Resume training from given filename
.
Four types of states will be resumed.
- model state
- optimizer state
- scheduler state
- randomness state
Parameters:
- filename (str) – Accept local filepath, URL,
torchvision://xxx
,open-mmlab://xxx
. - resume_optimizer (bool) –
- resume_param_scheduler (bool) –
- map_location (str | Callable) –
- callback (Callable | None) –
Keyword Arguments:
- resume_optimizer (bool) – Whether to resume optimizer state. Defaults to True.
- resume_param_scheduler (bool) – Whether to resume param scheduler state. Defaults to True.
- map_location (str or callable) – A string or a callable function to specifying how to remap storage locations. Defaults to ‘default’.
- callback (callable, callable) – Callback function to modify the checkpoint before saving the checkpoint. Defaults to None.
Return type:
save_checkpoint(filename, *, save_optimizer=True, save_param_scheduler=True, extra_ckpt=None, callback=None)[source]¶
Save checkpoint to given filename
.
Parameters:
- filename (str) – Filename to save checkpoint.
- save_optimizer (bool) –
- save_param_scheduler (bool) –
- extra_ckpt (dict | None) –
- callback (Callable | None) –
Keyword Arguments:
- save_optimizer (bool) – Whether to save the optimizer to the checkpoint. Defaults to True.
- save_param_scheduler (bool) – Whether to save the param_scheduler to the checkpoint. Defaults to True.
- extra_ckpt (dict, optional) – Extra checkpoint to save. Defaults to None.
- callback (callable, callable) – Callback function to modify the checkpoint before saving the checkpoint. Defaults to None.
Return type:
None