numpy.asarray — NumPy v2.2 Manual (original) (raw)
numpy.asarray(a, dtype=None, order=None, *, device=None, copy=None, like=None)#
Convert the input to an array.
Parameters:
aarray_like
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
dtypedata-type, optional
By default, the data-type is inferred from the input data.
order{‘C’, ‘F’, ‘A’, ‘K’}, optional
Memory layout. ‘A’ and ‘K’ depend on the order of input array a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to ‘K’.
devicestr, optional
The device on which to place the created array. Default: None
. For Array-API interoperability only, so must be "cpu"
if passed.
New in version 2.0.0.
copybool, optional
If True
, then the object is copied. If None
then the object is copied only if needed, i.e. if __array__
returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (dtype
, order
, etc.). For False
it raises a ValueError
if a copy cannot be avoided. Default: None
.
New in version 2.0.0.
likearray_like, optional
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like
supports the __array_function__
protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.
New in version 1.20.0.
Returns:
outndarray
Array interpretation of a
. No copy is performed if the input is already an ndarray with matching dtype and order. If a
is a subclass of ndarray, a base class ndarray is returned.
Examples
Convert a list into an array:
a = [1, 2] import numpy as np np.asarray(a) array([1, 2])
Existing arrays are not copied:
a = np.array([1, 2]) np.asarray(a) is a True
If dtype is set, array is copied only if dtype does not match:
a = np.array([1, 2], dtype=np.float32) np.shares_memory(np.asarray(a, dtype=np.float32), a) True np.shares_memory(np.asarray(a, dtype=np.float64), a) False
Contrary to asanyarray, ndarray subclasses are not passed through:
issubclass(np.recarray, np.ndarray) True a = np.array([(1., 2), (3., 4)], dtype='f4,i4').view(np.recarray) np.asarray(a) is a False np.asanyarray(a) is a True