tensorrt_llm.models.baichuan.model — TensorRT-LLM (original) (raw)

SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

SPDX-License-Identifier: Apache-2.0

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

from typing import Optional, Union

from ..._utils import pad_vocab_size from ...functional import Tensor from ...layers import (Attention, AttentionMaskType, ColumnLinear, Embedding, GatedMLP, RmsNorm) from ...mapping import Mapping from ...module import Module from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM, PretrainedConfig, QuantConfig) from .config import BaichuanConfig from .convert import load_weights_from_hf_model

class BaichuanDecoderLayer(Module):

def __init__(self, config: PretrainedConfig, layer_idx):
    super().__init__()
    self.layer_idx = layer_idx
    self.config = config
    hidden_size = config.hidden_size
    dtype = config.dtype
    position_embedding_type = config.position_embedding_type
    tp_group = config.mapping.tp_group
    tp_size = config.mapping.tp_size
    tp_rank = config.mapping.tp_rank
    quant_mode = config.quant_mode

    self.input_layernorm = RmsNorm(normalized_shape=hidden_size,
                                   eps=config.norm_epsilon,
                                   dtype=dtype)
    layers_range = config.mapping.pp_layers(config.num_hidden_layers)
    local_layer_idx = layer_idx - layers_range[0]
    self.attention = Attention(
        local_layer_idx=local_layer_idx,
        hidden_size=hidden_size,
        num_attention_heads=config.num_attention_heads,
        num_kv_heads=config.num_key_value_heads,
        max_position_embeddings=config.max_position_embeddings,
        dtype=dtype,
        attention_mask_type=AttentionMaskType.causal,
        bias=False,
        position_embedding_type=position_embedding_type,
        tp_group=tp_group,
        tp_size=tp_size,
        tp_rank=tp_rank,
        quant_mode=quant_mode)

    self.mlp = GatedMLP(hidden_size=hidden_size,
                        ffn_hidden_size=config.intermediate_size,
                        hidden_act=config.hidden_act,
                        dtype=dtype,
                        bias=False,
                        tp_group=tp_group,
                        tp_size=tp_size,
                        quant_mode=quant_mode)
    self.post_layernorm = RmsNorm(normalized_shape=hidden_size,
                                  eps=config.norm_epsilon,
                                  dtype=dtype)

def forward(self,
            hidden_states: Tensor,
            attention_mask=None,
            use_cache=False,
            kv_cache_params=None,
            attention_params=None):
    residual = hidden_states
    hidden_states = self.input_layernorm(hidden_states)

    attention_output = self.attention(hidden_states,
                                      attention_mask=attention_mask,
                                      use_cache=use_cache,
                                      kv_cache_params=kv_cache_params,
                                      attention_params=attention_params)

    if use_cache:
        attention_output, presents = attention_output

    hidden_states = residual + attention_output

    residual = hidden_states
    hidden_states = self.post_layernorm(hidden_states)

    hidden_states = self.mlp(hidden_states)

    hidden_states = residual + hidden_states
    if use_cache:
        return (hidden_states, presents)
    return hidden_states

class BaichuanModel(Module):

def __init__(self, config: PretrainedConfig):
    super().__init__()
    hidden_size = config.hidden_size

    self.vocab_embedding = Embedding(config.vocab_size,
                                     config.hidden_size,
                                     dtype=config.dtype)

    self.layers = DecoderLayerList(BaichuanDecoderLayer, config)
    self.ln_f = RmsNorm(normalized_shape=hidden_size,
                        eps=config.norm_epsilon,
                        dtype=config.dtype)

def forward(self,
            input_ids: Tensor,
            position_ids=None,
            use_cache=False,
            attention_mask=None,
            kv_cache_params=None,
            attention_params=None,
            prompt_embedding_table=None,
            prompt_tasks=None,
            prompt_vocab_size=None):
    args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size
            ] if prompt_embedding_table is not None else []
    hidden_states = self.vocab_embedding(input_ids, *args)

    hidden_states = self.layers(hidden_states,
                                use_cache=use_cache,
                                attention_mask=attention_mask,
                                kv_cache_params=kv_cache_params,
                                attention_params=attention_params)

    if use_cache:
        hidden_states, presents = hidden_states

    hidden_states = self.ln_f(hidden_states)

    if use_cache:
        return (hidden_states, tuple(presents))
    return hidden_states

[docs] class BaichuanForCausalLM(DecoderModelForCausalLM): config_class = BaichuanConfig

def __init__(self, config: PretrainedConfig):
    transformer = BaichuanModel(config)
    vocab_size_padded = pad_vocab_size(config.vocab_size,
                                       config.mapping.tp_size)
    lm_head = ColumnLinear(config.hidden_size,
                           vocab_size_padded,
                           bias=False,
                           dtype=config.dtype,
                           tp_group=config.mapping.tp_group,
                           tp_size=config.mapping.tp_size,
                           gather_output=True)
    super().__init__(config, transformer, lm_head)

[docs] @classmethod def from_hugging_face( cls, hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): ''' Create a BaichuanForCausalLM object from give parameters ''' import transformers

    assert hf_model_or_dir is not None
    if isinstance(hf_model_or_dir, transformers.PreTrainedModel):
        hf_model = hf_model_or_dir
        hf_config_or_dir = hf_model.config
    else:
        trust_remote_code = kwargs.pop('trust_remote_code', True)

        hf_model = transformers.AutoModelForCausalLM.from_pretrained(
            hf_model_or_dir,
            trust_remote_code=trust_remote_code,
            torch_dtype='auto')
        hf_config_or_dir = hf_model_or_dir

    config = BaichuanConfig.from_hugging_face(hf_config_or_dir,
                                              dtype=dtype,
                                              mapping=mapping,
                                              quant_config=quant_config,
                                              **kwargs)

    weights = load_weights_from_hf_model(hf_model, config)

    model = cls(config)
    model.load(weights)
    return model

[docs] @classmethod def quantize( cls, hf_model_dir: str, output_dir: str, dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, *, device: str = 'cuda', calib_dataset: str = 'cnn_dailymail', calib_batches: int = 512, calib_batch_size: int = 1, calib_max_seq_length: int = 512, random_seed: int = 1234, tokenizer_max_seq_length: int = 2048, **kwargs, ): if quant_config._requires_modelopt_quantization: # modelopt quantization flow super().quantize(hf_model_dir, output_dir, dtype=dtype, mapping=mapping, quant_config=quant_config, device=device, calib_dataset=calib_dataset, calib_batches=calib_batches, calib_batch_size=calib_batch_size, calib_max_seq_length=calib_max_seq_length, random_seed=random_seed, tokenizer_max_seq_length=tokenizer_max_seq_length) elif quant_config._requires_calibration: # non-modelopt quantization flow from .convert import quantize

        config = BaichuanConfig.from_hugging_face(hf_model_dir,
                                                  dtype=dtype,
                                                  mapping=mapping,
                                                  quant_config=quant_config,
                                                  **kwargs)
        quantize(hf_model_dir,
                 output_dir,
                 config=config,
                 device=device,
                 calib_dataset=calib_dataset)
    else:
        raise ValueError(
            f"The quant_config ({quant_config}) does not require calibration, try {cls.__name__}.from_hugging_face instead."
        )