Extending — NumPy v2.3.dev0 Manual (original) (raw)

The BitGenerators have been designed to be extendable using standard tools for high-performance Python – numba and Cython. The Generator object can also be used with user-provided BitGenerators as long as these export a small set of required functions.

Numba#

Numba can be used with eitherCTypesor CFFI. The current iteration of theBitGenerators all export a small set of functions through both interfaces.

This example shows how Numba can be used to produce Gaussian samples using a pure Python implementation which is then compiled. The random numbers are provided by ctypes.next_double.

import numpy as np import numba as nb

from numpy.random import PCG64 from timeit import timeit

bit_gen = PCG64() next_d = bit_gen.cffi.next_double state_addr = bit_gen.cffi.state_address

def normals(n, state): out = np.empty(n) for i in range((n + 1) // 2): x1 = 2.0 * next_d(state) - 1.0 x2 = 2.0 * next_d(state) - 1.0 r2 = x1 * x1 + x2 * x2 while r2 >= 1.0 or r2 == 0.0: x1 = 2.0 * next_d(state) - 1.0 x2 = 2.0 * next_d(state) - 1.0 r2 = x1 * x1 + x2 * x2 f = np.sqrt(-2.0 * np.log(r2) / r2) out[2 * i] = f * x1 if 2 * i + 1 < n: out[2 * i + 1] = f * x2 return out

Compile using Numba

normalsj = nb.jit(normals, nopython=True)

Must use state address not state with numba

n = 10000

def numbacall(): return normalsj(n, state_addr)

rg = np.random.Generator(PCG64())

def numpycall(): return rg.normal(size=n)

Check that the functions work

r1 = numbacall() r2 = numpycall() assert r1.shape == (n,) assert r1.shape == r2.shape

t1 = timeit(numbacall, number=1000) print(f'{t1:.2f} secs for {n} PCG64 (Numba/PCG64) gaussian randoms') t2 = timeit(numpycall, number=1000) print(f'{t2:.2f} secs for {n} PCG64 (NumPy/PCG64) gaussian randoms')

Both CTypes and CFFI allow the more complicated distributions to be used directly in Numba after compiling the file distributions.c into a DLL orso. An example showing the use of a more complicated distribution is in the Examples section below.

Cython#

Cython can be used to unpack the PyCapsule provided by a BitGenerator. This example uses PCG64 and the example from above. The usual caveats for writing high-performance code using Cython – removing bounds checks and wrap around, providing array alignment information – still apply.

#cython: language_level=3 """ This file shows how the to use a BitGenerator to create a distribution. """ import numpy as np cimport numpy as np cimport cython from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer from libc.stdint cimport uint16_t, uint64_t from numpy.random cimport bitgen_t from numpy.random import PCG64 from numpy.random.c_distributions cimport ( random_standard_uniform_fill, random_standard_uniform_fill_f)

np.import_array()

@cython.boundscheck(False) @cython.wraparound(False) def uniforms(Py_ssize_t n): """ Create an array of n uniformly distributed doubles. A 'real' distribution would want to process the values into some non-uniform distribution """ cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef double[::1] random_values

x = PCG64()
capsule = x.capsule
# Optional check that the capsule if from a BitGenerator
if not PyCapsule_IsValid(capsule, capsule_name):
    raise ValueError("Invalid pointer to anon_func_state")
# Cast the pointer
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
random_values = np.empty(n, dtype='float64')
with x.lock, nogil:
    for i in range(n):
        # Call the function
        random_values[i] = rng.next_double(rng.state)
randoms = np.asarray(random_values)

return randoms

The BitGenerator can also be directly accessed using the members of the bitgen_tstruct.

@cython.boundscheck(False) @cython.wraparound(False) def uint10_uniforms(Py_ssize_t n): """Uniform 10 bit integers stored as 16-bit unsigned integers""" cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" cdef uint16_t[::1] random_values cdef int bits_remaining cdef int width = 10 cdef uint64_t buff, mask = 0x3FF

x = PCG64()
capsule = x.capsule
if not PyCapsule_IsValid(capsule, capsule_name):
    raise ValueError("Invalid pointer to anon_func_state")
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
random_values = np.empty(n, dtype='uint16')
# Best practice is to release GIL and acquire the lock
bits_remaining = 0
with x.lock, nogil:
    for i in range(n):
        if bits_remaining < width:
            buff = rng.next_uint64(rng.state)
        random_values[i] = buff & mask
        buff >>= width

randoms = np.asarray(random_values)
return randoms

Cython can be used to directly access the functions innumpy/random/c_distributions.pxd. This requires linking with thenpyrandom library located in numpy/random/lib.

def uniforms_ex(bit_generator, Py_ssize_t n, dtype=np.float64): """ Create an array of n uniformly distributed doubles via a "fill" function.

A 'real' distribution would want to process the values into
some non-uniform distribution

Parameters
----------
bit_generator: BitGenerator instance
n: int
    Output vector length
dtype: {str, dtype}, optional
    Desired dtype, either 'd' (or 'float64') or 'f' (or 'float32'). The
    default dtype value is 'd'
"""
cdef Py_ssize_t i
cdef bitgen_t *rng
cdef const char *capsule_name = "BitGenerator"
cdef np.ndarray randoms

capsule = bit_generator.capsule
# Optional check that the capsule if from a BitGenerator
if not PyCapsule_IsValid(capsule, capsule_name):
    raise ValueError("Invalid pointer to anon_func_state")
# Cast the pointer
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)

_dtype = np.dtype(dtype)
randoms = np.empty(n, dtype=_dtype)
if _dtype == np.float32:
    with bit_generator.lock:
        random_standard_uniform_fill_f(rng, n, <float*>np.PyArray_DATA(randoms))
elif _dtype == np.float64:
    with bit_generator.lock:
        random_standard_uniform_fill(rng, n, <double*>np.PyArray_DATA(randoms))
else:
    raise TypeError('Unsupported dtype %r for random' % _dtype)
return randoms

See Extending numpy.random via Cython for the complete listings of these examples and a minimal setup.py to build the c-extension modules.

CFFI#

CFFI can be used to directly access the functions ininclude/numpy/random/distributions.h. Some “massaging” of the header file is required:

""" Use cffi to access any of the underlying C functions from distributions.h """ import os import numpy as np import cffi from .parse import parse_distributions_h ffi = cffi.FFI()

inc_dir = os.path.join(np.get_include(), 'numpy')

Basic numpy types

ffi.cdef(''' typedef intptr_t npy_intp; typedef unsigned char npy_bool;

''')

parse_distributions_h(ffi, inc_dir)

Once the header is parsed by ffi.cdef, the functions can be accessed directly from the _generator shared object, using the BitGenerator.cffi interface.

lib = ffi.dlopen(np.random._generator.file)

Compare the distributions.h random_standard_normal_fill to

Generator.standard_random

bit_gen = np.random.PCG64() rng = np.random.Generator(bit_gen) state = bit_gen.state

interface = rng.bit_generator.cffi n = 100 vals_cffi = ffi.new('double[%d]' % n) lib.random_standard_normal_fill(interface.bit_generator, n, vals_cffi)

reset the state

bit_gen.state = state

vals = rng.standard_normal(n)

for i in range(n): assert vals[i] == vals_cffi[i]

New BitGenerators#

Generator can be used with user-provided BitGenerators. The simplest way to write a new BitGenerator is to examine the pyx file of one of the existing BitGenerators. The key structure that must be provided is thecapsule which contains a PyCapsule to a struct pointer of typebitgen_t,

typedef struct bitgen { void *state; uint64_t (*next_uint64)(void *st); uint32_t (*next_uint32)(void *st); double (*next_double)(void *st); uint64_t (*next_raw)(void *st); } bitgen_t;

which provides 5 pointers. The first is an opaque pointer to the data structure used by the BitGenerators. The next three are function pointers which return the next 64- and 32-bit unsigned integers, the next random double and the next raw value. This final function is used for testing and so can be set to the next 64-bit unsigned integer function if not needed. Functions insideGenerator use this structure as in

bitgen_state->next_uint64(bitgen_state->state)

Examples#