DeepSpeedOptimWrapper — mmengine 0.10.7 documentation (original) (raw)
class mmengine._strategy.deepspeed.DeepSpeedOptimWrapper(optimizer)[source]¶
backward(loss, **kwargs)[source]¶
“Perform gradient back propagation.
Parameters:
loss (Tensor) –
Return type:
None
load_state_dict(state_dict)[source]¶
A wrapper of Optimizer.load_state_dict
. load the state dict ofoptimizer
.
Provide unified load_state_dict
interface compatible with automatic mixed precision training. Subclass can overload this method to implement the required logic. For example, the state dictionary of GradScaler should be loaded when training with torch.cuda.amp
.
Parameters:
state_dict (dict) – The state dictionary of optimizer
.
Return type:
None
A wrapper of Optimizer.state_dict
.
Return type:
Call the step method of optimizer.
Update parameters in optimizer
.
Return type:
None
A wrapper of Optimizer.zero_grad
.
Return type:
None