Scalars — NumPy v1.24 Manual (original) (raw)
Python defines only one type of a particular data class (there is only one integer type, one floating-point type, etc.). This can be convenient in applications that don’t need to be concerned with all the ways data can be represented in a computer. For scientific computing, however, more control is often needed.
In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors are mostly based on the types available in the C language that CPython is written in, with several additional types compatible with Python’s types.
Array scalars have the same attributes and methods as ndarrays. [1] This allows one to treat items of an array partly on the same footing as arrays, smoothing out rough edges that result when mixing scalar and array operations.
Array scalars live in a hierarchy (see the Figure below) of data types. They can be detected using the hierarchy: For example,isinstance(val, np.generic)
will return True if val is an array scalar object. Alternatively, what kind of array scalar is present can be determined using other members of the data type hierarchy. Thus, for example isinstance(val, np.complexfloating)
will return True if val is a complex valued type, whileisinstance(val, np.flexible)
will return true if val is one of the flexible itemsize array types (str_,bytes_, void).
Figure: Hierarchy of type objects representing the array data types. Not shown are the two integer types intp anduintp which just point to the integer type that holds a pointer for the platform. All the number types can be obtained using bit-width names as well.#
Built-in scalar types#
The built-in scalar types are shown below. The C-like names are associated with character codes, which are shown in their descriptions. Use of the character codes, however, is discouraged.
Some of the scalar types are essentially equivalent to fundamental Python types and therefore inherit from them as well as from the generic array scalar type:
Array scalar type | Related Python type | Inherits? |
---|---|---|
int_ | int | Python 2 only |
float_ | float | yes |
complex_ | complex | yes |
bytes_ | bytes | yes |
str_ | str | yes |
bool_ | bool | no |
datetime64 | datetime.datetime | no |
timedelta64 | datetime.timedelta | no |
The bool_ data type is very similar to the Pythonbool but does not inherit from it because Python’sbool does not allow itself to be inherited from, and on the C-level the size of the actual bool data is not the same as a Python Boolean scalar.
Warning
The int_ type does not inherit from theint built-in under Python 3, because type int is no longer a fixed-width integer type.
Tip
The default data type in NumPy is float_.
Base class for numpy scalar types.
Class from which most (all?) numpy scalar types are derived. For consistency, exposes the same API as ndarray, despite many consequent attributes being either “get-only,” or completely irrelevant. This is the class from which it is strongly suggested users should derive custom scalar types.
Abstract base class of all numeric scalar types.
Integer types#
Abstract base class of all integer scalar types.
Note
The numpy integer types mirror the behavior of C integers, and can therefore be subject to Overflow Errors.
Signed integer types#
class numpy.signedinteger[source]#
Abstract base class of all signed integer scalar types.
Signed integer type, compatible with C char
.
Character code:
'b'
Alias on this platform (Linux x86_64):
numpy.int8: 8-bit signed integer (-128
to 127
).
Signed integer type, compatible with C short
.
Character code:
'h'
Alias on this platform (Linux x86_64):
numpy.int16: 16-bit signed integer (-32_768
to 32_767
).
Signed integer type, compatible with C int
.
Character code:
'i'
Alias on this platform (Linux x86_64):
numpy.int32: 32-bit signed integer (-2_147_483_648
to 2_147_483_647
).
Signed integer type, compatible with Python int and C long
.
Character code:
'l'
Alias on this platform (Linux x86_64):
numpy.int64: 64-bit signed integer (-9_223_372_036_854_775_808
to 9_223_372_036_854_775_807
).
Alias on this platform (Linux x86_64):
numpy.intp: Signed integer large enough to fit pointer, compatible with C intptr_t
.
Signed integer type, compatible with C long long
.
Character code:
'q'
Unsigned integer types#
class numpy.unsignedinteger[source]#
Abstract base class of all unsigned integer scalar types.
Unsigned integer type, compatible with C unsigned char
.
Character code:
'B'
Alias on this platform (Linux x86_64):
numpy.uint8: 8-bit unsigned integer (0
to 255
).
Unsigned integer type, compatible with C unsigned short
.
Character code:
'H'
Alias on this platform (Linux x86_64):
numpy.uint16: 16-bit unsigned integer (0
to 65_535
).
Unsigned integer type, compatible with C unsigned int
.
Character code:
'I'
Alias on this platform (Linux x86_64):
numpy.uint32: 32-bit unsigned integer (0
to 4_294_967_295
).
Unsigned integer type, compatible with C unsigned long
.
Character code:
'L'
Alias on this platform (Linux x86_64):
numpy.uint64: 64-bit unsigned integer (0
to 18_446_744_073_709_551_615
).
Alias on this platform (Linux x86_64):
numpy.uintp: Unsigned integer large enough to fit pointer, compatible with C uintptr_t
.
class numpy.ulonglong[source]#
Signed integer type, compatible with C unsigned long long
.
Character code:
'Q'
Inexact types#
Abstract base class of all numeric scalar types with a (potentially) inexact representation of the values in its range, such as floating-point numbers.
Note
Inexact scalars are printed using the fewest decimal digits needed to distinguish their value from other values of the same datatype, by judicious rounding. See the unique
parameter offormat_float_positional and format_float_scientific.
This means that variables with equal binary values but whose datatypes are of different precisions may display differently:
f16 = np.float16("0.1") f32 = np.float32(f16) f64 = np.float64(f32) f16 == f32 == f64 True f16, f32, f64 (0.1, 0.099975586, 0.0999755859375)
Note that none of these floats hold the exact value \(\frac{1}{10}\);f16
prints as 0.1
because it is as close to that value as possible, whereas the other types do not as they have more precision and therefore have closer values.
Conversely, floating-point scalars of different precisions which approximate the same decimal value may compare unequal despite printing identically:
f16 = np.float16("0.1") f32 = np.float32("0.1") f64 = np.float64("0.1") f16 == f32 == f64 False f16, f32, f64 (0.1, 0.1, 0.1)
Floating-point types#
Abstract base class of all floating-point scalar types.
Half-precision floating-point number type.
Character code:
'e'
Alias on this platform (Linux x86_64):
numpy.float16: 16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa.
Single-precision floating-point number type, compatible with C float
.
Character code:
'f'
Alias on this platform (Linux x86_64):
numpy.float32: 32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa.
class numpy.double(x=0, /)[source]#
Double-precision floating-point number type, compatible with Python _float_and C double
.
Character code:
'd'
Alias:
Alias on this platform (Linux x86_64):
numpy.float64: 64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa.
class numpy.longdouble[source]#
Extended-precision floating-point number type, compatible with Clong double
but not necessarily with IEEE 754 quadruple-precision.
Character code:
'g'
Alias:
Alias on this platform (Linux x86_64):
numpy.float128: 128-bit extended-precision floating-point number type.
Complex floating-point types#
class numpy.complexfloating[source]#
Abstract base class of all complex number scalar types that are made up of floating-point numbers.
Complex number type composed of two single-precision floating-point numbers.
Character code:
'F'
Alias:
Alias on this platform (Linux x86_64):
numpy.complex64: Complex number type composed of 2 32-bit-precision floating-point numbers.
class numpy.cdouble(real=0, imag=0)[source]#
Complex number type composed of two double-precision floating-point numbers, compatible with Python complex.
Character code:
'D'
Alias:
Alias:
Alias on this platform (Linux x86_64):
numpy.complex128: Complex number type composed of 2 64-bit-precision floating-point numbers.
class numpy.clongdouble[source]#
Complex number type composed of two extended-precision floating-point numbers.
Character code:
'G'
Alias:
Alias:
Alias on this platform (Linux x86_64):
numpy.complex256: Complex number type composed of 2 128-bit extended-precision floating-point numbers.
Other types#
Boolean type (True or False), stored as a byte.
Warning
The bool_ type is not a subclass of the int_ type (the bool_ is not even a number type). This is different than Python’s default implementation of bool as a sub-class of int.
Character code:
'?'
Alias:
class numpy.datetime64[source]#
If created from a 64-bit integer, it represents an offset from1970-01-01T00:00:00
. If created from string, the string can be in ISO 8601 date or datetime format.
np.datetime64(10, 'Y') numpy.datetime64('1980') np.datetime64('1980', 'Y') numpy.datetime64('1980') np.datetime64(10, 'D') numpy.datetime64('1970-01-11')
See Datetimes and Timedeltas for more information.
Character code:
'M'
class numpy.timedelta64[source]#
A timedelta stored as a 64-bit integer.
See Datetimes and Timedeltas for more information.
Character code:
'm'
Any Python object.
Character code:
'O'
Note
The data actually stored in object arrays (i.e., arrays having dtype object_) are references to Python objects, not the objects themselves. Hence, object arrays behave more like usual Python lists, in the sense that their contents need not be of the same Python type.
The object type is also special because an array containingobject_ items does not return an object_ object on item access, but instead returns the actual object that the array item refers to.
The following data types are flexible: they have no predefined size and the data they describe can be of different length in different arrays. (In the character codes #
is an integer denoting how many elements the data type consists of.)
Abstract base class of all scalar types without predefined length. The actual size of these types depends on the specific _np.dtype_instantiation.
A byte string.
When used in arrays, this type strips trailing null bytes.
Character code:
'S'
Alias:
A unicode string.
When used in arrays, this type strips trailing null codepoints.
Unlike the builtin str, this supports the Buffer Protocol, exposing its contents as UCS4:
m = memoryview(np.str_("abc")) m.format '3w' m.tobytes() b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
Character code:
'U'
Alias:
class numpy.void(length_or_data, /, dtype=None)[source]#
Create a new structured or unstructured void scalar.
Parameters:
length_or_dataint, array-like, bytes-like, object
One of multiple meanings (see notes). The length or bytes data of an unstructured void. Or alternatively, the data to be stored in the new scalar when dtypeis provided. This can be an array-like, in which case an array may be returned.
dtypedtype, optional
If provided the dtype of the new scalar. This dtype must be “void” dtype (i.e. a structured or unstructured void, see also Structured Datatypes).
..versionadded:: 1.24
Notes
For historical reasons and because void scalars can represent both arbitrary byte data and structured dtypes, the void constructor has three calling conventions:
np.void(5)
creates adtype="V5"
scalar filled with five\0
bytes. The 5 can be a Python or NumPy integer.np.void(b"bytes-like")
creates a void scalar from the byte string. The dtype itemsize will match the byte string length, here"V10"
.- When a
dtype=
is passed the call is rougly the same as an array creation. However, a void scalar rather than array is returned.
Please see the examples which show all three different conventions.
Examples
np.void(5) void(b'\x00\x00\x00\x00\x00') np.void(b'abcd') void(b'\x61\x62\x63\x64') np.void((5, 3.2, "eggs"), dtype="i,d,S5") (5, 3.2, b'eggs') # looks like a tuple, but is
np.void
np.void(3, dtype=[('x', np.int8), ('y', np.int8)]) (3, 3) # looks like a tuple, but isnp.void
Character code:
'V'
Warning
See Note on string types.
Numeric Compatibility: If you used old typecode characters in your Numeric code (which was never recommended), you will need to change some of them to the new characters. In particular, the needed changes are c -> S1
, b -> B
, 1 -> b
, s -> h
, w -> H
, and u -> I
. These changes make the type character convention more consistent with other Python modules such as thestruct module.
Sized aliases#
Along with their (mostly) C-derived names, the integer, float, and complex data-types are also available using a bit-width convention so that an array of the right size can always be ensured. Two aliases (numpy.intp and numpy.uintp) pointing to the integer type that is sufficiently large to hold a C pointer are also provided.
alias of bool_
numpy.int16#
numpy.int32#
numpy.int64#
Aliases for the signed integer types (one of numpy.byte, numpy.short,numpy.intc, numpy.int_ and numpy.longlong) with the specified number of bits.
Compatible with the C99 int8_t
, int16_t
, int32_t
, andint64_t
, respectively.
numpy.uint16#
numpy.uint32#
numpy.uint64#
Alias for the unsigned integer types (one of numpy.ubyte, numpy.ushort,numpy.uintc, numpy.uint and numpy.ulonglong) with the specified number of bits.
Compatible with the C99 uint8_t
, uint16_t
, uint32_t
, anduint64_t
, respectively.
Alias for the signed integer type (one of numpy.byte, numpy.short,numpy.intc, numpy.int_ and np.longlong) that is the same size as a pointer.
Compatible with the C intptr_t
.
Character code:
'p'
Alias for the unsigned integer type (one of numpy.ubyte, numpy.ushort,numpy.uintc, numpy.uint and np.ulonglong) that is the same size as a pointer.
Compatible with the C uintptr_t
.
Character code:
'P'
alias of half
alias of single
alias of double
numpy.float96#
Alias for numpy.longdouble, named after its size in bits. The existence of these aliases depends on the platform.
alias of csingle
alias of cdouble
numpy.complex192#
Alias for numpy.clongdouble, named after its size in bits. The existence of these aliases depends on the platform.
Other aliases#
The first two of these are conveniences which resemble the names of the builtin types, in the same style as bool_, int_, str_, bytes_, andobject_:
alias of double
alias of cdouble
Some more use alternate naming conventions for extended-precision floats and complex numbers:
alias of longdouble
alias of csingle
alias of cdouble
alias of clongdouble
alias of clongdouble
The following aliases originate from Python 2, and it is recommended that they not be used in new code.
alias of bytes_
alias of str_
Attributes#
The array scalar objects have an array priority of NPY_SCALAR_PRIORITY(-1,000,000.0). They also do not (yet) have a ctypesattribute. Otherwise, they share the same attributes as arrays:
generic.flags | The integer value of flags. |
---|---|
generic.shape | Tuple of array dimensions. |
generic.strides | Tuple of bytes steps in each dimension. |
generic.ndim | The number of array dimensions. |
generic.data | Pointer to start of data. |
generic.size | The number of elements in the gentype. |
generic.itemsize | The length of one element in bytes. |
generic.base | Scalar attribute identical to the corresponding array attribute. |
generic.dtype | Get array data-descriptor. |
generic.real | The real part of the scalar. |
generic.imag | The imaginary part of the scalar. |
generic.flat | A 1-D view of the scalar. |
generic.T | Scalar attribute identical to the corresponding array attribute. |
generic.__array_interface__ | Array protocol: Python side |
generic.__array_struct__ | Array protocol: struct |
generic.__array_priority__ | Array priority. |
generic.__array_wrap__ | sc.__array_wrap__(obj) return scalar from array |
Indexing#
Array scalars can be indexed like 0-dimensional arrays: if x is an array scalar,
x[()]
returns a copy of array scalarx[...]
returns a 0-dimensional ndarrayx['field-name']
returns the array scalar in the field field-name. (x can have fields, for example, when it corresponds to a structured data type.)
Methods#
Array scalars have exactly the same methods as arrays. The default behavior of these methods is to internally convert the scalar to an equivalent 0-dimensional array and to call the corresponding array method. In addition, math operations on array scalars are defined so that the same hardware flags are set and used to interpret the results as for ufunc, so that the error state used for ufuncs also carries over to the math on array scalars.
The exceptions to the above rules are given below:
generic.__array__ | sc.__array__(dtype) return 0-dim array from scalar with specified dtype |
---|---|
generic.__array_wrap__ | sc.__array_wrap__(obj) return scalar from array |
generic.squeeze | Scalar method identical to the corresponding array attribute. |
generic.byteswap | Scalar method identical to the corresponding array attribute. |
generic.__reduce__ | Helper for pickle. |
generic.__setstate__ | |
generic.setflags | Scalar method identical to the corresponding array attribute. |
Utility method for typing:
Defining new types#
There are two ways to effectively define a new array scalar type (apart from composing structured types dtypes from the built-in scalar types): One way is to simply subclass thendarray and overwrite the methods of interest. This will work to a degree, but internally certain behaviors are fixed by the data type of the array. To fully customize the data type of an array you need to define a new data-type, and register it with NumPy. Such new types can only be defined in C, using the NumPy C-API.