tensorrt_llm.models.redrafter.model — TensorRT-LLM (original) (raw)

SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

SPDX-License-Identifier: Apache-2.0

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

from collections import OrderedDict

import tensorrt as trt

from tensorrt_llm._common import default_net from tensorrt_llm.bindings import KVCacheType from tensorrt_llm.functional import Tensor, cast, categorical_sample from tensorrt_llm.models import LLaMAForCausalLM from tensorrt_llm.models.generation_mixin import GenerationMixin

from ..._utils import pad_vocab_size, str_dtype_to_trt from .drafter import Drafter from .redrafter_helper import (_beam_search_candidates, _beams2tree, _process_logits_and_hidden_states)

[docs] class ReDrafterForCausalLM(LLaMAForCausalLM):

def __init__(self, config):

    super().__init__(config)
    self.dtype = str_dtype_to_trt(config.dtype)
    self.vocab_size = config.vocab_size
    vocab_size_padded = pad_vocab_size(self.vocab_size,
                                       config.mapping.tp_size)
    self.drafter = Drafter.from_config(config, vocab_size_padded)
    self.num_beams = config.redrafter_num_beams
    self.beam_candidate_length = config.redrafter_draft_len_per_beam
    self.beam_length = self.beam_candidate_length + 1  # including true token
    self.greedy_search = config.redrafter_greedy_search
    self.is_rnn = config.redrafter_is_rnn
    assert self.dtype == self.drafter.dtype, f"{self.dtype} != {self.drafter.dtype}"

def _fwd_helper(self, hidden_states, lm_logits, embedding, drafter,
                kwargs: dict):
    '''
    Must enable remove_input_padding:
        hidden_states [total_tokens, H]
        lm_logits [total_tokens, V]
    1. process_logits: context vs gen
        a. Context: just return the last hidden states, and logits/probs
        b. Gen:
            i. verify: use lm_logits, draft_probs, draft_indices, draft_tokens
            ii. select hidden state and update probs
    3. Sample token based on probs
    4. Generate candidates using hidden_states, sampled token
    5. Using beams, generate validation buffers, mark them as output
    6. Mark all the outputs
    '''

    num_beams = self.num_beams
    beam_length = self.beam_length

    # Get the inputs needed
    rand_data_sample = kwargs['rand_data_sample']
    position_ids_base = kwargs['position_ids_base']

    # Step 1: Process logits and hidden states
    # process the base model output (verify for gen-phase)
    probs, draft_input, num_accepted_tokens, \
        accepted_beam_index = _process_logits_and_hidden_states(
            self, lm_logits, hidden_states, kwargs)
    # NOTE: num_accepted_tokens doesn't include true token so add 1 here
    num_accepted_tokens = num_accepted_tokens + 1

    # At this point:
    #  probs : [bs, V]
    #  hidden_states : [bs, H]

    # Step 2: Sample token
    next_token = categorical_sample(probs, rand_data_sample)

    # Step 3: beam search
    new_draft_tokens, new_draft_logits = _beam_search_candidates(
        draft_input, next_token, embedding, drafter, self.num_beams,
        self.beam_length, self.is_rnn)

    # Step 4: tree processing
    active_tokens_flattened, new_draft_token_indices, new_mask, \
        new_position_offsets, packed_position_ids, next_num_gen_tokens, max_gen_token, \
        total_gen_token = _beams2tree(new_draft_tokens, num_beams, beam_length,
                                      position_ids_base + num_accepted_tokens)

    # Step 5: mark all the tensors we need
    num_accepted_tokens.mark_output('num_accepted_tokens')
    accepted_beam_index.mark_output('accepted_beam_index')
    max_gen_token.mark_output('max_gen_token')
    total_gen_token.mark_output('total_gen_token')
    next_num_gen_tokens.mark_output('next_spec_decoding_generation_lengths')
    active_tokens_flattened.mark_output('next_flat_tokens')
    new_draft_tokens.mark_output('next_draft_tokens')
    new_draft_logits.mark_output('next_draft_probs')
    new_draft_token_indices.mark_output('next_draft_indices')
    new_mask.mark_output('spec_decoding_mask')
    new_position_offsets.mark_output('next_spec_decoding_position_offsets')
    packed_position_ids.mark_output('packed_position_ids')

    return next_token, probs, draft_input

[docs] def forward(self, *args, **kwargs): """ 0. run base model, get logits, hidden_states """

    extra_args = [
        'draft_tokens',
        'draft_indices',
        'draft_probs',
        'device_request_types',
        'redrafter_inverted_temperature',
        'rand_data_validation',
        'rand_data_sample',
        'position_ids_base',
    ]
    use_cache = True
    base_kwargs = {k: v for k, v in kwargs.items() if k not in extra_args}
    if use_cache and default_net().plugin_config.paged_kv_cache is False:
        lm_logits, presents, hidden_states = super().forward(
            *args, **base_kwargs)
    else:
        lm_logits, hidden_states, _ = super().forward(*args, **base_kwargs)

    # lm_logits could be in fp32
    lm_logits_cast = cast(lm_logits, self.dtype)  # no-op if same type
    self.register_network_output("hidden_states",
                                 hidden_states)  # debugging

    new_draft_tokens, new_draft_logits, probs = self._fwd_helper(
        hidden_states,
        lm_logits_cast,
        self.transformer.vocab_embedding,
        self.drafter,
        kwargs=kwargs)

    return new_draft_tokens, new_draft_logits, probs

[docs] def prepare_inputs(self, *args, *kwargs): """ Inputs needed: Assuming, max_gen_tokens = 1 + nb(bl - 1), counting true token device_request_types: [bs] draft_tokens: [bs, nb, bl] draft_indices: [bs, nb, bl] draft_probs: [bs, nb, bl-1, V] spec_decoding_generation_lengths: [bs] spec_decoding_position_offsets: [bs, max_gen_tokens] spec_decoding_packed_mask: [bs, max_gen_tokens, packed_length] ** redrafter_inverted_temperature: [bs] rand_data_sample: [bs] rand_data_validation: [bs, nb, bl-1]

        ** The mask is tricky since the boolean mask will need to be
           packed in runtime. So, the last dim will be:
                packed_length = ceil(max_gen_tokens/32)
    """
    default_range = GenerationMixin.default_range
    remove_input_padding = default_net().plugin_config.remove_input_padding
    use_gpt_attention_plugin = default_net(
    ).plugin_config.gpt_attention_plugin
    use_gemm_plugin = default_net().plugin_config.gemm_plugin
    paged_kv_cache = default_net().plugin_config.paged_kv_cache
    max_batch_size = kwargs['max_batch_size']
    assert max_batch_size is not None
    bb_range = default_range(max_batch_size)
    bb0_range = default_range(max_batch_size, min_range=0, opt_offset=1)
    num_beam_tokens = self.num_beams * self.beam_length
    max_draft_tokens = num_beam_tokens - self.num_beams  # ignore the true token
    max_gen_token_len = 1 + max_draft_tokens  # for the true token
    max_gen_token_len_range = default_range(max_gen_token_len)
    bb_max_gen_token_len_range = default_range(max_gen_token_len *
                                               max_batch_size,
                                               min_range=0)

    kwargs['speculative_decoding_draft_tokens_external'] = False
    kwargs['max_draft_len'] = max_draft_tokens
    kwargs['spec_decoding_is_generation_length_variable'] = True
    inputs = super().prepare_inputs(*args, **kwargs)
    assert inputs['spec_decoding_params'] is not None

    enable_two_optimization_profiles = GenerationMixin.has_ctx_gen_opt_profiles(
        use_gpt_attention_plugin=use_gpt_attention_plugin,
        use_gemm_plugin=use_gemm_plugin,
        remove_input_padding=remove_input_padding,
        kv_cache_type=KVCacheType.PAGED
        if paged_kv_cache else KVCacheType.CONTINUOUS)
    if enable_two_optimization_profiles:
        bb_range = [bb_range, bb_range]
        bb0_range = [bb0_range, bb0_range]
        max_gen_token_len_range = [
            max_gen_token_len_range, max_gen_token_len_range
        ]
        bb_max_gen_token_len_range = [
            bb_max_gen_token_len_range, bb_max_gen_token_len_range
        ]
        num_beams_range = [self.num_beams, self.num_beams]
        beam_length_range = [self.beam_length, self.beam_length]
        candidate_length_range = [
            self.beam_candidate_length, self.beam_candidate_length
        ]
        vocab_size_range = [self.vocab_size, self.vocab_size]
    else:
        bb_range = [bb_range]
        bb0_range = [bb0_range]
        max_gen_token_len_range = [max_gen_token_len_range]
        bb_max_gen_token_len_range = [bb_max_gen_token_len_range]
        num_beams_range = [self.num_beams]
        beam_length_range = [self.beam_length]
        candidate_length_range = [self.beam_candidate_length]
        vocab_size_range = [self.vocab_size]

    device_request_types = Tensor(name='device_request_types',
                                  dtype=trt.int32,
                                  shape=[-1],
                                  dim_range=OrderedDict([
                                      ('batch_size', bb_range),
                                  ]))
    draft_tokens = Tensor(name='draft_tokens',
                          dtype=trt.int32,
                          shape=[-1, self.num_beams, self.beam_length],
                          dim_range=OrderedDict([
                              ('batch_size_wt0', bb0_range),
                              ('num_beams', num_beams_range),
                              ('beam_length', beam_length_range),
                          ]))
    draft_indices = Tensor(name='draft_indices',
                           dtype=trt.int32,
                           shape=[-1, self.num_beams, self.beam_length],
                           dim_range=OrderedDict([
                               ('batch_size_wt0', bb0_range),
                               ('num_beams', num_beams_range),
                               ('beam_length', beam_length_range),
                           ]))
    draft_probs = Tensor(
        name='draft_probs',
        dtype=self.dtype,
        shape=[-1, self.num_beams, self.beam_length - 1, self.vocab_size],
        dim_range=OrderedDict([
            ('batch_size_wt0', bb0_range),
            ('num_beams', num_beams_range),
            ('candidate_length', candidate_length_range),
            ('vocab_size', vocab_size_range),
        ]))
    redrafter_inverted_temperature = Tensor(
        name='redrafter_inverted_temperature',
        dtype=self.dtype,
        shape=[-1],
        dim_range=OrderedDict([
            ("batch_size", bb_range),
        ]))
    rand_data_validation = Tensor(
        name='rand_data_validation',
        dtype=self.dtype,
        shape=[-1, self.num_beams, self.beam_length - 1],
        dim_range=OrderedDict([
            ('batch_size_wt0', bb0_range),
            ('num_beams', num_beams_range),
            ('candidate_length', candidate_length_range),
        ]))
    rand_data_sample = Tensor(name='rand_data_sample',
                              dtype=self.dtype,
                              shape=[-1],
                              dim_range=OrderedDict([
                                  ('batch_size', bb_range),
                              ]))
    position_ids_base = Tensor(
        name="position_ids_base",
        dtype=trt.int32,
        shape=[-1],
        dim_range=OrderedDict([
            ("batch_size", bb_range),
        ]),
    )

    inputs[
        'device_request_types'] = device_request_types  # needed by process_logits
    inputs['draft_tokens'] = draft_tokens
    inputs['draft_indices'] = draft_indices
    inputs['draft_probs'] = draft_probs
    inputs[
        'redrafter_inverted_temperature'] = redrafter_inverted_temperature
    inputs['rand_data_validation'] = rand_data_validation
    inputs['rand_data_sample'] = rand_data_sample
    inputs['position_ids_base'] = position_ids_base
    return inputs