pandas.DataFrame.duplicated — pandas 3.0.0.dev0+2098.g9c5b9ee823 documentation (original) (raw)

DataFrame.duplicated(subset=None, keep='first')[source]#

Return boolean Series denoting duplicate rows.

Considering certain columns is optional.

Parameters:

subsetcolumn label or iterable of labels, optional

Only consider certain columns for identifying duplicates, by default use all of the columns.

keep{‘first’, ‘last’, False}, default ‘first’

Determines which duplicates (if any) to mark.

Returns:

Series

Boolean series for each duplicated rows.

Examples

Consider dataset containing ramen rating.

df = pd.DataFrame( ... { ... "brand": ["Yum Yum", "Yum Yum", "Indomie", "Indomie", "Indomie"], ... "style": ["cup", "cup", "cup", "pack", "pack"], ... "rating": [4, 4, 3.5, 15, 5], ... } ... ) df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0

By default, for each set of duplicated values, the first occurrence is set on False and all others on True.

df.duplicated() 0 False 1 True 2 False 3 False 4 False dtype: bool

By using ‘last’, the last occurrence of each set of duplicated values is set on False and all others on True.

df.duplicated(keep="last") 0 True 1 False 2 False 3 False 4 False dtype: bool

By setting keep on False, all duplicates are True.

df.duplicated(keep=False) 0 True 1 True 2 False 3 False 4 False dtype: bool

To find duplicates on specific column(s), use subset.

df.duplicated(subset=["brand"]) 0 False 1 True 2 False 3 True 4 True dtype: bool