numpy.char.array — NumPy v2.2 Manual (original) (raw)
char.array(obj, itemsize=None, copy=True, unicode=None, order=None)[source]#
Create a chararray.
Note
This class is provided for numarray backward-compatibility. New code (not concerned with numarray compatibility) should use arrays of type bytes_ or str_ and use the free functions in numpy.char for fast vectorized string operations instead.
Versus a NumPy array of dtype bytes_ or str_, this class adds the following functionality:
- values automatically have whitespace removed from the end when indexed
- comparison operators automatically remove whitespace from the end when comparing values
- vectorized string operations are provided as methods (e.g. chararray.endswith) and infix operators (e.g.
+, *, %
)
Parameters:
objarray of str or unicode-like
itemsizeint, optional
itemsize is the number of characters per scalar in the resulting array. If itemsize is None, and obj is an object array or a Python list, the itemsize will be automatically determined. If itemsize is provided and _obj_is of type str or unicode, then the obj string will be chunked into itemsize pieces.
copybool, optional
If true (default), then the object is copied. Otherwise, a copy will only be made if __array__
returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (itemsize, unicode, order, etc.).
unicodebool, optional
When true, the resulting chararray can contain Unicode characters, when false only 8-bit characters. If unicode is None and obj is one of the following:
then the unicode setting of the output array will be automatically determined.
order{‘C’, ‘F’, ‘A’}, optional
Specify the order of the array. If order is ‘C’ (default), then the array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’, then the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous).
Examples
import numpy as np char_array = np.char.array(['hello', 'world', 'numpy','array']) char_array chararray(['hello', 'world', 'numpy', 'array'], dtype='<U5')