SingleDeviceStrategy — mmengine 0.10.7 documentation (original) (raw)

class mmengine._strategy.SingleDeviceStrategy(*, work_dir='work_dirs', experiment_name=None, env_kwargs=None, log_kwargs=None, auto_scale_lr=None)[source]

Strategy for single device training.

Parameters:

convert_model(model)[source]

Convert layers of model.

convert all SyncBatchNorm (SyncBN) andmmcv.ops.sync_bn.SyncBatchNorm (MMSyncBN) layers in the model toBatchNormXd layers.

Parameters:

model (nn.Module) – Model to convert.

Return type:

Module

load_checkpoint(filename, *, map_location='cpu', strict=False, revise_keys=[('^module.', '')], callback=None)[source]

Load checkpoint from given filename.

Parameters:

Keyword Arguments:

Return type:

dict

prepare(model, *, optim_wrapper=None, param_scheduler=None, compile=False, dispatch_kwargs=None)[source]

Prepare model and some components.

Parameters:

Keyword Arguments:

resume(filename, *, resume_optimizer=True, resume_param_scheduler=True, map_location='default', callback=None)[source]

Resume training from given filename.

Four types of states will be resumed.

Parameters:

Keyword Arguments:

Return type:

dict

save_checkpoint(filename, *, save_optimizer=True, save_param_scheduler=True, extra_ckpt=None, callback=None)[source]

Save checkpoint to given filename.

Parameters:

Keyword Arguments:

Return type:

None