numpy.ufunc.outer — NumPy v2.5.dev0 Manual (original) (raw)

method

ufunc.outer(A, B, /, **kwargs)#

Apply the ufunc op to all pairs (a, b) with a in A and b in B.

Let M = A.ndim, N = B.ndim. Then the result, C, ofop.outer(A, B) is an array of dimension M + N such that:

\[C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] = op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}])\]

For A and B one-dimensional, this is equivalent to:

r = empty(len(A),len(B)) for i in range(len(A)): for j in range(len(B)): r[i,j] = op(A[i], B[j]) # op = ufunc in question

Parameters:

Aarray_like

First array

Barray_like

Second array

kwargsany

Arguments to pass on to the ufunc. Typically dtype or out. See ufunc for a comprehensive overview of all available arguments.

Returns:

rndarray

Output array

See also

numpy.outer

A less powerful version of np.multiply.outer that ravels all inputs to 1D. This exists primarily for compatibility with old code.

tensordot

np.tensordot(a, b, axes=((), ())) and np.multiply.outer(a, b) behave same for all dimensions of a and b.

Examples

np.multiply.outer([1, 2, 3], [4, 5, 6]) array([[ 4, 5, 6], [ 8, 10, 12], [12, 15, 18]])

A multi-dimensional example:

A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape (2, 3) B = np.array([[1, 2, 3, 4]]) B.shape (1, 4) C = np.multiply.outer(A, B) C.shape; C (2, 3, 1, 4) array([[[[ 1, 2, 3, 4]], [[ 2, 4, 6, 8]], [[ 3, 6, 9, 12]]], [[[ 4, 8, 12, 16]], [[ 5, 10, 15, 20]], [[ 6, 12, 18, 24]]]])