tensorrt_llm.layers.conv — TensorRT-LLM (original) (raw)
SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
from typing import Tuple
from ..functional import conv1d, conv2d, conv3d, conv_transpose2d from ..module import Module from ..parameter import Parameter
[docs] class Conv2d(Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int],
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
dilation: Tuple[int, int] = (1, 1),
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros', # TODO: refine this type
dtype=None) -> None:
super().__init__()
if groups <= 0:
raise ValueError('groups must be a positive integer')
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.padding_mode = padding_mode
self.weight = Parameter(shape=(out_channels, in_channels // groups,
*kernel_size),
dtype=dtype)
if bias:
self.bias = Parameter(shape=(out_channels, ), dtype=dtype)
else:
self.register_parameter('bias', None)
[docs] def forward(self, input): return conv2d(input, self.weight.value, None if self.bias is None else self.bias.value, self.stride, self.padding, self.dilation, self.groups)
[docs] class ConvTranspose2d(Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int],
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
output_padding: Tuple[int, int] = (0, 0),
dilation: Tuple[int, int] = (1, 1),
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros', # TODO: refine this type
dtype=None) -> None:
super().__init__()
if groups <= 0:
raise ValueError('groups must be a positive integer')
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.output_padding = output_padding
self.dilation = dilation
self.groups = groups
self.padding_mode = padding_mode
self.weight = Parameter(shape=(in_channels, out_channels // groups,
*kernel_size),
dtype=dtype)
if bias:
self.bias = Parameter(shape=(out_channels, ), dtype=dtype)
else:
self.register_parameter('bias', None)
def _output_padding(self,
input,
output_size,
stride,
padding,
kernel_size,
num_spatial_dims: int,
dilation=None):
if output_size is None:
ret = self.output_padding
else:
has_batch_dim = input.dim() == num_spatial_dims + 2
num_non_spatial_dims = 2 if has_batch_dim else 1
if len(output_size) == num_non_spatial_dims + num_spatial_dims:
output_size = output_size[num_non_spatial_dims:]
if len(output_size) != num_spatial_dims:
raise ValueError(
"ConvTranspose{}D: for {}D input, output_size must have {} or {} elements (got {})"
.format(num_spatial_dims, input.dim(), num_spatial_dims,
num_non_spatial_dims + num_spatial_dims,
len(output_size)))
min_sizes = []
max_sizes = []
for d in range(num_spatial_dims):
dim_size = (
(input.size(d + num_non_spatial_dims) - 1) * stride[d] -
2 * padding[d] +
(dilation[d] if dilation is not None else 1) *
(kernel_size[d] - 1) + 1)
min_sizes.append(dim_size)
max_sizes.append(min_sizes[d] + stride[d] - 1)
for i in range(len(output_size)):
size = output_size[i]
min_size = min_sizes[i]
max_size = max_sizes[i]
if size < min_size or size > max_size:
raise ValueError((
"requested an output size of {}, but valid sizes range "
"from {} to {} (for an input of {})").format(
output_size, min_sizes, max_sizes,
input.size()[2:]))
res = []
for d in range(num_spatial_dims):
res.append(output_size[d] - min_sizes[d])
ret = res
return ret
[docs] def forward(self, input, output_size=None): num_spatial_dims = 2 output_padding = self._output_padding(input, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation)
return conv_transpose2d(input, self.weight.value,
None if self.bias is None else self.bias.value,
self.stride, self.padding, output_padding,
self.dilation, self.groups)
[docs] class Conv1d(Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros', # TODO: refine this type
dtype=None) -> None:
super().__init__()
if groups <= 0:
raise ValueError('groups must be a positive integer')
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.padding_mode = padding_mode
self.weight = Parameter(shape=(out_channels, in_channels // groups,
kernel_size, 1),
dtype=dtype)
if bias:
self.bias = Parameter(shape=(out_channels, ), dtype=dtype)
else:
self.register_parameter('bias', None)
[docs] def forward(self, input): return conv1d(input, self.weight.value, None if self.bias is None else self.bias.value, self.stride, self.padding, self.dilation, self.groups)
[docs] class Conv3d(Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int, int],
stride: Tuple[int, int, int] = (1, 1, 1),
padding: Tuple[int, int, int] = (0, 0, 0),
dilation: Tuple[int, int, int] = (1, 1, 1),
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros', # TODO: refine this type
dtype=None) -> None:
super().__init__()
if groups <= 0:
raise ValueError('groups must be a positive integer')
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.padding_mode = padding_mode
self.weight = Parameter(shape=(out_channels, in_channels // groups,
kernel_size[0], kernel_size[1],
kernel_size[2]),
dtype=dtype)
if bias:
self.bias = Parameter(shape=(out_channels, ), dtype=dtype)
else:
self.register_parameter('bias', None)
[docs] def forward(self, input): return conv3d(input, self.weight.value, None if self.bias is None else self.bias.value, self.stride, self.padding, self.dilation, self.groups)