pandas.core.groupby.SeriesGroupBy.cumsum — pandas 3.0.0.dev0+2097.gcdc5b7418e documentation (original) (raw)
SeriesGroupBy.cumsum(numeric_only=False, *args, **kwargs)[source]#
Cumulative sum for each group.
Parameters:
numeric_onlybool, default False
Include only float, int, boolean columns.
*argstuple
Positional arguments to be passed to func.
**kwargsdict
Additional/specific keyword arguments to be passed to the function, such as numeric_only and skipna.
Returns:
Series or DataFrame
Cumulative sum for each group. Same object type as the caller.
See also
Series.groupby
Apply a function groupby to a Series.
DataFrame.groupby
Apply a function groupby to each row or column of a DataFrame.
Examples
For SeriesGroupBy:
lst = ["a", "a", "b"] ser = pd.Series([6, 2, 0], index=lst) ser a 6 a 2 b 0 dtype: int64 ser.groupby(level=0).cumsum() a 6 a 8 b 0 dtype: int64
For DataFrameGroupBy:
data = [[1, 8, 2], [1, 2, 5], [2, 6, 9]] df = pd.DataFrame( ... data, columns=["a", "b", "c"], index=["fox", "gorilla", "lion"] ... ) df a b c fox 1 8 2 gorilla 1 2 5 lion 2 6 9 df.groupby("a").groups {1: ['fox', 'gorilla'], 2: ['lion']} df.groupby("a").cumsum() b c fox 8 2 gorilla 10 7 lion 6 9