How to index ndarrays — NumPy v2.3 Manual (original) (raw)
This page tackles common examples. For an in-depth look into indexing, refer to Indexing on ndarrays.
Access specific/arbitrary rows and columns#
Use Basic indexing features like Slicing and striding, andDimensional indexing tools.
a = np.arange(30).reshape(2, 3, 5) a array([[[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]],
[[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29]]])
a[0, 2, :] array([10, 11, 12, 13, 14]) a[0, :, 3] array([ 3, 8, 13])
Note that the output from indexing operations can have different shape from the original object. To preserve the original dimensions after indexing, you can use newaxis. To use other such tools, refer toDimensional indexing tools.
a[0, :, 3].shape (3,) a[0, :, 3, np.newaxis].shape (3, 1) a[0, :, 3, np.newaxis, np.newaxis].shape (3, 1, 1)
Variables can also be used to index:
y = 0 a[y, :, y+3] array([ 3, 8, 13])
Refer to Dealing with variable numbers of indices within programs to see how to useslice and Ellipsis in your index variables.
Index columns#
To index columns, you have to index the last axis. UseDimensional indexing tools to get the desired number of dimensions:
a = np.arange(24).reshape(2, 3, 4) a array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
a[..., 3] array([[ 3, 7, 11], [15, 19, 23]])
To index specific elements in each column, make use of Advanced indexingas below:
arr = np.arange(3*4).reshape(3, 4) arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) column_indices = [[1, 3], [0, 2], [2, 2]] np.arange(arr.shape[0]) array([0, 1, 2]) row_indices = np.arange(arr.shape[0])[:, np.newaxis] row_indices array([[0], [1], [2]])
Use the row_indices
and column_indices
for advanced indexing:
arr[row_indices, column_indices] array([[ 1, 3], [ 4, 6], [10, 10]])
Index along a specific axis#
Use take. See also take_along_axis andput_along_axis.
a = np.arange(30).reshape(2, 3, 5) a array([[[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]],
[[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29]]])
np.take(a, [2, 3], axis=2) array([[[ 2, 3], [ 7, 8], [12, 13]],
[[17, 18],
[22, 23],
[27, 28]]])
np.take(a, [2], axis=1) array([[[10, 11, 12, 13, 14]],
[[25, 26, 27, 28, 29]]])
Create subsets of larger matrices#
Use Slicing and striding to access chunks of a large array:
a = np.arange(100).reshape(10, 10) a array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59], [60, 61, 62, 63, 64, 65, 66, 67, 68, 69], [70, 71, 72, 73, 74, 75, 76, 77, 78, 79], [80, 81, 82, 83, 84, 85, 86, 87, 88, 89], [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]]) a[2:5, 2:5] array([[22, 23, 24], [32, 33, 34], [42, 43, 44]]) a[2:5, 1:3] array([[21, 22], [31, 32], [41, 42]]) a[:5, :5] array([[ 0, 1, 2, 3, 4], [10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [30, 31, 32, 33, 34], [40, 41, 42, 43, 44]])
The same thing can be done with advanced indexing in a slightly more complex way. Remember thatadvanced indexing creates a copy:
a[np.arange(5)[:, None], np.arange(5)[None, :]] array([[ 0, 1, 2, 3, 4], [10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [30, 31, 32, 33, 34], [40, 41, 42, 43, 44]])
You can also use mgrid to generate indices:
indices = np.mgrid[0:6:2] indices array([0, 2, 4]) a[:, indices] array([[ 0, 2, 4], [10, 12, 14], [20, 22, 24], [30, 32, 34], [40, 42, 44], [50, 52, 54], [60, 62, 64], [70, 72, 74], [80, 82, 84], [90, 92, 94]])
Filter values#
Non-zero elements#
Use nonzero to get a tuple of array indices of non-zero elements corresponding to every dimension:
z = np.array([[1, 2, 3, 0], [0, 0, 5, 3], [4, 6, 0, 0]]) z array([[1, 2, 3, 0], [0, 0, 5, 3], [4, 6, 0, 0]]) np.nonzero(z) (array([0, 0, 0, 1, 1, 2, 2]), array([0, 1, 2, 2, 3, 0, 1]))
Use flatnonzero to fetch indices of elements that are non-zero in the flattened version of the ndarray:
np.flatnonzero(z) array([0, 1, 2, 6, 7, 8, 9])
Arbitrary conditions#
Use where to generate indices based on conditions and then use Advanced indexing.
a = np.arange(30).reshape(2, 3, 5) indices = np.where(a % 2 == 0) indices (array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]), array([0, 0, 0, 1, 1, 2, 2, 2, 0, 0, 1, 1, 1, 2, 2]), array([0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3])) a[indices] array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])
Or, use Boolean array indexing:
a > 14 array([[[False, False, False, False, False], [False, False, False, False, False], [False, False, False, False, False]],
[[ True, True, True, True, True],
[ True, True, True, True, True],
[ True, True, True, True, True]]])
a[a > 14] array([15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29])
Replace values after filtering#
Use assignment with filtering to replace desired values:
p = np.arange(-10, 10).reshape(2, 2, 5) p array([[[-10, -9, -8, -7, -6], [ -5, -4, -3, -2, -1]],
[[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9]]])
q = p < 0 q array([[[ True, True, True, True, True], [ True, True, True, True, True]],
[[False, False, False, False, False],
[False, False, False, False, False]]])
p[q] = 0 p array([[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]],
[[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]]])
Fetch indices of max/min values#
a = np.arange(30).reshape(2, 3, 5) np.argmax(a) 29 np.argmin(a) 0
Use the axis
keyword to get the indices of maximum and minimum values along a specific axis:
np.argmax(a, axis=0) array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]) np.argmax(a, axis=1) array([[2, 2, 2, 2, 2], [2, 2, 2, 2, 2]]) np.argmax(a, axis=2) array([[4, 4, 4], [4, 4, 4]])
np.argmin(a, axis=1) array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) np.argmin(a, axis=2) array([[0, 0, 0], [0, 0, 0]])
Set keepdims
to True
to keep the axes which are reduced in the result as dimensions with size one:
np.argmin(a, axis=2, keepdims=True) array([[[0], [0], [0]],
[[0],
[0],
[0]]])
np.argmax(a, axis=1, keepdims=True) array([[[2, 2, 2, 2, 2]],
[[2, 2, 2, 2, 2]]])
To get the indices of each maximum or minimum value for each (N-1)-dimensional array in an N-dimensional array, use reshapeto reshape the array to a 2D array, apply argmax or argminalong axis=1
and use unravel_index to recover the index of the values per slice:
x = np.arange(223).reshape(2, 2, 3) % 7 # 3D example array x array([[[0, 1, 2], [3, 4, 5]],
[[6, 0, 1],
[2, 3, 4]]])
x_2d = np.reshape(x, (x.shape[0], -1)) indices_2d = np.argmax(x_2d, axis=1) indices_2d array([5, 0]) np.unravel_index(indices_2d, x.shape[1:]) (array([1, 0]), array([2, 0]))
The first array returned contains the indices along axis 1 in the original array, the second array contains the indices along axis 2. The highest value in x[0]
is therefore x[0, 1, 2]
.
Index the same ndarray multiple times efficiently#
It must be kept in mind that basic indexing produces viewsand advanced indexing produces copies, which are computationally less efficient. Hence, you should take care to use basic indexing wherever possible instead of advanced indexing.
Further reading#
Nicolas Rougier’s 100 NumPy exercisesprovide a good insight into how indexing is combined with other operations. Exercises 6, 8, 10, 15, 16, 19, 20, 45, 59,64, 65, 70, 71, 72, 76, 80, 81, 84, 87, 90,93, 94 are specially focused on indexing.