pandas.Series.notna — pandas 3.0.0.dev0+2102.g839747c3f6 documentation (original) (raw)
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings ''
or numpy.inf
are not considered NA values. NA values, such as None or numpy.NaN
, get mapped to False values.
Returns:
Series
Mask of bool values for each element in Series that indicates whether an element is not an NA value.
Examples
Show which entries in a DataFrame are not NA.
df = pd.DataFrame( ... dict( ... age=[5, 6, np.nan], ... born=[ ... pd.NaT, ... pd.Timestamp("1939-05-27"), ... pd.Timestamp("1940-04-25"), ... ], ... name=["Alfred", "Batman", ""], ... toy=[None, "Batmobile", "Joker"], ... ) ... ) df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
ser = pd.Series([5, 6, np.nan]) ser 0 5.0 1 6.0 2 NaN dtype: float64
ser.notna() 0 True 1 True 2 False dtype: bool