tensorrt_llm.models.gptneox.model — TensorRT-LLM (original) (raw)
Source code for tensorrt_llm.models.gptneox.model
SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
from ..._utils import pad_vocab_size from ...functional import PositionEmbeddingType, Tensor from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear, Embedding, LayerNorm) from ...module import Module from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM, PretrainedConfig)
class GPTNeoXDecoderLayer(Module):
def __init__(self, config: PretrainedConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
hidden_size = config.hidden_size
dtype = config.dtype
tp_group = config.mapping.tp_group
tp_size = config.mapping.tp_size
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
self.post_attention_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
local_layer_idx = layer_idx - layers_range[0]
self.attention = Attention(
local_layer_idx=local_layer_idx,
hidden_size=hidden_size,
num_attention_heads=config.num_attention_heads,
rotary_embedding_percentage=config.rotary_pct,
rotary_embedding_base=config.rotary_emb_base,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
max_position_embeddings=config.max_position_embeddings,
dtype=dtype,
attention_mask_type=AttentionMaskType.causal,
bias=True,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=config.quant_mode)
self.mlp = MLP(hidden_size=hidden_size,
ffn_hidden_size=hidden_size * 4,
hidden_act=config.hidden_act,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=config.quant_mode)
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None):
residual = hidden_states
input_layernorm_output = self.input_layernorm(hidden_states)
post_attention_layernorm_output = self.post_attention_layernorm(
hidden_states)
attention_output = self.attention(input_layernorm_output,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
norm_before_bmm1=True)
if use_cache:
attention_output, presents = attention_output
feed_forward_hidden_states = self.mlp(post_attention_layernorm_output)
hidden_states = attention_output + feed_forward_hidden_states + residual
if use_cache:
return (hidden_states, presents)
return hidden_states
[docs] class GPTNeoXModel(Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.vocab_embedding = Embedding(num_embeddings=config.vocab_size,
embedding_dim=config.hidden_size,
dtype=config.dtype)
self.layers = DecoderLayerList(GPTNeoXDecoderLayer, config)
self.ln_f = LayerNorm(normalized_shape=config.hidden_size,
dtype=config.dtype)
[docs] def forward(self, input_ids: Tensor, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None): hidden_states = self.vocab_embedding(input_ids)
hidden_states = self.layers(hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params)
if use_cache:
hidden_states, presents = hidden_states
hidden_states = self.ln_f(hidden_states)
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
[docs] class GPTNeoXForCausalLM(DecoderModelForCausalLM):
def __init__(self, config: PretrainedConfig):
transformer = GPTNeoXModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
super().__init__(config, transformer, lm_head)