ctypes foreign function interface (numpy.ctypeslib) β NumPy v2.3.dev0 Manual (original) (raw)
numpy.ctypeslib.as_array(obj, shape=None)[source]#
Create a numpy array from a ctypes array or POINTER.
The numpy array shares the memory with the ctypes object.
The shape parameter must be given if converting from a ctypes POINTER. The shape parameter is ignored if converting from a ctypes array
Examples
Converting a ctypes integer array:
import ctypes ctypes_array = (ctypes.c_int * 5)(0, 1, 2, 3, 4) np_array = np.ctypeslib.as_array(ctypes_array) np_array array([0, 1, 2, 3, 4], dtype=int32)
Converting a ctypes POINTER:
import ctypes buffer = (ctypes.c_int * 5)(0, 1, 2, 3, 4) pointer = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_int)) np_array = np.ctypeslib.as_array(pointer, (5,)) np_array array([0, 1, 2, 3, 4], dtype=int32)
numpy.ctypeslib.as_ctypes(obj)[source]#
Create and return a ctypes object from a numpy array. Actually anything that exposes the __array_interface__ is accepted.
Examples
Create ctypes object from inferred int np.array
:
inferred_int_array = np.array([1, 2, 3]) c_int_array = np.ctypeslib.as_ctypes(inferred_int_array) type(c_int_array) <class 'c_long_Array_3'> c_int_array[:] [1, 2, 3]
Create ctypes object from explicit 8 bit unsigned int np.array
:
exp_int_array = np.array([1, 2, 3], dtype=np.uint8) c_int_array = np.ctypeslib.as_ctypes(exp_int_array) type(c_int_array) <class 'c_ubyte_Array_3'> c_int_array[:] [1, 2, 3]
numpy.ctypeslib.as_ctypes_type(dtype)[source]#
Convert a dtype into a ctypes type.
Parameters:
dtypedtype
The dtype to convert
Returns:
ctype
A ctype scalar, union, array, or struct
Raises:
NotImplementedError
If the conversion is not possible
Notes
This function does not losslessly round-trip in either direction.
np.dtype(as_ctypes_type(dt))
will:
- insert padding fields
- reorder fields to be sorted by offset
- discard field titles
as_ctypes_type(np.dtype(ctype))
will:
- discard the class names of ctypes.Structures andctypes.Unions
- convert single-element ctypes.Unions into single-elementctypes.Structures
- insert padding fields
Examples
Converting a simple dtype:
dt = np.dtype('int8') ctype = np.ctypeslib.as_ctypes_type(dt) ctype <class 'ctypes.c_byte'>
Converting a structured dtype:
dt = np.dtype([('x', 'i4'), ('y', 'f4')]) ctype = np.ctypeslib.as_ctypes_type(dt) ctype <class 'struct'>
numpy.ctypeslib.load_library(libname, loader_path)[source]#
It is possible to load a library using
lib = ctypes.cdll[]
But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load the first library it finds with that name. NumPy supplies the load_library function as a convenience.
Changed in version 1.20.0: Allow libname and loader_path to take anypath-like object.
Parameters:
libnamepath-like
Name of the library, which can have βlibβ as a prefix, but without an extension.
loader_pathpath-like
Where the library can be found.
Returns:
ctypes.cdll[libpath]library object
A ctypes library object
Raises:
OSError
If there is no library with the expected extension, or the library is defective and cannot be loaded.
numpy.ctypeslib.ndpointer(dtype=None, ndim=None, shape=None, flags=None)[source]#
Array-checking restype/argtypes.
An ndpointer instance is used to describe an ndarray in restypes and argtypes specifications. This approach is more flexible than using, for example, POINTER(c_double)
, since several restrictions can be specified, which are verified upon calling the ctypes function. These include data type, number of dimensions, shape and flags. If a given array does not satisfy the specified restrictions, a TypeError
is raised.
Parameters:
dtypedata-type, optional
Array data-type.
ndimint, optional
Number of array dimensions.
shapetuple of ints, optional
Array shape.
flagsstr or tuple of str
Array flags; may be one or more of:
- C_CONTIGUOUS / C / CONTIGUOUS
- F_CONTIGUOUS / F / FORTRAN
- OWNDATA / O
- WRITEABLE / W
- ALIGNED / A
- WRITEBACKIFCOPY / X
Returns:
klassndpointer type object
A type object, which is an _ndtpr
instance containing dtype, ndim, shape and flags information.
Raises:
TypeError
If a given array does not satisfy the specified restrictions.
Examples
clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64, ... ndim=1, ... flags='C_CONTIGUOUS')] ... clib.somefunc(np.array([1, 2, 3], dtype=np.float64)) ...
class numpy.ctypeslib.c_intp#
A ctypes signed integer type of the same size as numpy.intp.
Depending on the platform, it can be an alias for either c_int,c_long or c_longlong.