tensorrt_llm.models.clip.model — TensorRT-LLM (original) (raw)
SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
from ...functional import arange, concat, expand, expand_dims, shape from ...layers import MLP, BertAttention, Conv2d, Embedding, LayerNorm from ...mapping import Mapping from ...module import Module, ModuleList from ...parameter import Parameter
Adapted from https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/clip/modeling_clip.py#L164
class CLIPVisionEmbeddings(Module):
def __init__(self, image_size, num_channels, patch_size, hidden_size,
dtype):
super().__init__()
self.image_size = image_size
self.num_channels = num_channels
self.patch_size = patch_size
self.embed_dim = hidden_size
self.dtype = dtype
self.class_embedding = Parameter(shape=[
self.embed_dim,
],
dtype=self.dtype)
self.patch_embedding = Conv2d(in_channels=self.num_channels,
out_channels=self.embed_dim,
kernel_size=(self.patch_size,
self.patch_size),
stride=(self.patch_size, self.patch_size),
bias=False,
dtype=self.dtype)
self.num_patches = (self.image_size // self.patch_size)**2
self.num_positions = self.num_patches + 1
self.position_embedding = Embedding(self.num_positions,
self.embed_dim,
dtype=self.dtype)
def forward(self, pixel_values):
batch_size = shape(pixel_values, 0)
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(
pixel_values.cast(
dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = expand_dims(expand_dims(self.class_embedding.value, 0),
0)
expand_shape = concat(
[batch_size,
shape(class_embeds, -2),
shape(class_embeds, -1)])
class_embeds = expand(class_embeds,
expand_shape) # shape = [*, 1, grid, grid]
embeddings = concat([class_embeds, patch_embeds],
dim=1) # shape = [*, width + 1, grid, grid]
position_ids = arange(0, self.num_positions, dtype='int32')
position_embeds = self.position_embedding(position_ids)
position_embeds = expand_dims(position_embeds, 0)
expand_shape = concat([
batch_size,
shape(position_embeds, -2),
shape(position_embeds, -1)
])
position_embeds = expand(
position_embeds, expand_shape) # shape = [*, width + 1, grid, grid]
embeddings = embeddings + position_embeds
return embeddings
class CLIPEncoderLayer(Module):
def __init__(self, hidden_size, num_attention_heads,
max_position_embeddings, norm_epsilon, intermediate_size,
hidden_act, mapping: Mapping, dtype):
super().__init__()
self.hidden_size = hidden_size
self.dtype = dtype
self.mapping = mapping
self.input_layernorm = LayerNorm(normalized_shape=self.hidden_size,
eps=norm_epsilon,
dtype=self.dtype)
self.attention = BertAttention(
hidden_size=self.hidden_size,
num_attention_heads=num_attention_heads,
max_position_embeddings=max_position_embeddings,
attention_head_size=self.hidden_size // num_attention_heads,
num_kv_heads=num_attention_heads,
dtype=self.dtype,
tp_group=self.mapping.tp_group,
tp_size=self.mapping.tp_size,
tp_rank=self.mapping.tp_rank,
cp_group=self.mapping.cp_group,
cp_size=self.mapping.cp_size)
self.post_layernorm = LayerNorm(normalized_shape=self.hidden_size,
eps=norm_epsilon,
dtype=self.dtype)
self.mlp = MLP(hidden_size=self.hidden_size,
ffn_hidden_size=intermediate_size,
hidden_act=hidden_act,
dtype=self.dtype,
tp_group=self.mapping.tp_group,
tp_size=self.mapping.tp_size)
def forward(self, hidden_states):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.attention(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class CLIPEncoder(Module):
def __init__(self, hidden_size, num_attention_heads,
max_position_embeddings, norm_epsilon, intermediate_size,
hidden_act, num_hidden_layers, mapping: Mapping, dtype):
super().__init__()
self.hidden_size = hidden_size
self.dtype = dtype
self.mapping = mapping
self.layers = ModuleList([
CLIPEncoderLayer(hidden_size=self.hidden_size,
num_attention_heads=num_attention_heads,
max_position_embeddings=max_position_embeddings,
norm_epsilon=norm_epsilon,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
mapping=self.mapping,
dtype=self.dtype) for _ in range(num_hidden_layers)
])
def forward(self, inputs_embeds):
hidden_states = inputs_embeds
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
[docs] class CLIPVisionTransformer(Module):
def __init__(self, image_size, num_channels, patch_size, hidden_size,
num_attention_heads, max_position_embeddings, norm_epsilon,
intermediate_size, hidden_act, num_hidden_layers, require_ln_f,
mapping: Mapping, dtype) -> None:
super().__init__()
self.hidden_size = hidden_size
self.dtype = dtype
self.mapping = mapping
self.embeddings = CLIPVisionEmbeddings(image_size=image_size,
num_channels=num_channels,
patch_size=patch_size,
hidden_size=hidden_size,
dtype=self.dtype)
self.pre_layernorm = LayerNorm(normalized_shape=self.hidden_size,
eps=norm_epsilon,
dtype=self.dtype)
self.encoder = CLIPEncoder(
hidden_size=self.hidden_size,
num_attention_heads=num_attention_heads,
max_position_embeddings=max_position_embeddings,
norm_epsilon=norm_epsilon,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
num_hidden_layers=num_hidden_layers,
mapping=self.mapping,
dtype=self.dtype)
self.ln_f = None
if require_ln_f:
self.ln_f = LayerNorm(normalized_shape=self.hidden_size,
eps=norm_epsilon,
dtype=self.dtype)
[docs] def forward(self, pixel_values): hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layernorm(hidden_states) hidden_states = self.encoder(inputs_embeds=hidden_states)
if self.ln_f is None:
return hidden_states
return self.ln_f(hidden_states)