mmengine.model — mmengine 0.10.7 documentation (original) (raw)

mmengine.model

Module

Model

EMA

Model Wrapper

Weight Initialization

BaseInit
Caffe2XavierInit
ConstantInit Initialize module parameters with constant values.
KaimingInit Initialize module parameters with the values according to the method described in the paper below.
NormalInit Initialize module parameters with the values drawn from the normal distribution \(\mathcal{N}(\text{mean}, \text{std}^2)\).
PretrainedInit Initialize module by loading a pretrained model.
TruncNormalInit Initialize module parameters with the values drawn from the normal distribution \(\mathcal{N}(\text{mean}, \text{std}^2)\) with values outside \([a, b]\).
UniformInit Initialize module parameters with values drawn from the uniform distribution \(\mathcal{U}(a, b)\).
XavierInit Initialize module parameters with values according to the method described in the paper below.
bias_init_with_prob Initialize conv/fc bias value according to a given probability value.
caffe2_xavier_init
constant_init
initialize Initialize a module.
kaiming_init
normal_init
trunc_normal_init
uniform_init
update_init_info Update the _params_init_info in the module if the value of parameters are changed.
xavier_init

Utils

detect_anomalous_params
merge_dict Merge all dictionaries into one dictionary.
stack_batch Stack multiple tensors to form a batch and pad the tensor to the max shape use the right bottom padding mode in these images.
revert_sync_batchnorm Helper function to convert all SyncBatchNorm (SyncBN) and mmcv.ops.sync_bn.SyncBatchNorm`(MMSyncBN) layers in the model to `BatchNormXd layers.
convert_sync_batchnorm Helper function to convert all BatchNorm layers in the model to SyncBatchNorm (SyncBN) or mmcv.ops.sync_bn.SyncBatchNorm (MMSyncBN) layers.