tensorrt_llm.models.phi.model — TensorRT-LLM (original) (raw)

SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

SPDX-License-Identifier: Apache-2.0

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

from typing import Optional, Union

from transformers import AutoModelForCausalLM

from ..._utils import pad_vocab_size from ...functional import Tensor from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear, Embedding, LayerNorm) from ...lora_manager import LoraConfig, use_lora from ...mapping import Mapping from ...module import Module from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM, PretrainedConfig, QuantConfig) from .config import PhiConfig from .convert import load_weights_from_hf_model

class PhiDecoderLayer(Module):

def __init__(self, config: PretrainedConfig, layer_idx: int):
    super().__init__()
    self.config = config
    self.layer_idx = layer_idx
    tp_group = config.mapping.tp_group
    tp_size = config.mapping.tp_size

    self.input_layernorm = LayerNorm(normalized_shape=config.hidden_size,
                                     dtype=config.dtype)

    layers_range = config.mapping.pp_layers(config.num_hidden_layers)
    local_layer_idx = layer_idx - layers_range[0]
    self.attention = Attention(
        local_layer_idx=local_layer_idx,
        hidden_size=config.hidden_size,
        num_attention_heads=config.num_attention_heads,
        rotary_embedding_percentage=config.rotary_pct,
        position_embedding_type=config.position_embedding_type,
        rotary_embedding_base=config.rotary_base,
        max_position_embeddings=config.max_position_embeddings,
        dtype=config.dtype,
        attention_mask_type=AttentionMaskType.causal,
        bias=True,
        tp_group=tp_group,
        tp_size=tp_size,
        quant_mode=config.quant_mode)

    self.mlp = MLP(hidden_size=config.hidden_size,
                   ffn_hidden_size=config.intermediate_size,
                   hidden_act=config.hidden_act,
                   dtype=config.dtype,
                   tp_group=tp_group,
                   tp_size=tp_size,
                   quant_mode=config.quant_mode)

def forward(
    self,
    hidden_states: Tensor,
    attention_mask=None,
    use_cache=False,
    kv_cache_params=None,
    attention_params=None,
    lora_layer_params=None,
):
    residual = hidden_states

    input_layernorm_output = self.input_layernorm(hidden_states)

    attention_output = self.attention(
        input_layernorm_output,
        attention_mask=attention_mask,
        use_cache=use_cache,
        kv_cache_params=kv_cache_params,
        attention_params=attention_params,
        norm_before_bmm1=True,
        lora_layer_params=lora_layer_params,
    )

    if use_cache:
        attention_output, presents = attention_output

    feed_forward_hidden_states = self.mlp(input_layernorm_output, )
    hidden_states = attention_output + feed_forward_hidden_states + residual
    if use_cache:
        return (hidden_states, presents)
    return hidden_states

[docs] class PhiModel(Module):

def __init__(self, config: PretrainedConfig):
    super().__init__()
    self.vocab_embedding = Embedding(num_embeddings=config.vocab_size,
                                     embedding_dim=config.hidden_size,
                                     dtype=config.dtype)

    self.layers = DecoderLayerList(PhiDecoderLayer, config)
    self.ln_f = LayerNorm(normalized_shape=config.hidden_size,
                          dtype=config.dtype)

[docs] def forward( self, input_ids: Tensor, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None, prompt_embedding_table=None, prompt_tasks=None, prompt_vocab_size=None, lora_params=None, ): args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if prompt_embedding_table is not None else [] hidden_states = self.vocab_embedding(input_ids, *args)

    hidden_states = self.layers(hidden_states,
                                use_cache=use_cache,
                                attention_mask=attention_mask,
                                kv_cache_params=kv_cache_params,
                                attention_params=attention_params,
                                lora_params=lora_params)
    if use_cache:
        hidden_states, presents = hidden_states

    hidden_states = self.ln_f(hidden_states)

    if use_cache:
        return (hidden_states, tuple(presents))
    return hidden_states

[docs] class PhiForCausalLM(DecoderModelForCausalLM): config_class = PhiConfig

config_class = PhiConfig

def __init__(self, config: PretrainedConfig):
    self.check_config(config)
    transformer = PhiModel(config)
    vocab_size_padded = pad_vocab_size(config.vocab_size,
                                       config.mapping.tp_size)

    lm_head = ColumnLinear(config.hidden_size,
                           vocab_size_padded,
                           bias=True,
                           dtype=config.dtype,
                           tp_group=config.mapping.tp_group,
                           tp_size=config.mapping.tp_size,
                           gather_output=True)

    self.trtllm_modules_to_hf_modules = {
        "attn_q": "q_proj",
        "attn_k": "k_proj",
        "attn_v": "v_proj"
    }

    super().__init__(config, transformer, lm_head)

[docs] def check_config(self, config): config.set_if_not_exist('partial_rotary_factor', 0.4) config.set_if_not_exist('rotary_base', 10000.0)

[docs] @classmethod def from_hugging_face( cls, hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): import transformers

    assert hf_model_or_dir is not None
    use_preloading = isinstance(hf_model_or_dir,
                                transformers.PreTrainedModel)
    if use_preloading:
        hf_model = hf_model_or_dir
        hf_config_or_dir = hf_model.config
    else:
        hf_model_dir = hf_model_or_dir
        hf_config_or_dir = hf_model_or_dir
    config = PhiConfig.from_hugging_face(hf_config_or_dir,
                                         dtype=dtype,
                                         mapping=mapping,
                                         quant_config=quant_config,
                                         **kwargs)
    if not use_preloading:
        trust_remote_code = kwargs.pop('trust_remote_code', True)

        hf_model = AutoModelForCausalLM.from_pretrained(
            hf_model_dir,
            torch_dtype="auto",
            trust_remote_code=trust_remote_code)

    assert isinstance(hf_model, transformers.PreTrainedModel)

    weights = load_weights_from_hf_model(hf_model, config)

    model = cls(config)
    model.load(weights)
    return model

[docs] def use_lora(self, lora_config: LoraConfig): use_lora(self, lora_config, self.trtllm_modules_to_hf_modules)